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Fuzzy Historical Graph Pattern Matching
A NoSQL Graph Database Approach for Fraud

Ring Resolution

Arnaud Castelltort and Anne Laurent

LIRMM - Univ. of Montpellier - CNRS UMR 5506
161 rue Ada, 34 095 Montpellier, France

Abstract. Graphs have been studied and used for many years as they
allow to represent in an efficient manner real data such as biological or
social data. Graph databases have recently emerged within the NoSQL
framework and are implemented in systems like Neo4J, OrientDB, etc.
Recent works have shown that the management of history is crucial in
such systems. In this paper, we show how such historical graph databases
can be queried in order to retrieve fraud rings, also known as fraud cy-
cles. Frauds are indeed often based on sophisticated chains of successive
transactions (money, communications, etc.). We thus claim that the in-
direct link between fraudsters can be retrieved by considering historical
NoSQL graph databases. We study how the model of historical NoSQL
databases can be extended for better address this goal and we propose
the associated queries that have been tested on a synthetical database.

Keywords: NoSQL Graph Databases, Time Information, Fraud Rings.

1 Introduction

Graphs are known to be efficient for representing data in many applications,
from linguistics to chemistry and social networks. For instance, such a graph
allows to draw in a very intuitive manner the relationships among people and
between these people and the organizations they belong to.

Graphs are recognized to play an important role within the pattern recogni-
tion field [12], thus being a key technology for retrieving relevant information,
as for fraud detection or in social/biological interactions. Techniques and algo-
rithms can be distinguished depending on the fact that they are meant to mine
relevant patterns or to retrieve patterns.

If considering frauds (bank and insurance), frauds represent billions of dollars
lost by companies every year. For instance more than £52 billions have been lost
in UK in 2013 [1]. Fraud can be organised or can be individual. It can impact
individuals or organizations (e.g., banks) as in first-party and third-party fraud.
Graphs can help for retrieving frauds through the modelization of fraud rings
which are hidden within the graph of interactions [24]. A fraud ring is a set of
connections between actors. It can be found in many fraud frameworks.
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Although graphs have been studied since the very beginning of computer sci-
ence in the so-called graph theory field [8], their integration within database man-
agement systems is more recent. Some of the first systems have been proposed
with the emergence of ontologies and RDF triplets queried through SPARQL
[26]. More recently, NoSQL databases have proposed efficient engines devoted
to graph databases: GraphDB, Neo4J,. . . [7] compares some of these engines and
points the advantages of the Neo4J system, which is the one we consider.

In this paper, we propose a framework for defining fuzzy historical pattern
matching from NoSQL graph databases. For this purpose, we first recall the
basic concepts of NoSQL graph databases, historical queries and graph pattern
matching in Section 2. We then detail the problem we address in Section 3,
before presenting our contribution and its resolution using the NoSQL Neo4j
graph database in Section 4. Section 5 sums up this paper and presents the
future work we would like to address.

2 Related Work

2.1 Graphs and NoSQL Graph Databases

Graphs have been studied for a long time by mathematicians and computer
scientists. A graph can be directed or not. It is defined as follows.

Definition 1 (Graph). A graph G is given by a pair (V,E) where V stands
for a set of vertices and E stands for a set of edges with E ⊆ (V × V ).

Definition 2 (Directed Graph). A directed graph G is given by a pair (V,E)
where V stands for a set of vertices and E stands for a set of edges with E ⊆
{V × V }. That is E is a subset of all ordered permutations of V element pairs.

When used in real world applications, graphs need to be provided with the
capacity to label nodes and relations, thus leading to the so-called labeled graphs,
or property graphs as shown in Fig. 1 and defined bellow :

Definition 3 (Labeled Oriented Graph). A labeled oriented graph G, also
known as oriented property graph, is given by a quadruplet (V,E, α, β) where V
stands for a set of vertices and E stands for a set of edges with E ⊆ {V ×V }, α
stands for the set of attributes defined over the nodes, and β the set of attributes
defined over the relations.

