
HAL Id: lirmm-01381080
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01381080

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fuzzy queries over NoSQL graph databases:
perspectives for extending the cypher language

Arnaud Castelltort, Anne Laurent

To cite this version:
Arnaud Castelltort, Anne Laurent. Fuzzy queries over NoSQL graph databases: perspectives for ex-
tending the cypher language. 15th International Conference on Information Processing and Manage-
ment of Uncertainty in Knowledge-Based Systems (IPMU), Jul 2014, Montpellier, France. pp.384-395,
�10.1007/978-3-319-08852-5_40�. �lirmm-01381080�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01381080
https://hal.archives-ouvertes.fr

Fuzzy Queries over NoSQL Graph Databases:

Perspectives for Extending the Cypher Language

A. Castelltort∗ and A.Laurent∗

∗LIRMM, Montpellier, France

{castelltort,laurent}@lirmm.fr

Abstract. When querying databases, users often wish to express vague concepts,

as for instance asking for the cheap hotels. This has been extensively studied in

the case of relational databases. In this paper, we propose to study how such use-

ful techniques can be adapted to NoSQL graph databases where the role of fuzzi-

ness is crucial. Such databases are indeed among the fastest-growing models for

dealing with big data, especially when dealing with network data (e.g., social net-

works). We consider the Cypher declarative query language proposed for Neo4j

which is the current leader on this market, and we present how to express fuzzy

queries.

Keywords: Fuzzy Queries, NoSQL Graph Databases, Neo4j, Cypher, Cypherf.

1 Introduction

Graph databases have attracted much attention in the last years, especially because

of the collaborative concepts of the Web 2.0 (social and media networks etc.) and the

arriving Web 3.0 concepts.

Specific databases have been designed to handle such data relying on big dense

network structures, especially within the NoSQL world. These databases are built to

remain robust against huge volumes of data, against their heterogeneous nature and the

high speed of the treatments applied to them, thus coping with the so-called Big Data

paradigm.

They are currently gaining more and more interest and are applied in many real

world applications, demonstrating their power compared to other approaches. NoSQL

graph databases are known to offer great scalability [1].

Among these NoSQL graph databases, Neo4j appears to be one of the most ma-

ture and deployed [2]. In such databases, as for graphs, nodes and relationships be-

tween nodes are considered. Neo4j includes nodes and relationships labeling with the

so-called types. Moreover, properties are attached to nodes and relationships. These

properties are managed in Neo4j using the key:value paradigm.

Fig. 1 shows an example of hotels and customers database. The database contains

hotels located in some cities and visited by some customers. Links are represented by

the :LOCATED and :VISIT relationships. The hotels and people and relationships are

described by properties: id, price, size (number of rooms) for hotels; id, name, age for

people. One specificity is that relationships in Neo4j are provided with types (e.g., type

2 Castelltort et al.

“hotel” or “people” in the example) and can also have properties as for nodes. This

allows to represent in a very intuitive and efficient manner many data from the real

world. For instance, :LOCATED has property distance, standing for the distance to city

center.

Fig. 1. Neo4j database console user interface: Example for Hotels and Customers

All NoSQL graph databases require the developers and users to use graph concepts

to query data. As for any other repository, when querying such NoSQL graph databases,

users either require specific focused knowledge (e.g., retrieving Peter’s friends) or ask

for trend detection (e.g., detecting trends and behaviours within social networks).

Queries are called traversals. A graph traversal refers to visiting elements, i.e. nodes

and relations. There are three main ways to traverse a graph:

– programmaticaly, by the use of an API that helps developers to operate on the

graph;

– by functional traversal, a traversal based on a sequence of functions applied to a

graph;

Fuzzy Cypher Queries 3

– by declarative traversal, a way to explicit what we want to do and not how we want

to do it. Then, the database engine defines the best way to achieve the goal.

In this paper, we focus on declarative queries over a NoSQL graph database. The

Neo4j language is called Cypher.

