
HAL Id: lirmm-01381081
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01381081v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Representing history in graph-oriented nosql databases:
A versioning system

Arnaud Castelltort, Anne Laurent

To cite this version:
Arnaud Castelltort, Anne Laurent. Representing history in graph-oriented nosql databases: A ver-
sioning system. ICDIM 2013 - 8th International Conference on Digital Information Management, Sep
2013, Islamabad, Pakistan. pp.228-234, �10.1109/ICDIM.2013.6694022�. �lirmm-01381081�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01381081v1
https://hal.archives-ouvertes.fr


Representing History in Graph-Oriented NoSQL DataBases:
A Versioning System

Arnaud Castelltort, Anne Laurent

Abstract— Graph databases are taking more and more im-
portance, especially for social networking. For instance, or-
ganizations can implement graph databases to represent and
query data such as Person1 is CEO of Organization1. NoSQL
graph databases (e.g., Neo4j) have been designed to deal with
such data. However, managing history is not yet possible in an
easy manner while being critical in many applications. Tracking
changes is indeed one of the main functionalities in databases
(especially Relational BD) and should not be forsaken in NoSQL
graph DB. For instance, queries like “list all the people who
have been CEO of Organization1” or “list all the functions
People1 has been taken in his career” are important. In this
paper, we thus propose a novel representation of historical
graph data and tools to implement it as a plug-in of existing
NoSQL graph systems.

I. INTRODUCTION

Graph databases are becoming more and more impor-
tant as their use is increasing for managing data within
applications such as social networks. In this context, they
indeed propose a scalable and easy-to-use environment [1],
[2]. For instance, they allow to represent organizations with
their people, structures and links between these entities, as
described in Fig. 1. Graph databases are becoming popular
as they provide a robust solution for facing big data and
as they allow to focus more on relations betweens objects
rather than on the objects themselves, as it is the case in
social networking.

Fig. 1. Example of Graph Data: The Matrix Neo4j Database

Many work have been proposed in the literature of
databases to deal with history [3], [4], [5]. However, very few
of them have addressed historization for NoSQL databases.
Some works have studied and implemented solutions for
some of the products (e.g., versioning modules for Mon-
goDB, CouchDB’s “Simple Document Versioning”...). To
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the best of our knowlege, graph-oriented databases do not
provide such modules. We thus propose a novel approach
for dealing with this challenge. For this purpose, we provide
in this paper the necessary definitions and methods.

The rest of the paper is organized as follows. Section
II recalls the seminal definitions related to graph-oriented
databases. Sections III and IV introduce our proposal for rep-
resenting history in the context of graph-oriented databases,
which is discussed in Section V. Section VI concludes and
presents the future work.

II. PRELIMINARY DEFINITIONS

Graph oriented databases are based on directed graphs
[6], [7], [8]. Formally, a graph is a representation of a set
of objects where some pairs of the objects are connected
by links. The interconnected objects are represented by
mathematical abstractions called vertices, and the links that
connect some pairs of vertices are called edges. A set of
vertices and the edges that connect them is said to be a graph.

Fig. 2. Graph of Graph Organization

Fig. 2 illustrates these entities. Typically, a graph is de-
picted in diagrammatic form as a set of dots for the vertices,
joined by lines or curves from the edges. The edges may
be directed or undirected. This oriented graph is called a
directed graph and the edges are called directed edges or
arcs. Vertices are also called nodes or points, and edges are
also called lines or arcs.

A. Defining Graphs

This paper considers the classical definitions given below.
Definition 1 (Graph): A graph G is given by a pair (V,E)

where V stands for a set of vertices and E stands for a set
of edges with E ⊆ (V × V ).



Definition 2 (Directed Graph): A directed graph G is
given by a pair (V,E) where V stands for a set of vertices
and E stands for a set of edges with E ⊆ {V × V }. That is
E is a subset of all ordered permutations of V element pairs.

B. Defining Graph Databases: A Topic-Oriented Point of
View

The structure a graph takes in the real-world determines
the efficiency of the operations that are applied to it. It
is exactly those efficient graph operations that yield an
unconventional problem-solving style.