NoSQL graph databases [23] are based on these concepts, attributes and
values over the attributes being stored thanks to the (key, value) paradigm which
is very common in NoSQL databases.

Fig. 2 shows a graph and its structure in (key, values) pairs.
Studies have shown that these technologies present good performances, much

better than classical relational databases for representing and querying such large
graph databases. Their exist several NoSQL graph database engines (OrientDB,
Neo4J,HyperGraphDB, etc.) [4]. Neo4J is recognised as being one of the top
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Fig. 1: Labeled Graph

Fig. 2: Properties of Nodes and Relations

ones regarding performance [7]. It has been recently extended for managing the
successive versions of the graph database in the Mnemosyne system described
below.

2.2 Mnemosyne: an innovative historical data management system

[9] aims at proposing an innovative model of history management in NoSQL
graph databases. This contribution is based on three key concepts:
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– Use the graph to manage historical data;
– Data historization must be totaly decoupled from the representation of the

data in the graph datasource;
– Use generic graph traversals regardless of the graph datasource.

One of the main specificity of the Mnemosyne system is that it uses two
graphs :

– DataGraph: the current graph in use
– VersionGraph: a VersionGraph storing the history of different versions of a

data graph. The VersionGraph model does not depend on the DataGraph.

Fig. 3 shows an example of a DataGraph and a VersionGraph.

Fig. 3: DataGraph (left) and VersionGraph (right)

In this system, every node and relation in the graph database is tracked in
the VersionGraph with a node called TraceElement. From this node, all the
modifications (insert, update, create) are kept in a list of RevisionElements
that can be queried generically for elements (nodes or relations) of the graph
source.

Fig. 4 illustrates this proposal. In this example, three nodes (a,b,c) and three
relations (r1,r2,r3) from Fig. 5 are traced.

When several modifications have occured, the versiongraph becomes more
complex and several revisions appear. These revisions can be traversed with
different points of view, depending on the fact that the user needs to trace
nodes or elements, as illustrated by Fig. 6.

2.3 Pattern Matching and Querying

Graph pattern matching is a very difficult algorithmic problem that has attracted
many works that cannot be all recalled here.
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Fig. 4: Version Graph Model

Fig. 5: Data Graph Model

Fig. 6: Points of view in VersionGraph

Graph pattern matching is distinguished from graph mining where frequent
subgraphs are searched for [29, 17].
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Fig. 7: Pattern Matching

[27] addresses several topics within the framework of the approximate graph
matching problem, as for instance the computation of the distance between two
graphs.

Historical queries have been studied since the beginning of databases, in
relational databases [11], datawarehouses [18] and Web data [5, 22]. However,
very few works have proposed to represent and query history in graph-oriented
NoSQL databases [16].

Many works on temporal queries are based on the Allen interval algebra
[2] describing the temporal relations between two intervals A = [a−, a+] and
B = [b−, b+].In this framework, A and B are two intervals of dates (for in-
stance, A1 = [January2013,March2013] and B1 = [February2013, June2013])
and some predicates are defined on A and B which hold or not depending on
some tests over the boundaries a−, a+, b−, b+ (for instance before(A1, B1) does
not hold as March2013 ≮ February2013). Temporal SQL has been extensively
studied, and has been fuzzified [25] as for instance to describe that the event B
occurs long before event A, or that event A occurs before or approximately at the
same date as the event B.

For all the above-mentioned topics, graphs can be queried through languages.
Some of them have been studied in the literature. Some languages have been
proposed by scientists and some other ones have been issued by the editors.

[28] proposes a survey of all the languages defined over the last 25 years,
where subgraph matching appears to be one of the most powerful and necessary
query, including approximate matching.

[3] proposes a propositional dynamic logic that extends several graph database
languages.