For instance on Fig. 1, one query is displayed to return the customers who have

visited the “Ritz” hotel.They are both displayed in the list and circled in red in the

graph.

We consider in this paper the manipulating queries in READ mode.

Fig. 2. Displaying the Result of a Cypher Query

However, none of the query languages embeds a way for dealing with flexible

queries, for instance to get cheap hotels or popular ones, where cheap and popular

are fuzzy sets.

This need has nevertheless been intensively studied when dealing with other database

paradigms, especially with relational databases.

In this paper, we thus focus on the declarative way of querying the Neo4j system

with the Cypher query language and we extend it for dealing with vague queries.

The rest of the paper is organised as follows. Section 2 reports existing work from

the literature regarding fuzzy queries and presents the Cypher language. Section 3 intro-

duces the extension of the Cypher language to Cypherf and Section 4 shows how such

an extension can be implemented. Section 5 concludes the paper and provides some

ideas for future work.

2 Related Work

2.1 Neo4j Cypher Language

Queries in Cypher have the following syntax1:

1 http://docs.neo4j.org/refcard/2.0/

http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html

4 Castelltort et al.

[START]

[MATCH]

[OPTIONAL MATCH WHERE]

[WITH [ORDER BY] [SKIP] [LIMIT]]

RETURN [ORDER BY] [SKIP] [LIMIT]

As shown above, Cypher is comprised of several distinct clauses:

– START: Starting points in the graph, obtained via index lookups or by element IDs.

– MATCH: The graph pattern to match, bound to the starting points in START.

– WHERE: Filtering criteria.

– RETURN: What to return.

– CREATE: Creates nodes and relationships.

– DELETE: Removes nodes, relationships and properties.

– SET: Set values to properties.

– FOREACH: Performs updating actions once per element in a list.

– WITH: Divides a query into multiple, distinct parts.

2.2 Fuzzy Queries

Many works have been proposed for dealing with fuzzy data and queries. All cannot

be reported here. [3] proposes a survey of these proposals.

[4, 5] consider querying regular databases by both extending the SQL language

and studying aggregating subresults. The FSQL/SQLf and FQL languages have been

proposed to extend queries over relational databases in order to incorporate fuzzy de-

scriptions of the information being searched for.

Some works have been implemented as fuzzy database engines and systems have

incorporated such fuzzy querying features [6, 7].

In such systems, fuzziness in the queries is basically associated to fuzzy labels,

fuzzy comparators (e.g., fuzzy greater than) and aggregation over clauses. Thresholds

can be defined for the expected fulfillment of fuzzy clauses.

For instance, on a crisp database describing hotels, users can ask for cheap ho-

tels that are close to city center, cheap and close to city center being fuzzy labels

described by fuzzy sets and their membership functions respectively defined on the

universe of prices and distance to the city center.

Many works have been proposed to investigate how such fuzzy clauses can be de-

fined by users and computed by the database engine, especially when several clauses

must be merged (e.g., cheap AND close to city center).

Such aggregation can consider preferences, for instance for queries where price is

prefered to distance to city center using weighted t-norms.

Thresholds can be added for working with α−cuts, such as searching for hotels

where the degree cheap is greater than 0.7.

As we consider graph data, the works on fuzzy ontology querying are very close

and relevant for us [8, 9].

[8] proposes the f-SPARQL query language that supports fuzzy querying over on-

tologies by extending the SPARQL language. This extension is based on threshold query

Fuzzy Cypher Queries 5

(e.g., asking for people who are tall at a degree greater than 0.7) or general fuzzy queries

based on semantic functions.

It should be noted that many works have dealt with fuzzy databases for represent-

ing and storing imperfect information in databases: fuzzy ER models, fuzzy object

databases, fuzzy relational databases, fuzzy ontologies-OWL [10], etc. Fuzziness can

then impact many levels, from metadata (attributes) to data (tuples), and cover many

semantics (uncertainty, imprecision, inconsistency, etc.) as recalled in [3]. These works

are not reported here as we consider fuzzy queries over crisp data.