In this section, we introduce our conceptual representation
of the different elements of a graph database independently
on the implementation library which will be chosen.

Definition 3 (Property): A property p is a (key, value)
pair where the key is a string identifier and the value is a
set of elements of a given type, this element being possibly
reduced to one element, the null element being forbidden.

The type of the elements can be string, int, bool, etc. Null
values can be modeled by the absence of a key.

Nodes form a graph when being linked with relationships.
They are often used to represent entities and can contain
properties as illustrated on Fig. 3. In our vision, a node
is not only defined by its properties, but also its incoming
and outgoing relationships. This allows to improve traversal
between nodes [9].

Definition 4 (Node): A node n is defined as a pair
(idn, Pn):

• idn is an identifier,
• Pn is a set of properties.
It should be noted that the id does not contain any

semantical information and is not unique over time within
a graph. It can indeed be recycled after node’s deletion to be
reused for a new node.

Fig. 3. Node Properties

Relationships between nodes are a key part of a graph
database. A relationship connects two nodes, and is guaran-
teed to have valid start and end nodes. As relationships are
always directed, they can be viewed as outgoing or incoming
relative to a node, which is useful when traversing the graph.

Relationships are equally well traversed in any direction.
This means that, you can ignore the direction where it is
not useful in your application. There is no need to add
duplicate relationships in the opposite direction (with regard
to traversal or performance). Just like nodes, relationships
have properties as illustrated on Fig 4 and defined below.

Definition 5 (Relationship): A relationship R is defined as
a 5-tuple (idR, niR, noR, TR, PR) where:

• idR is an identifier,
• niR is the id of the incoming node,
• noR is the id of the outgoing node,
• TR is the type of R,
• PR is a set of properties.
It should be noted that start (incoming) niR and endpoint

(outgoing) noR nodes can be the same (a node can have
relationships to itself).

A node can easily be linked to its incoming and outgoing
nodes by considering the relationthips connected to it. Graph
databases implement these features very efficiently [9].

Fig. 4. Relationship Properties

III. GRAPH VERSIONING

This section presents our proposition to design and im-
plement a versioning system on graph databases. We define
the following criteria that must be met by the versioning
solution:

• Non-intrusivity criterion
– At the technical layer, the system must work with-

out the need for developers to modify code unless
they want to get some history support functionality.

– At the conceptual layer, the system must not have
any impact on the graph’s structure.

• Pluggability criterion
The system should be distributed has a library or
plugin.

• Temporal independance criterion
The system must be pluggable at any moment (at
project launching or after a while in production)
like a ”Plug and Play” device.

• History support criterion
– The system must provide a way to get history of a

node or a relationship.
– The system must provide a way to get the difference

between two versions of a graph in time.
– The system should provide a way to track context

informations about every version (e.g., who, what,
when, why) if asked.



Before introducing the system, we propose some terms
and ideas.

A. Preparatory Statements
This section aims at presenting the use cases we have

targeted and at defining the language and terms we are using.

1) Historical Points of View: We first claim that history
must be considered as being highly linked with some point
of view. We do not consider history as a stand-alone concept,
but rather consider history of objects.

For this purpose, we distinguish three types of history,
namely:

• The history from the node point of view, that is
the entity point of view, to see the changes that have
occurred on the entity itself. (e.g., on a Person point of
view, searching for changes on marital status over time
or on jobs held);

• The history from the relationship point of view, to see
the changes to the relation including start or end node
updates.(e.g., on the relationship “President” point of
view, searching the last ten presidents);

• The history from the Graph point of view, to see the
change on the graph itself.(e.g., on a Human Resources
Graph point of view, searching for the differences
between two dates to establish turnover).

2) Versioning Point of View: Our proposal is based on
the idea that versioned data have not to be stored in the
same modelisation way than the operational data. Thus, we
provide a separation between the operational graph data and
the management of the sequence of versions over time. For
this purpose, we consider the following concepts.