[13] introduces GraphQL, a graph algebra capable of taking into account
nodes, relations, and attributes on both nodes and relations. In this language,
the authors define the so-called graph pattern as a pair P = (M,F) where
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M is a graph motif and F is a predicate on the attributes of the motif. The
algebra contains several operations, including selection, cartesian product, join,
composition and demonstrate that their algebra is contained into Datalog, thus
allowing for rewriting their queries in Datalog.

We show below how these works can be used for fuzzy pattern matching in
the framework of fraud ring detection and what their limits are.

3 Problem Statement

3.1 Preliminary statements

Fraud detection is often considered as a subtopic of anomaly detection. Anomaly
detection has been widely studied [10]. Fraud data are often intrinsically graphs.
However, when focusing on graphs, few works have been done [21]. In such
problems, fraudsters try to stay hidden by acting in groups so that no action
is then a direct one. Intermediate layers are meant to hide the association of
fraudsters. It should be noted that if the size of the group is too small then the
fraud can more easily be discovered, but if the size is too big, then there are
more probabilities that some problem occurs, should it be caused by coincidence
or caused by a weak link in the circle of persons. The size of the group being
organized for the fraud ranges from 2 to several.

In our work, we focus on fraud rings [15] defined as follows.

Definition 4 (Fraud Ring). Given a graph G, a fraud ring (also known as
fraud cycle) can be defined as a subgraph F ⊆ G where there exist at least two
nodes n1, n2 ∈ F that are indirectly connected, betraying illegal links between the
nodes n1 and n2.

Many problems are based on fraud rings, from corruption, insurance and bank
fraud, to shell companies, etc. Even in managing human resources, it can be the
case that a few people make benefit their brotherhood from unfair positions.
Many works and methods have addressed this problem but fraudsters have built
innovative manners that are not easily discovered by existing tools.

For instance, for insurance fraud, some people are claiming millions of dollars
after declaring fake accidents, fake passengers and fake witnesses. Fig. 8 shows
how this appears on a graph.

Fraud rings can be retrieved by connected analysis when for instance one
people acts once as a driver and then twice as a witness or passenger in another
car accident, as shown by [20] and illustrated by Fig. 9.

3.2 Use Case

We focus on the bank fraud detection as depicted in [6]. In such frauds, a circle
of persons share some legal documents and create accounts. The credit lines and
accounts are used, and gradually merged with unsecured lines.
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Fig. 8: Fraud Ring - fake car accidents, passengers and witnesses

Fig. 9: A Fraud Ring Example [20]

As depicted in [6]: “One day the ring busts out, coordinating their activity,
maxing out all of their credit lines, and disappearing. Sometimes fraudsters
will go a step further and bring all of their balances to zero using fake checks
immediately before the prior step, doubling the damage”.

For this purpose, link analysis and discrete data analysis has been proposed
and applied, for instance using the Neo4j tools or in [19, 14]. For instance it can
help to retrieve the “account holders who share more than one piece of legitimate
contact information” which is very easy when data are represented using graph
structures.

3.3 Problem

In this paper, we focus on the exploitation of the relations, of the history and of
the labels contained in the graph for retrieving fraud rings. We claim that:
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– history is a key feature for discovering such rings. Time is indeed important
and fraudsters are playing with delays in order to gradually root their ac-
tions. However, time is not always represented in the systems used to store
the information, which prevents organizations from efficiently wiping out
fraud and corruption.

– fuzziness is required as such patterns are approximate.
– many algorithms have been designed, but their implementation on real world

problems and engines is not always tractable. We thus consider the use of
adapted tools with the capabilities to express such queries in declarative
languages.

The next section introduces various means to address these points.

4 Resolution and Experiments

As shown above, fraud detection relies on the discovery of graph patterns in the
successive states of the data. This section relies on a classical example of bank
fraud.

Fig. 10: Fraud dataset

The dataset used in this section is defined in Fig. 10. Green circled nodes rep-
resent fraudsters and red circled nodes represent the connection points between
these persons.

