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NoSQL graph databases have been introduced in recent years for dealing with large

collections of graph-based data. Scientific data and social networks are among the best

examples of the dramatic increase of the use of such structures. NoSQL repositories al-
low the management of large amounts of data in order to store and query them. Such

data are not structured with a predefined schema as relational databases could be. They

are rather composed by nodes and relationships of a certain type. For instance, a node
can represent a Person and a relationship Friendship. Retrieving the structure of the

graph database is thus of great help to users, for example when they must know how

to query the data or to identify relevant data sources for recommender systems. For
this reason, this paper introduces methods to retrieve structural summaries. Such struc-

tural summaries are extracted at different levels of information from the NoSQL graph
database. The expression of the mining queries is facilitated by the use of two frame-

works: Fuzzy4S allowing to define fuzzy operators and operations with Scala; Cypherf

allowing the use of fuzzy operators and operations in the declarative queries over NoSQL
graph databases. We show that extracting such summaries can be impossible with the

NoSQL query engines because of the data volume and the complexity of the task of

automatic knowledge extraction. A novel method based on in memory architectures is
thus introduced. This paper provides the definitions of the summaries with the methods

to automatically extract them from NoSQL graph databases only and with the help of
in-memory architectures. The benefit of our proposition is demonstrated by experimental
results.

Keywords: Graph Databases; Graph Mining; Data Summaries; NoSQL; In Memory.

1. Introduction

NoSQL databases are attracting more and more attention in data science and pro-

vide an efficient framework for dealing with complex data and intensive read and/or

write access. They are often linked to distributed architectures in order to scale up
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Fig. 1. Example of a Graph Database

on very large databases. Several types of NoSQL databases have been proposed

(column, store, key-value,...) and are chosen depending on the type of data, type of

queries etc 10,20.

In many applications, data are based on graphs, as in for instance social net-

works, biological interactions, semantic Web and more. In such applications, it is

often the case that the connections between data matter just as much as the data

itself. In such cases, extracting knowledge is a hot topic 1 as it has been the case for

many years in pattern recognition 13. However when the relationships are central

and tend to evolve, both relational databases and classical NoSQL databases are

no longer efficient for storing and querying data. For this reason, NoSQL databases

have been extended to NoSQL Graph databases 3,29. Several NoSQL graph engines

have been developed. Neo4j is one of the most popular and is thus used in this

work 28.

In the NoSQL graph database model, the objects considered are nodes and

relationships. Complex information on both nodes and relationships are managed as

properties with (key, value) pairs. In addition to properties, nodes and relationships

may be labeled with types.

For instance, Figure 1 shows the relationships between people and the places they

live in. For instance, the people from nodes 44 and 40 are friends. The relationship

types depict whether people own or rent their housing. The type of housing can be

an apartment or a house: this value is known as the node type. Node information

(e.g., person’s age) and relationships (e.g., monthly rental fees) can be provided as

node and relationship properties (e.g., key = age).

Queries in graph databases are defined as traversals over the graph. They can

be run at several levels, either programmatically or by using declarative languages

(as done when using SQL in relational databases). This work relies on declarative
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query languages. In Neo4j, this language is Cypher 27.

NoSQL databases are not populated over a predefined schema. The user, should

(s)he be writting or reading the data, may not be aware of the content of the

repository. Moreover when being accessed by machines, the databases must be easily

understandable. For instance this is the case for automatic ontology alignment, for

data sources recommendation, etc 7.

For this reason, the automatic extraction of the structure of the database is

crucial and is the main contribution of this paper. More specifically, this paper is

about automatically extracting summaries from very large NoSQL graph databases.

Several summaries are considered in order to allow a comprehensive summary of

the data.

Structural summaries contain all the nodes and relationship types of the source

database. Structural data summary provides a more accurate summary by provid-

ing relevant information on the presence of the relationships in the database, thus

allowing users to easily understand what the graph deals with.