3 Fuzzy Queries over NoSQL Graph databases: Towards the

Cypherf Language

In this paper, we address fuzzy READ queries over regular NoSQL Neo4j graph

databases. We claim that fuzziness can be handled at the following three levels:

– over properties,

– over nodes,

– over relationships.

3.1 Cypherf over Properties

Dealing with fuzzy queries over properties is similar to the queries from the litera-

ture on relational databases and ontologies. Such queries are defined by using linguistic

labels (fuzzy sets) and/or fuzzy comparators.

Such fuzzy queries impact the START , MATCH , WHERE and RETURN

clauses from Cypher.

In the WHERE clause, it is then possible to search for cheap hotels in some

databases, or for hotels located close to city center2. Note that these queries are dif-

ferent as the properties being addressed are respectively linked to a node and a relation-

ship.

Listing 1.1. Cheap Hotels

1 MATCH (h :Hotel)

2 WHERE CHEAP (price) > 0

3 RETURN h

4 ORDER BY CHEAP (h) DESC

Listing 1.2. Hotels Close to City Center

1 MATCH (c :City)< -[:LOCATED]−(h :Hotel)

2 WHERE CLOSE (c ,h) > 0

3 RETURN h

4 ORDER BY CLOSE (c ,h) DESC

2 For the sake of simplicity, the fuzzy labels and membership functions are hereafter denoted by

the same words.

6 Castelltort et al.

In the START clause, it is possible to define which nodes and relationships to start

from by using fuzzy labels, as for instance:

Listing 1.3. Starting from Cheap Hotels

1 START h :Hotel (CHEAP (price) > 0)

2 RETURN h

3 ORDER BY CHEAP (h) DESC

Listing 1.4. Starting from location links close to city center

1 START l=relationship :LOCATED (CLOSE (distance)>0)

2 MATCH (h :Hotel) -[:LOCATED] -> (c :City)

3 RETURN h

4 ORDER BY CLOSE (h ,c) DESC

In the MATCH clause, integrating fuzzy labels is also possible:

Listing 1.5. Matching Hotels Close to City Center

1 MATCH (h :Hotel) -[:LOCATED {CLOSE (distance)>0}] -> (c :City)

2 RETURN h

3 ORDER BY CLOSE (h ,c) DESC

In the RETURN clause, no selection will be operated, but fuzzy labels can be

added in order to show the users the degree to which some values match fuzzy sets, as

for instance:

Listing 1.6. Fuzziness in the Return Clause

1 MATCH (h :Hotel) -[:LOCATED] -> (c :City)

2 RETURN h , CLOSE (h ,c) AS 'ClosenessToCityCenter '

3 ORDER BY ClosenessToCityCenter DESC

When considering fuzzy queries over relational databases, the results are listed and

can be ranked according to some degrees. When considering graph data, graphical rep-

resentations are of great interest for the user comprehension and interaction on the data.

For instance, Fig 2 shows how a result containing two items (the two customers who

went to Ritz hotel) is displayed in the Cypher console, demonstrating the interest of the

graphic display.

It would thus be interesting to investigate how fuzzy queries over graph may be

displayed, showing the graduality of membership of the objects to the result. For this

purpose, we propose to use the work from the literature on fuzzy graph representation

and distored projection as done in anamorphic maps [11].

3.2 Cypherf over Nodes

Dealing with fuzzy queries over nodes allows to retrieve similar nodes. It is set at a

higher level from queries over properties although it may use the above-defined queries.