In this section, we first introduce a standard pattern matching resolution to
detect fraud rings in a graph. This kind of resolution works well when all the
data are available (which means that no valuable information for resolution have
been erased or replaced). To handle this problem, there are two main ways:

– either by embedding the history within the operational model. This creates
difficulties as the patterns for fraud detection must then be written in an
adhoc manner, depending on the specific model
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– either by considering a generic model for describing the history that is com-
patible with pattern matching. This allows to write generic pattern matching
queries for retrieving the fraud rings.

This latter case is explored by presenting how the Mnemosyne model can
help.

Finaly, to go further, we show that fuzziness can help to address approximate
pattern matching.

4.1 Pattern Matching Resolution

Classic Resolution The challenge is to determine if there is a ring in the
dataset, and if so, what is its size and what is the finacial risk it represents. A
classical solving resolution looks like Listing 1.1:

Listing 1.1: Classical pattern resolution

1 MATCH ( accountHolder : AccountHolder ) -[ ] -> ( contactInformation )
2 WITH contactInformation ,
3 count ( accountHolder ) AS RingSize
4 MATCH ( contactInformation )< -[ ]−(accountHolder ) ,
5 ( accountHolder ) -[ r : HAS_CREDITCARD | HAS_UNSECUREDLOAN ] -> (←↩

unsecuredAccount )
6 WITH collect ( DISTINCT accountHolder . UniqueId ) AS AccountHolders←↩

,
7 contactInformation , RingSize ,
8 SUM (CASE type ( r )
9 WHEN ’ HAS_CREDITCARD ’ THEN unsecuredAccount . Limit

10 WHEN ’ HAS_UNSECUREDLOAN ’ THEN unsecuredAccount . Balance
11 ELSE 0
12 END ) as FinancialRisk
13 WHERE RingSize > 1
14 RETURN AccountHolders AS FraudRing ,
15 labels ( contactInformation ) AS ContactType ,
16 RingSize ,
17 round ( FinancialRisk ) as FinancialRisk
18 ORDER BY FinancialRisk DESC

That is to say, finding all the account holders that have at least one piece of
information in common (line 1 to 5) and then calculate the ring size (line 3) and
the induced financial risk (lines 8 to 12).

The result of the execution of Listing 1.1 declarative request is shown in
Fig. 11.

Resolution Generalisation In fact, resolution of this kind of problems can
be generalized as answering this question: “Do some people share some informa-
tion?”. Expressing the query for answering such a question can be more generi-
caly answered with queries like:

1 MATCH ( A : ACCOUNTHOLDER ) -[ ∗ ] -> ( B : ACCOUNTHOLDER ) -[ ∗ ] -> ( C : ACCOUNTHOLDER )
2 WITH count ( accountHolder ) AS RingSize
3 RETURN A , B , C , RingSize
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Fig. 11: Classical pattern resolution results

We can then apply this algorithm in the same maner to other graphs that
are not in the same business area.

4.2 Historical Pattern Matching Resolution

In this section, historical queries rely on the Mnemosyne model presented in
Section 2.

Fraud Ring: Temporal Cheating It should be noted that expressing pattern
matching defined in Section 4.1 can be done on existing insurance/bank data as
such applications are meant to store and trace the history. However, this is not
always the case. Fig. 12 shows how, if history was not managed in such systems,
the fraudsters can cheat to stay hidden by creating, updating and deleting some
information over time.

In this case, the above algorithms will not detect any fraud ring as they
cannot manage history. To help organizations to find frauds, it is thus necessary
to record historical tracks.

Mnemosyne Extension The Mnemosyne system presented above offers an
efficient manner to trace the history within graph data. If a node or a relation
is impacted by an operation, should it be an update, delete or insert operation,
then this is recorded in an other graph called VersionGraph which handle the
history of each node or relation.

It should be noted that the VersionGraph manages the history in the same
manner whatever the business area should be. The Mnemosyne system represents
the history in the same way whatever the heterogeneity of the DataGraph (in
terms of types as well as structures of data). This is due to the generic nature
offered by the system which does not care about the semantics of data and which
provides a strong dissociation between the data (in the sense of information) and
the data structure.