For instance, the nodes of type Person could be connected to several other types

of nodes like Housing, Person, etc. by relationships of type Friend, Rents, Buys,

etc. These Person nodes are connected with a high number of relationships of type

Rents and a smaller number of relationships of type Buys.

In order to weigh the relationships to account for their gradual presence, we

propose using the framework of the fuzzy quantifiers such as Few, Most. For this

reason, we introduce the use of two frameworks in the context of NoSQL graph

databases: Fuzzy4S and Cypherf.

Fuzzy4S (standing for Fuzzy for Scala) is a fuzzy logic framework written in

Scala (a language mixing functional and object-oriented paradigms). Proposed as

a library, it contains membership functions, t-norms and t-conorms 23. Upon this

library, an open Domain Specific Language (DSL) has been built to define ap-

proximate queries at an abstract level. It relies both on the IEC 61131 standard

(IEC61131-7) that has been developped for fuzzy control programming and on JFL

that is a Java Fuzzy framework 11,12. Fuzzy4S is used in the Cypherf language which

extends the Cypher declarative language.

Using such frameworks allows us to rely on the existing work related to lin-

guistic summaries. Summaries of relational databases have been addressed in many

works, especially with linguistic summaries 6,15,22. Linguistic summaries are based

on protoforms, the first one being Qy are P where Q stands for a fuzzy quantifier,

y are the objects to be summarized, and P is a possible value, such as in Most

students are young. Linguistic summaries have been extended in many works, to

handle for example time series 2,21. Linguistic summaries can be extracted with

(fuzzy) pattern-mining-based algorithms.

However, these works cannot be easily applied to NoSQL graph databases. The

summaries we aim to discover must indeed be transposable to linguistic summaries.

Moreover such databases combine several criteria that have never been considered
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altogether: relationships as the main concern, presence of node and relationship

types, complex information contained in the (key, value) properties, etc.

What’s more is the framework of NoSQL graph databases must be able to handle

very large databases. This paper shows the limits of NoSQL graph databases for

such mining tasks and details how in-memory architectures can be used to scale up.

The remainder of the paper is organized as follows: Section 2 reviews works

on NoSQL graph databases and linguistic summarization. Section 3 introduces the

definitions of the four types of summaries proposed in this work. Section 4 details

the methods to extract such summaries from large datasets and demonstrate the

limits and benefits of our propositions through experiments. Final conclusions and

future possibilities are discussed in Section 5.

2. Background

This work relies on NoSQL graph databases and data summarization.

2.1. Graph Databases

2.1.1. General Concepts

Graphs have been studied for a long time by both mathematicians and computer

scientists. A graph can be directed or not, labeled or not. NoSQL graph databases

rely on labeled directed graphs.

Definition 1. Labeled Directed Graph. A labeled oriented graph G, also known

as oriented property graph, is given by a n-uplet (V,E, α, β, lV , lE) where V stands

for a set of vertices and E stands for a set of edges with E ⊆ (V × V ), α stands for

the set of attributes defined over the nodes, β the set of attributes defined over the

relations, lV : V → P(α) is the labeling function for nodes and lE : E → P(β) is

the labeling function for relationships.

NoSQL graph databases 29 such as Neo4j consider vertices as nodes and edges

as relationships. The labels are sometimes said to be the types. On top of this,

NoSQL graph databases consider that nodes and relationships are provided with

information called properties. These are stored using the (key, value) paradigm that

is very common in NoSQL databases. Figure 3 shows a graph and its structure in

(key, value) pairs.

Studies have shown that these technologies perform well, much better than clas-

sical relational databases at representing and querying such large graph databases.

2.1.2. NoSQL Graph Databases

NoSQL graph databases 29 are based on graph concepts with the following addi-

tional point: properties are defined over the nodes and relationships stored according

to the (key, value) paradigm, which is very common in NoSQL databases.
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Fig. 2. Labeled Graph

Fig. 3. Node and Relation Properties

It should be noted that types are distinguished from properties, as in NoSQL

engines such as Neo4j. These types appear in Figure 1 as colors for nodes (e.g.,

Student, House) and as labels for relationships (e.g., Owns).