For instance, it is possible to retrieve similar hotels:

Fuzzy Cypher Queries 7

Distance to City
Center (meters)200 1000

CloseToCityCenter

0

1

Membership
Degree

Fig. 3. Fuzzy Cypher Queries: an Example

Listing 1.7. Getting Similar Hotel Nodes

1 MATCH (h1 :Hotel) , (h2 :Hotel)

2 WITH h1 AS hot1 , h2 AS hot2 , SimilarTo (hot1 ,hot2) AS sim

3 WHERE sim > 0 . 7

4 RETURN hot1 ,hot2 ,sim

In this framework, the link between nodes is based on the definition of measures

between the descriptions. Such measures integrate aggregators to deal with the several

properties they embed. Similarity measures may for instance be used and hotels may all

the more be considered as their prices and size are similar.

It should be noted that such link could be materialized by relationships, either for

performance concerns, or because it was designed this way. In the latter case, such query

amounts to a query as defined above.

3.3 Cypherf over Relationships

As for nodes, such queries may be based on properties. But it can also be based on

the graph structure in order to better exploit and benefit from it.

In Cypher, the structure of the pattern being searched is mostly defined in the

MATCH clause.

The first attempt to extend pattern matching to fuzzy pattern matching is to consider

chains and depth matching. Chains are defined in Cypher in the MATCH clause with

consecutive links between objects. If a node a is linked to an object b at depth 2, the

pattern is writen as (a)− [∗2]− > (b). If a link between a and b without regarding the

depth in-between is searched, then it is writen (a) − ()− > (b). The mechanism also

applies for searching objects linked trough a range of nodes (e.g., between 3 and 5):

(a)− [∗3..5]− > (b).
We propose here to introduce fuzzy descriptors to define extended patterns where

the depth is imprecisely described. It will then for instance be possible to search for

8 Castelltort et al.

customers linked through almost 3 hops. The syntax ∗∗ is proposed to indicate a fuzzy

linker.

Listing 1.8. Fuzzy Patterns

1 MATCH (c1 :customer) -[:KNOWS**almost3] -> (c2 :customer)

2 RETURN c1 ,c2

It is related to fuzzy tree and graph mining [12] where some patterns emerge from

several graphs even they do not occur exactly the same way everywhere regarding the

structure.

Another possibility is not to consider chains but patterns where several links from

and to nodes.

In our running example, popular hotels may for instance be chosen when they are

chosen by many people. This is similar as the way famous people are detected if they

are followed by many people on social networks.

In this example, a hotel is popular if a large proportion of customers visited it.

In Cypher, such queries are defined by using aggregators. For instance, the following

query retrieves hotels visited by at least 2 customers:

Listing 1.9. Aggregation

1 MATCH (c :Customer) -[:VISIT] -> (h :Hotel)

2 WITH c AS cust , count (*) AS cpt

3 WHERE cpt>1

4 RETURN cust

Such crisp queries can be extended to consider fuzziness:

Listing 1.10. Aggregation

1 MATCH (c :Customer) -[:VISIT] -> (h :Hotel)

2 WITH c AS cust , count (*) AS cpt

3 WHERE POPULAR (cpt) > 0

4 RETURN cust

All fuzzy clauses described in this section can be combined. The question then risen

is to implement them in the existing Neo4j engine.

4 Implementation Challenges

4.1 Architecture

There are several ways to implement fuzzy Cypher queries:

1. Creating an overlay language on top of the Cypher language that will produce as

ouput Cypher well formatted queries to do fuzzy work;

2. Extending the Cypher queries and using the existing low level API behind;

3. Extending the low level API with optimized functions, offering the possibility only

to developpers to use it;

Fuzzy Cypher Queries 9

4. Combining the last two possibilities: using an extended cypher query language over

an enhanced low level API.

Fig. 4. Implementation Ways

Every possibility is debated in this section. The reader will find at the end of this

section a summary of the debates.

4.2 Creating an Overlay Language

Concept The concept is to create a high-level fuzzy DSL language that will be used to

generate Cypher well-formed queries. The generated Cypher queries will be executed

by the existing Neo4j engine.

A grammar must be defined for this external DSL which can rely on the existing

Cypher syntax and only enhance it with new fuzzy features. The output of the generation

process is pure Cypher code. In this scenario, Cypher is used as a low level language to

achieve fuzzy queries.