However, in this model, the representation does not materialize the links
between the impacts on the neighborhood. For instance, if a relation is added,
then the incoming and outgoing nodes are changed in the graph. All these oper-
ations will thus be traced in the Mnemosyne VersionGraph, but no link is traced
between the elements (to manage performance optimization).
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Fig. 12: Example of temporal cheating applied to current dataset

We thus propose to materialize these links in order to speed up the process.
If a relation is updated, then the Mnemosyne will materialize (by a relationship
in the VersionGraph) the impacted nodes and relations. Fig. 13 presents an
example of such a situation, the blue relationships representing the materialized
relationships which are added.

Resolution Resolving such patterns in NoSQL graph databases requires to
define original queries. Such queries are built to navigate in the graph and his-
torical graph (Mnemosyne VersionGraph) in order to retrieve the fraud rings.
The efficiency of the system relies on the NoSQL engine.

Listing 1.2 shows how to query all the links from the history in order to
retrieve the potential fraud ring.

Listing 1.2: Exploiting Historical Revisions

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )
2 with TEAH 1 , TEAH 2
3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )
4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )
5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) )

As shown on this Cypher query, all the elements impacted in the graph can
easily be retrieved by exploiting the materialized links of the history from the
extension we propose. However, we claim that the patterns to be found cannot
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Fig. 13: Materializing Elements impacted by an operation in the VersionGraph

be defined in a crisp manner and propose below an extension to fuzzy historical
patterns.

4.3 Fuzzy Historical Pattern Matching Resolution

In many cases, the parameters of the patterns cannot be defined in a strict
manner. For instance, the minimum and maximum size of the fraud ring are
fuzzy parameters. In the same manner, the time delays between the fraudsters’
actions are fuzzy.

We thus propose to use fuzzy clauses in the pattern matching queries.
Temporal fuzzy clauses can be defined either by considering the fuzzy Allen

intervals or by considering user defined clauses. Fig. 15 displays a membership
function defining fuzzy weeks that is exploited in Listing 1.5. Rings can be char-
acterized in the same way as the length of the paths forming the relations and
the ring ranges within fuzzy bounds, as shown on Listing 1.4.

Listing 1.3: Exploiting the Length

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )
2 with TEAH 1 , TEAH 2
3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )
4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )
5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) ,←↩

length ( p )

Listing 1.4: Fuzzy Pattern Matching on Fuzzy Lengths
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Fig. 14: Mnemosing Ring: Exploiting Historical Revisions

Fig. 15: Trapezoidal Membership Function of the Fuzzy Set FuzzyWeeks

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )
2 with TEAH 1 , TEAH 2
3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )
4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )
5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) ,←↩

fuzzyDist ( p )

Listing 1.5: Fuzzy Pattern Matching on Fuzzy Weeks
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Fig. 16: Mnemosing Ring : Exploiting the Length

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )
2 with TEAH 1 , TEAH 2
3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )
4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ ) and ←↩

fuzzyWeeks ( p ) > 0 . 7
5 return TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) )

5 Conclusion and Further Work

In this paper, we address the problem of fraud detection by considering fraud
rings in graph databases. The use of NoSQL graph databases is a key element
of our work. We especially claim that representing the successive versions of the
graph data allows to better retrieve the chains of successive transactions that
represent a fraud. For this purpose, we consider the Mnemosyne system that is
extended here for materializing temporal relations between objects. This allows
us to directly apply pattern matching on the graph for retreiving the fraud rings.

Fuzziness allows us to take better account of the fraud characteristics. The
patterns may indeed differ from one case to another and considering crisp values
when scanning the data may prevent from retrieving the relevant patterns.

Our further works will especially address the comparison of various strategies
for materializing the history links in the Mnemosyne system. We also aim at
testing our methods on various datasets, for instance for financial crime detection
and counter-terrorism.
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