Generalizing the definition of labeled directed graphs, we propose a formal def-

inition of NoSQL graph databases below.

Definition 2. NoSQL Graph Database. A NoSQL graph database G is given

by a tuple (V,E, θ, τ, α, β) where

• α stands for the set of node properties defined by (key:value) pairs;
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• β stands for the set of edge properties defined by (key:value) pairs;

• θ stands for the set of node types;

• τ stands for the set of edge types;

• V stands for a set of vertices with ∀v ∈ V, v = (idv, tv, κv) s.t. tv ⊆ θ

stands for the types of v, κv ⊆ α stands for the properties of v and idv is

the vertice identifier;

• E stands for a set of edges with ∀e ∈ E, e = (ide, (v
1
e , v

2
e), te, λe) s.t.

(v1e , v
2
e) ∈ {V × V }, te ⊆ τ stands for the types of e, λe ⊆ β stands for

the properties of e and ide is the edge identifier.

The set of properties of a node v is denoted by αv, the set of types is denoted by

θv. The set of properties of a relation e is denoted by βe, the set of types is denoted

by τe.

Figure 3 shows a graph and its structure in (key, value) pairs. In this example,

we have:

• α = {(keyA1, valueA1), . . .}
• β = {(keyR11, valueR11), . . .}
• V = {(A, {tA}, {(keyA1, valueA1), (keyA2, valueA2)}),

(B, {tB , t′B}, {(keyB1, valueB1)}),
(C, ∅, {(keyC1, valueC1), (keyC2, valueC2), (keyC3, valueC3)})

• E = {(R1, (A,B), {tR1, t
′
R1}, {(keyR11, valueR11)}), . . .}

Several NoSQL graph database engines exist (OrientDB, Neo4j, HyperGraphDB

etc.) 3. Neo4j is considered the best perfomer 30. All NoSQL graph databases re-

quire developers and users to use graph concepts to query data. Queries are called

traversals, referring to the action of visiting elements, i.e. nodes and relationships.

There are three main ways to traverse a graph:

• programmatically: using an API;

• by functional traversal: using a traversal based on a sequence of functions

applied to a graph;

• by declarative traversal: explicitly expressing the required data and letting

the database engine define the best way to achieve this goal.

This paper focuses on declarative queries over a NoSQL graph database. The

Neo4j language is called Cypher.

For instance, in Figure 4, a query to return the customers who have visited the

Ritz hotel is displayed. Those customers are both displayed in the list and circled

in red in the graph.

Cypher clauses are similar to SQL ones. It is based on a “ASCII art” style of

writing graph elements. For example, directed relations are written using the −[]−>
chain. Types and labels are written after a semi-colon (:).
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Fig. 4. Displaying the Result of a Cypher Query

Listing 1. Query example on a Graph

1 [START]
2 [MATCH]
3 [ OPTIONAL MATCH WHERE]
4 [WITH [ ORDER BY ] [ SKIP ] [ LIMIT ] ]
5 RETURN [ ORDER BY ] [ SKIP ] [ LIMIT ]

Listing 2. Cypher Clauses

1 START: Starting points in the graph , obtained via index lookups or by ←↩
element IDs .

2 MATCH: The graph pattern to match , bound to the starting points in START.
3 WHERE: Filtering criteria .
4 RETURN: What to re turn .
5 CREATE: Creates nodes and relationships .
6 DELETE: Removes nodes , relationships and properties .
7 SET: Set values to properties .
8 FOREACH: Performs updating actions once per element in a list .
9 WITH: Divides a query into multiple , distinct parts .

More specifically, queries in Cypher have the following syntaxa:

As shown above, Cypher is comprised of several distinct clauses which are listed

below in Listing 2.

These operations can even be extended to fuzzy queries 8. In this work, they are

used for computing the linguistic summaries introduced below.