Discussion This solution is a cheap and non intrusive solution but has several huge

drawbacks:

– Features missing, indeed every fuzzy query shown in Section 3 cannot be expressed

by the current cypher language (e.g., listing 1.4);

– Performance issue, Cypher is not designed for fuzzy queries neither for being used

as an algorithmic language. All the fuzzy queries will produce Cypher query codes

that are not optimized for fuzzy tasks;

10 Castelltort et al.

– Lack of user-friendliness, Each query cannot be executed directly against the Neo4j

environnement, it needs a two-step process: (i) write a fuzzy query, then compile it

to get the cypher query; (ii) use the cypher generated queries on the Neo4j database

4.3 Extending the Cypher Queries

Concept The idea is to extend the Cypher language to add new features. Cypher offers

various types of functions: scalar functions, collection functions, predicate functions,

mathematical functions, etc. To enhance this language with fuzzy features, we propose

to add a new type of functions: fuzzy functions. Fuzzy functions are used in the same

way as other functions of Cypher (or SQL) as shown in section 3.

Cypher is an external DSL. Therefore, somewhere it needs to be parsed. The query

correctness must be checked and then it should be executed. In the Cypher case, retriev-

ing the results we asked for.

In order to write Cypher, the Neo4j’s team had defined its grammar, which gives the

guidelines of how the language is supposed to be structured and what is and isnt valid. In

order to express this definition, we can use some variation of EBNF syntax [13], which

provides a clear way to expose the language definition. To parse this syntax, Cypher

uses Scala language Parser Combinator library.

Then, to extend the Cypher engine, the Cypher grammar must be extended regarding

the current grammar parser. Once the cypher query is parsed, the code has to be bound

on the current programmatic API to achieve the desired result.

Discussion This work needs a deeper comprehension of the Neo4j engine and more

skills on Java/Scala programming language (used to write the Neo4j engine and API)

than the previous solutions. The main advantage of this is to offer an easy and user-

friendly way to use the fuzzy feature. The disavantages of this solution are:

– Performance issue. This solution should have better performance than the previous

one but it stills built on the current Neo4j engine API that is not optimized for fuzzy

queries (e.g., degree computing);

– Cost of maintenance. Until Neo4j accepts to inlude this contribution to the Neo4j

project, it will be needed to upgrade each new version of Neo4j with these enhance-

ments. If this feature is built in a plugin, it will be necessary to check that the API

has not been broken by the new version (if so an upgrade of the fuzzy plugin will

be required).

4.4 Extending Low Level API

Concept The scenario is to enhance the core database engine with a framework to

handle efficiently the fuzzy queries and to extend the programming API built on it to

provide to developpers access to this new functionnality.

Discussion This solution offers a high performance improvment but needs high Neo4j

skills, possibly high maintenance costs, a poor user friendly experience (only develop-

pers can use it) and a costly development process.

Fuzzy Cypher Queries 11

4.5 Extending Cypher Over an Enhanced Low Level API

Concept The last and not the least possibility is to combine the solutions from Sections

4.3 and 4.4: adding to the database engine the feactures to handle the fuzzy queries,

extending the API and extending the Cypher language.

Discussion This solution is user-friendly, provides optimized performance but has a

heavy development cost (skills, tasks, etc.) and a high cost of maintenance.

4.6 Summary and Prototype

The first solution is a non intrusive solution with limited perspectives. It is more a

hack than a real long termes solution. The best, but most costly, solution still the last

one: extend cypher query language and build a low level API framework to extend the

Neo4j database engine to support such kind of queries.

A prototype based on the extension of cypher over an enhanced API is under devel-

opement, fuzzy queries can be run, as shown in Fig. 5.

Fig. 5. Protoype Developed

5 Conclusion

In this paper, we propose an extension of the declarative NoSQL Neo4j graph

database query language (Cypher). This language is applied on large graph data which

represent one of the challenges for dealing with big data when considering social net-

works for instance. A protoype has been developed and is currently being enhanced.