• DataGraph: the current graph in use
• Transaction: a set of operations which either all occur,

or nothing occurs on the DataGraph. A guarantee of
atomicity prevents updates to the graph occurring only
partially, which can cause greater problems than reject-
ing the whole series outright

• Revision: Every transaction makes a new version of the
graph, termed revision

• VersionGraph: A VersionGraph stores the history of
different versions of a data graph. The VersionGraph
model does not depend on the DataGraph architecture
choice, as explained later in this paper.

B. VersionGraph Structure
For understanding sake, we explain our proposal using a

very simple graph as shown in Fig. 5.

Fig. 5. Simple Graph Model

The graph from Fig. 5 is only made of 3 nodes (A,B,C)
and three relations (R1, R2, R3).

1) Sample Graph Model representation in Version Graph:
To manage the history of the Data Graph ‘DG, a Version-
Graph ‘VG is built as shown in Fig 6.

Fig. 6. Version Graph Model

Our system manages the versioning as follows:
• Every DG node is represented by a VG node (e.g., ‘A’

node is represented by ‘a’ node in VersionGraph)
• Every DG relation is represent by a VG node (e.g., ‘R1’

relation represented by ‘r1’ node in VersionGraph)
• For every DG element {node, relation}, called TraceEle-

ment, will have a linked list of RevisionElements
• Every RevisionElement has the entire set of properties

of the element which referenced to and some meta-
informations fields as the date of creation, and optionaly
who and when

• RevisionElement for DG nodes have two more sets: one
for ingoing and one for outgoing relations

• A new Version Graph Revision is created for every
transaction

These elements are formally defined in Section IV.

2) Making a Graph Change: A modification on a sim-
ple node or relationship property leads to a new Revi-
sionElement in the linkedList of the TraceElement for this
node/relationship as shown in Fig 7. Of course, the transac-
tion creates a new VersionGraph revision.

Fig. 7. Edit a node Property

Deleting a node is a different matter. To represent this



case, relation R2 between A and B is deleted, as shown by
Fig. 8.

Fig. 8. Data Graph : Deleting R2

Deleting a relation between two nodes has several conse-
quences.

1) A new RevisionElement is created for the start node
of the relation where the outgoing set of relationship
will be updated.

2) In the same way, the end node will have a new
RevisionElement created but this time it is the ingoing
set that will be updated.

3) The new revision will not track the relation R2.
When the transaction is committed, the version graph

looks as shown by Fig. 9

Fig. 9. VersionGraph: Deleting R2

It should be noted that there is only a new RevisionEle-
ments for the TraceElements whose tracking DG element
have been modified by the transaction. The last RevisionEle-
ment is tracked for the others.

3) Tracking a Relation: In relational databases, relation-
ships’ attributes are used in flat tables to represent incoming
and outgoing links. Then, this information can easily be
updated. By contrast, in graph databases, only properties can
be modified on the relationship. There is no update order
on relationship start/end node because a relationship cannot
exist without both start and endpoint. Such an update is then
handled by deleting the existing relationship and creating a
new one.

4) Tracking a Relationship When Changing the Start or
End Point: In the transaction 3, a new relation is created
between C and B of type R2. We want this relation to be
tracked as a new version of the initial relation R2 from A
and B of the first revision.

Here are two real world use cases:
• changing a job title (i.e. defining a new type for the

relation)

Fig. 10. DataGraph: Adding a new R2 type relation with history tracking

• Tracking the list of people who get the CEO job

Fig. 11 depicts the VersionGraph.

Fig. 11. VersionGraph: Adding a new R2 type relation with history tracking

The lack of time-unique id for every element makes it
difficult to track history. As presented above, the data graph
implementation looks like Fig. 12

Fig. 12. Graph Properties

To enable the tracking capacity, we have to enhance the
data graph with an historization property on every node and
relation: the rev–uuid property.

This property is a logical entites’ tracer for tracking their
history, so that the type of an element can change, be deleted
or recreated, without the risk of losing its history. The
developer does not need to implement this uuid by herself.
A trigger/handler system on the database can do it for her.

The algorithm is simple, as described in Algorithm 1.