2.2. Graph Summarization

Data Summarization has been extensively studied in the last decades to produce

linguistic sentences, such as Most of the students are young 31. These approaches are

based on the so-called protoforms (e.g., Qy are P ) where Q is a fuzzy quantifier, y

ahttp://docs.neo4j.org/refcard/2.0/
http://docs.neo4j.org/chunked/milestone/cypher-query-lang.html
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Fig. 5. Example of Fuzzy Quantifier Membership Functions

are the objects to summarize and P is a (fuzzy) predicate. They focus on relational

data where source data are represented in the form of tuples defined over a schema.

For instance, the tuples (John, 23, 45000), (Mary, 32, 60000) and (Bill, 38, 55000)

are three tuples defined on the schema (Name, Age, Salary). The fuzzy quantifiers

are defined over the [0, 1] universe of proportions. We may for instance consider two

quantifiers Few and Most whose membership functions are displayed by Figure 5.

The quality of linguistic summaries can be assessed by many measures, the

seminal one being T , the degree of truth that can be simply computed with a σ-

count:

T (Qy′s are P ) = µQ

(
1

n

n∑
i=1

µP (yi)

)
where n is the number of objects (yi) that are summarized and µP , and µQ are

the membership functions of the summarizer and quantifier, respectively.

There are various ways to examine summaries. Researchers have focused on

fields like the design of protoforms, quality measures, efficient algorithms etc 6.

All the literature on fuzzy linguistic summaries is not recalled here as this paper

focuses on the subject of graph data. In this framework, two main characteristics

have to be highlighted. First, graph databases are not provided with a strict and

given schema such as relational data. In fact, they are closer to semi-structured

data. Second, graph databases focus on relationships.

Summarizing graph data has been considered for many years, aiming for instance

at compressing such data with the use of supernodes as shown by Figure 6 from 25.

Graph summarization is related to graph mining. Graph (and tree) mining deals

with the problem of extracting frequent patterns (subgraphs/subtrees) from a large

graph. It is often presented as an extension of the so-called itemset mining methods.

Such methods have been successfully applied to large graphs by considering efficient

approaches 14,24,32.

Several works in the literature have focused on schema extraction in the context

of semi-structured graph data, i.e., XML data. The schema extraction problem
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Fig. 6. Graph Summarization using Supernodes

consists in identifying a schema S from a given set of XML data documents D,

such that S captures the structural information of the documents in D in the

most minimal way. The schema extraction process is also referred to as schema

inference 5. The underlying structure of a given collection of XML documents can

be described using Document Type Definitions (DTD), XML Schema, or via a more

general representation such as tree or a graph. The structure extraction techniques

in the literature aim to infer three kinds of representations: tree or graph summaries,

DTD, or XML Schema.

Our work extends the existing methods in order to deal with large NoSQL graph

databases by introducing several types of summaries and by providing the methods

to extract them.

3. NoSQL Graph Summaries: Definitions

Several structures can be used to summarize NoSQL graph databases. This work

extends that of 9 as well as taking into account the specificities of NoSQL graph

databases, especially the fact that nodes and relationships are provided with prop-

erties. Four types of summaries are proposed:

• Structural Summaries;

• Structural Data Summaries;

• Structural Data Key Property Summaries;

• Structural Data Key Value Property Summaries.

3.1. Structural Summaries

Structural summaries are meant to retrieve the structure of the graph embedded

in element types, which could in some ways be associated with relational database

schema. Such summaries could thus be associated with with schema mining in the

literature.

Definition 3. Structural Summary. Let G = (V,E, θ, τ, α, β) be a NoSQL graph

database. A structural summary S ofG is defined as S = (a−[r]−>b,Q) where a, b ∈ θ
(node types), r ∈ τ (relation type) and Q is a fuzzy quantifier.



July 10, 2016 12:16 WSPC/INSTRUCTION FILE output

10 A. Castelltort and A. Laurent

Fig. 7. Structural Summary of the Example

The structure summary can be expressed in a linguistic form as follows: In G,

Q of the a r b

Example 1. In the toy example, the structural summary shows that students

own houses or rent apartments and are connected through the friend relationship.

The corresponding structural summary is depicted by S = (students − [rend]− >

apartments,Most) (see Figure 7).