12 Castelltort et al.

As we consider the existing Neo4j system which is efficient, performance is guaran-

teed. The main property of NoSQL graph databases, i.e. the optimized O(1) low com-

plexity for retrieving nodes connected to a given one, and the efficient index structures

ensure that performances are optimized.

Future works include the extension of our work to the many concepts possible with

fuzziness (e.g., handling fuzzy modifiers), the study of fuzzy queries over historical

NoSQL graph databases as introduced in [14] and the study of definition fuzzy struc-

tures: Fuzzy Cypher queries for Data Definition or in WRITE mode (e.g., inserting

imperfect data). The implementation of the full solution relying on our work, currently

in progress, will be completed by these important extensions.

References

1. Rodriguez, M.A., Neubauer, P.: The graph traversal pattern. CoRR abs/1004.1001 (2010)

2. Board, T.T.A.: Technology radar, http://thoughtworks.fileburst.com/assets/technology-radar-

may-2013.pdf (May 2013)

3. Meng, X., Ma, Z., Zhu, X.: A knowledge-based fuzzy query and results ranking approach

for relational databases. Journal of Computational Information Systems 6(6) (2010)

4. Bosc, P., Pivert, O.: Sqlf: a relational database language for fuzzy querying. Fuzzy Systems,

IEEE Transactions on 3(1) (1995) 1–17

5. Takahashi, Y.: A fuzzy query language for relational databases. IEEE Transactions on

Systems, Man, and Cybernetics 21(6) (1991) 1576–1579

6. Zadrozny, S., Kacprzyk, J.: Implementing fuzzy querying via the internet/www: Java applets,

activex controls and cookies. In Andreasen, T., Christiansen, H., Larsen, H.L., eds.: FQAS.

Volume 1495 of Lecture Notes in Computer Science., Springer (1998) 382–392

7. Galindo, J., Medina, J.M., Pons, O., Cubero, J.C.: A server for fuzzy sql queries. In An-

dreasen, T., Christiansen, H., Larsen, H.L., eds.: FQAS. Volume 1495 of Lecture Notes in

Computer Science., Springer (1998) 164–174

8. Pan, J.Z., Stamou, G.B., Stoilos, G., Taylor, S., Thomas, E.: Scalable querying services over

fuzzy ontologies. In Huai, J., Chen, R., Hon, H.W., Liu, Y., Ma, W.Y., Tomkins, A., 0001,

X.Z., eds.: WWW, ACM (2008) 575–584

9. Cheng, J., Ma, Z.M., Yan, L.: f-sparql: A flexible extension of sparql. In Bringas, P.G.,

Hameurlain, A., Quirchmayr, G., eds.: DEXA (1). Volume 6261 of Lecture Notes in Com-

puter Science., Springer (2010) 487–494

10. Stoilos, G., Stamou, G.B., Tzouvaras, V., Pan, J.Z., Horrocks, I.: Fuzzy owl: Uncertainty

and the semantic web. In Grau, B.C., Horrocks, I., Parsia, B., Patel-Schneider, P.F., eds.:

OWLED. Volume 188 of CEUR Workshop Proceedings., CEUR-WS.org (2005)

11. Griffin, T.: Cartographic transformations of the thematic map base. Cartography 11(3) (1980)

163–174

12. López, F.D.R., Laurent, A., Poncelet, P., Teisseire, M.: Ftmnodes: Fuzzy tree mining based

on partial inclusion. Fuzzy Sets and Systems 160(15) (2009) 2224–2240

13. Pattis, R.: Teaching ebnf first in cs 1. In Beck, R., Goelman, D., eds.: SIGCSE, ACM (1994)

300–303

14. Castelltort, A., Laurent, A.: Representing history in graph-oriented nosql databases: A ver-

sioning system. In: Proc. of the Int. Conf. on Digital Information Management. (2013)