Algorithm 1: OnElementCreation(Element X)
if !exists(X.rev–uuid) then
X.rev–uuid = generateUUID()
V G.CreateV ersionNode(X)

end if
V G.CreateRevisionNode(X)



This algorithm creates a rev–uuid for every new element
except if the new element is created with an rev–uuid.

This case can happen when binding a new element on an
already existing history. For example, if we replace a (A)−
[R1] → (B) relation by a (A) − [R1] → (C) relation, the
process will be taken from Algorithm 2.

Algorithm 2: Change end node of a relation R1
newRelation = newRelation(A,C)
newRelation.rev–uuid = R1.rev–uuid
Delete(R1)
Save(newRelation)

Fig. 13 depicts the Data graph enhanced by the rev–uuid.

Fig. 13. Revision uuid

C. Managing Points of View in VersionGraph

Fig. 14 illustrates the three different kinds of historical
points of view, namely by graph revision, by node and by
relation.

IV. ANATOMY OF VERSIONGRAPH

A. Formal Definitions

GraphRevision. For every new revision, the VersionGraph is
only increased by the modified elements. Every transaction
or action (if no transaction support is implemented in the
graph database) creates a new version of the Data Graph
which is materialized by a revision in the VersionGraph.

The new revision contains both the newly modified ele-
ments and the ones that have not been modified from the
previous revision. As a result, every revision is a complete
snapshot of the Data Graph taken at a given time.

There are two ways to modelize a GraphRevision:
1) as a node pointing to all the RevisionElements included

in the GraphRevision,
2) as a label stored in every RevisionElement included

in the GraphRevision ( labels being a new feature
available in some graph databases).

In order to remain in the most general level, our modelisation
relies on the first case.

Definition 6 (GraphRevision): The GraphRevision node is
defined as a node n = (idn, Pn) where:

• Pn contains:

Fig. 15. Revision implementation as label or node

– a date of creation,
– an author,
– a comment property

• there exists at most one relation starting from n and end-
ing to a GraphRevision node representing the previous
version (if it exists),

• there exists at most one relation ending to n and start-
ing from a GraphRevision node representing the next
version if it exists or the revision root node otherwise,

• there exists a set of relationships starting from n and
ending to all RevisionElements that are included in the
revision.

The revision root node is the startpoint to traverse data
graph by revision. Every revision can be seen as a subgraph
that has the semantic information available in Data Graph at
a time.

TraceElement. Every element of a Data Graph is represented
by a TraceElement in the VersionGraph.

Definition 7 (TraceElement): Given an element e of the
DataGraph, a TraceElement is a node ne = (idn, Pn) where:

• Pn contains meta-information such as tracking launch
date, last modified date, number of revision nodes, last
graph revision number to enable fast access to some
statistical information and usefull data;

• Pn contains a property rev–uuid mapped with e.rev–
uuid;

• there exists a unique relation starting from n and ending
to the last RevisionElement.

The set of properties of a node may change over time,
this information is not set on the TraceElement but on
RevisionElement.

RevisionElement. There are differencies between the imple-
mentation of RevisionElement’s nodes and relations.

Definition 8 (RevisionElementNode): Given a TraceEle-
mentNode t = (idt, Pt) tracking a DataGraph node, a



Fig. 14. Point of view in VersionGraph

RevisionElementNode is a node nt = (idn, Pn) where:
• Pn contains all the properties of the DataGraph element

related to t;
• Pt also contains:

– the date of creation of n;
– a version number, the value is RevisionEle-

ment.revisionNumber + 1;
– the set of all pairs (rev–uuid, relation type) from

the relations ending to or starting from of the
DataGraph element related to t;

• there exists at most one outgoing relationship from n
that points to another RevisionElementNode;

• there exists a unique ingoing relation on the version
graph Revision.

Definition 9 (RevisionElementRelation): Given a
TraceElementNode t = (idt, Pt) tracking a DataGraph
relation, a RelationElementRelation is a node n = (idn, Pn)
where:

• Pn contains all the properties of the DataGraph element
related to t;

• Pn contains:
– the date of creation of n;
– a version number, the value is RevisionEle-

ment.revisionNumber + 1;
– the rev–uuid of the incoming node of the Data-

Graph element related to t;
– the rev–uuid of the outgoing node of the Data-

Graph element related to t.
It should be noted that the startNode and endNode are in

the RevisionElement and not in TraceElement because they
can change over time. Also, the root element of a chain

of RevisionElements is always the TraceElement they are
related to.