It should be noted that such a summry is ambiguous. It may indeed consist of

computing either the proportion of students who rent an apartment over the whole

student population, or the proportion of students who rent an apartment over the

number of students who rent their residence..

We thus consider a truth degree to assess the quality of a summary and we

propose two ways of calculating this degree. These two definitions are provided

below.

This weight can be compared to the degree of truth in the context of linguistic

summaries, although no proposition has been made in the case of graphs. In our

framework, the degree of truth determines the extent to which the relationship

appearing in the summary is truthful in regards to the fuzzy quantifier. For instance,

if the summary mentions that most of the students rent an apartment, then the

degree of truth describes to what extent a high proportion of students rent an

apartment.

Definition 4. Degree of Truth of NoSQL Graph Summaries. Given a graph

database G and a summary S = a −[r]−>b,Q, the degrees of Truth of S in G are

defined as:
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Truth1(S) = µQ

(
count(distinct(S))

count(distinct(a))

)

Truth2(S) = µQ

(
count(distinct(S))

count(distinct(a−[r]−> (?)))

)
The second type of degree of truth is also called the diversity of target source

denoted by DT later on in this paper.

Example 2. In the toy example from Figure 1, the degree of truth of the summary

“S = Student−[rent]−>apartment,Most” is given by the membership degree to the

fuzzy quantifierb of the ratio between the number of times a relationship appears

between a Student and an Apartment (s)he rents over the number of relations of type

Rents starting from a Student node. In this example, we thus have Truth2(S) =

µMost

(
4
5

)
= µMost(0.8)

The ratio appearing in the definition of the degree of truth can be compared to

the confidence in association-rule mining which acts as a conditional probability.

The proportion is computed with respect to the total number of relationships

outgoing from the nodes of this type. For instance, the proportion of the relationship

of type tr between node types ta and tb is computed as:

proportion(ta − [tr]− > tb) = |ta−[tr]−>tb|
|ta|

The transformation of a proportion p using the fuzzy quantifier from a set Q
could be easily computed as arg maxq∈Q(µq(p)). However, this would falsely convey

the idea that a relationship occuring at a proportion of 10% with only one other

relationship at a proportion of 90% is considered in the same way as a a relationship

occuring at proportion 10% with nine other relationships at proportion 10% each.

For this reason, we propose another measure based on the difference between

the proportion and the proprtion corresponding to the equi-distributed situation:

m(ta − [tr]− > tb) =
∣∣∣ |ta−[tr]−>tb||ta−[∗]−>∗| −

1
|ta−[∗]−>∗|

∣∣∣.
m can then be matched to a set of relative quantifiers such as rare, regular,

frequent.

Example 3. In the toy example, the structural data summary shows that students

rarely own houses (1 relationship out of 6 in the database), often rent apartments

(4 relationships over 6) and are rarely connected through the friend relationship (1

relationship over 6). The corresponding structural summary is depicted by Figure 8.

This can easily be converted graphically by emphasising the relationships with

high weights. It can also be easily converted to linguistic summaries, for instance

in the form of Most of the students rent an apartment.

bWe do not mention here the detailed membership function of the Most quantifier which can
be defined in a very classical manner as done in the literature of fuzzy quantifiers and fuzzy
summaries.
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Fig. 8. Data Structure Summary of the Example

However, such summaries do not convey any information about the properties

of the nodes and relations. Structural data summaries are thus proposed.

3.2. Data Structure Summaries

Structural data summaries are based on structural summaries and embed informa-

tion about the properties, as for instance the income of the people being considered,

or the rental paid for a residence. The above definition is thus extended to allow

this new type of summaries.

Definition 5. Data Structure Summary. Let G = (V,E, θ, τ, α, β) be a NoSQL

graph database. A Data Structure Summary S is defined as S = (a.X−[r.Z]−>b.Y,Q)

with a, b ∈ θ (node types), r ∈ τ (relation type), X,Y ⊆ α (node properties), Z ⊆ β
(relation properties) and Q a fuzzy quantifier.

However, structural summaries and structural data summaries do not take nodes

and relationships properties into account even though they are one of the main

characteristics of the NoSQL graph databases.

3.3. Data Structure Key Property Summaries

Definition 6. Structural Data Key Property Summary. Let G =

(V,E, θ, τ, α, β) be a NoSQL graph database. A structural data summary SG is

defined as a graph G = (VS , ES , θ, τ,KαS
,KβS

) and a set δES
where

• |VS | is equal to the number of distinct combinations of types and properties

of nodes,
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• |ES | is equal to the number of distinct combinations of types and properties

of relationships,

• there are no two nodes or two relationships having the same type: ∀v, v′ ∈
VS × VS , tv 6= tv′ and

• δES
corresponds to a set of weights provided for every relationship e ∈ ES ,

• KαS
is a set of keys associated with the nodes,

• KβS
is a set of keys associated with the relationships.

3.4. Data Structure Key Value Property Summaries

Definition 7. Structural Data Key Value Property Summary. Let G =

(V,E, θ, τ, α, β) be a NoSQL graph database. A structural data summary SG is

defined as a graph G = (VS , ES , θ, τ,KαS
,KβS

) and a set δES
where

• |VS | is equal to the number of distinct combinations of types and properties

of nodes,

• |ES | is equal to the number of distinct combinations of types and properties

of relationships,

• there are no two nodes or two relationships having the same type: ∀v, v′ ∈
VS × VS , tv 6= tv′ and

• δES
corresponds to a set of weights provided for every relationship e ∈ ES ,

• αS is a set of (key : value) pairs associated to the nodes,

• βS is a set of (key : value) pairs associated to the relationships.

These summaries can be expressed as linguistic summaries.

Definition 8. Structural Data Key Property Linguistic Summary. Let G =

(V,E, θ, τ, α, β) be a NoSQL graph database. A Data Structure Summary S is

defined as S = (a.X −[r.Z]−>b.Y,Q) with a, b ∈ θ (node types), r ∈ τ (relation

type), X,Y ⊆ α (node properties), Z ⊆ β (relation properties) and Q a fuzzy

quantifier.

Example 4. (Student(Age : 28) −[rent(fees : 1200)]−>apartment, Few) is an

example of a structural data key property linguistic summary.

Such summaries are extended in order to allow fuzzy linguistic labels in the

refinement. Indeed, it would be both difficult and useless to define summaries on

single values such as “the age is 28”, as in fuzzy data mining for fuzzy association

rule mining. Using fuzzy linguistic labels makes it possible to retrieve fuzzy linguistic

summaries where young students and low rental fees are considered.

Definition 9. Structural Data Key Property Fuzzy Linguistic Summary.

Let G = (V,E, θ, τ, α, β) be a NoSQL graph database. Let Fα and Fβ be sets of fuzzy

properties. A Fuzzy Data Structure Summary S is defined as S = (a.X −[r.Z]−>
b.Y,Q) with a, b ∈ θ (node types), r ∈ τ (relation type), X,Y ⊆ α

⋃
Fα (node
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Listing 3. Retrieving structure of a graph

1 MATCH ( a ) -[ r ] -> ( b )
2 RETURN DISTINCT labels ( a ) , type ( r ) , labels ( b )

properties and node fuzzy properties), Z ⊆ β
⋃
Fβ (relation properties and relation

fuzzy properties) and Q a fuzzy quantifier.

Example 5. (Student(Age : young)−[rent(fees : low)]−>apartment,Most) is an

example of a structural data key property fuzzy linguistic summary.

4. Extracting NoSQL Graph Summaries: Methods and

Experiments

Most of the analytical treatments we propose can be expressed by defining queries

over the NoSQL graph database, so as to obtain a more declarative than procedural

way to extract summaries. This property is based on the fact that NoSQL graph

databases provide powerful pattern-matching features, as intended in inductive re-

lational databases 16.