B. Deployment Architecture

The VersionGraph system proposed in this paper can be
deployed in two main different ways:

1) as a full graph in a separate graph database,
2) as a subgraph of the graph database.

1) VersionGraph as a Separate Graph Database: Separat-
ing the operational and historical graph databases has several
advantages.

Fig. 16. Version Graph as a separate graph database

First, Graph Database can have a huge size and can be
hosted on high avaibility infrastructures with a high cost
to support a huge traffic. VersionGraph will be bigger than
DataGraph. If the use of Version data needs less traffic, it
can be hosted on a lower cost infrastructure with higher disk
capacity.

Second, VersionGraph holds all the versions of the Data
Graph including the current Data Graph revision. Based



on this, all the queries on historization can be computed
independently on the main data system.

The main drawback is that the consistency between the
two graphs has to be maintained. This means that for every
transaction on the Data Graph database, the new graph
revision on the VersionGraph must be created in the other
database.

On the one hand, this can be managed in a synchronous
way. However, performance issues may occur.

On the other hand, if managing this as a failover asyn-
chronous way, the system complexity may increase, and
consistency may not be guaranteed between DataGraph and
VersionGraph at any time.

Fig. 17. Version Graph as a subgraph of DataGraph

2) Version Graph as a Subgraph of DataGraph: In this
case, only one database is used. This solution has the advan-
tage to allow mixing common queries with version queries
and to ensure consistency. However, all version queries will
have an impact on the load of the overall system.

To simplify query conception, a link can be added between
every node and the equivalent VersionElement and then the
history can easely be traversed: X.version.previous returns
the first RevisionElement of the node X

Also, as presented previously, the storage space must be
provisioned to support both DataGraph and VersionGraph.
This should be at least more than two times DataGraph
requirement size.

V. CRITERIA MATCHING

Section III-B introduces the criteria that should be matched
by a graph versioning system. In this section, we discuss our
proposal regarding its complience with all these criteria.

A. Non Intrusivity criterion

The version graph proposal is independent of the Data-
Graph structure, then it is not necessary to adapt the graph’s
structure to support historization. Futhermore, the system
will work unobtrusively without any change to the existing
projet code as it is using a system of trigger/handler to build
the VersionGraph without the need for developers to change
requests nor to update code.

B. Pluggable criterion

Depending on graph implementation system, this system
will be packaged as a plugin or as a set of trigger orders to
be stored in the graph database engine. Deploying the system
as a self package plugin seems to be a far better approach
whenever possible.

C. Temporal independance criterion

The version graph system proposal could be installed at
any moment. When starting the version graph system the first
time, it will scan all nodes and relations. For each element
(node, relation) it will add a rev-uuid in DataGraph and
will make a TraceElement and a first RevisionElement to
make GraphRevision 0 in VersionGraph. Starting from this
point, every transaction will lead to a new revision .

Our system can be plugged at anytime:
• at project launch, there will be no available element (if

an empty database does not require a root Node). As
a consequence, the first Revision in the VersionGraph
will not have any element.

• at any moment, the VersionGraph can be constructed
and after it, the VG Revision 0 will have every element
at the installation time of the version graph system.

D. Historization features criterion

As shown in Fig.14, three kinds of traversal can be
adressed by the version graph system. We will go deeper
on this subject in a futher work.

VI. CONCLUSION AND FURTHER WORK

In this paper, we address data historization in the context
of graph-oriented NoSQL databases. Although being crucial,
changes tracking is not yet available in such databases.
We thus propose a novel approach, by both studying what
historization means in such a context, and by proposing
representations and methods to manage history.

Further work include the implementation of our solution,
which should be realized using a Neo4j graph database.
Moreover, queries over historical graph databases will be
studied. We are also studying the reduction of the number of
revisions by a squashing system.
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