In this section, we show how to run such extractions by using native operations

defined in the declarative Cypher language. These extractions are extended to a

more expressive model by using the Fuzzy4S and Cypherf frameworks.

However, as shown by our experiments, NoSQL graph database engines cannot

process very large databases for analytical processing and extracting the summaries.

We thus introduce an original method based on the use of in-memory graph pro-

cessing systems.

Experiments have been run on synthetic and real databases. The real dataset is

introduced in Section 4.2.

4.1. Graph Database Engine-based method

In this section, a graph database engine will be used to process graph databases

and extract summaries such as those defined in Section 3.

4.1.1. Native Method

To retrieve a graph summary, graph database engines can be used. For instance, the

strutural summary can be retrieved by considering Cypher queries such as those

presented in Listing 3.

Line 1 of this query asks for all oriented relations “r” between an incoming node

“a” and an outgoing node “b”. Line 2 asks the engine to return all the distinct

labels of incoming nodes a, type of relations r and labels of outcoming nodes b. The

output result will be all distinct triplets (labels, type, labels).
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Listing 4. Retrieving Structure Summaries

1 MATCH ( a ) -[ r ] -> ( b )
2 WITH DISTINCT labels ( a ) AS labelsA , type ( r ) AS typeR , labels ( b ) AS ←↩

labelsC , toFloat ( count (∗ ) ) AS countS
3 MATCH ( a1 ) -[ r2 ] -> ( m )
4 WHERE labels ( a1 )= labelsA AND type ( r2 )= typeR
5 WITH DISTINCT labelsA , typeR , labelsC , countS , labels ( a1 ) AS labelsA 1 , ←↩

type ( r2 ) AS typeR 2 , count (∗ ) AS count 2
6 RETURN labelsA , typeR , labelsC ,
7 tofloat ( countS ) / count 2 AS Truth

In order to retrieve the structural data summaries, it is necessary to compute the

measures for evaluating the weights of the relationships. The query from Listing 4

extracts the summaries from a graph and calculates the weight of every relationship.

The degree of Truth that is calculated in Listing 4 does not inform the end-user

to what extent it is ”Truth”: few? most? To do so, fuzzy quantifiers have to be

used. The next section will introduce how to use fuzzy queries to enhance graph

summarization.

4.1.2. Extending Graph database engine to fuzzy queries

Introducing Fuzzy4S and Cypherf

As said before, Cypher is a an external Domain Specific Language (DSL) for

expressing queries on NoSQL graph databases. A Domain Specific Language is a

language tailored to a specific application domain 18 such as SQL for relational

databases, Make for building softwares or CSS for styling description.

There are several ways to extend Neo4j to support fuzzy queries. We chose

to enhance Cypher with functions that allow the user to express fuzzy concerns

with a “Fuzzy DSL”. This new extension of Cypher is called Cypherf, standing for

Cypherfuzzy.

It allows the end-user to use fuzzy features such as defining membership function

with the use of a fuzzy DSL, using t-norms and t-conorms functions as defined in 23.

The main available functions are listed bellow:

• Fuzzy(µf , value): returns the degree of membership to µf function

– µf is expressed as a String that describes the membership function

with the Fuzzy DSL

– value is expressed as a Double

• FuzzyLT(fuzzyVariable, value): returns a collection that contains for ev-

ery fuzzy term of the fuzzy linguistic variable two properties: the name of

the term and the degree of membership of “value” to the term. For in-

stance, for a value X and a fuzzy linguistic variable Age = (Age, [0, 130],

{young,middleaged, old}, {µyoung, µmiddle, µold}) the result will be:
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1 {
2 { name : ” young ” , degree :µyoung(x)} ,
3 { name : ” middle ” , degree :µmiddle(x)} ,
4 { name : ” old ” , degree :µold(x)}
5 }

Fig. 9. Examples of membership function using Scala4S

– fuzzyVariable: is expressed as a String that defines the fuzzy variable.

This definition is composed of the name of the fuzzy variable and a

set of fuzzy-terms. Every fuzzy term is defined by its name and its

membership function

– value is expressed as a Double

• TNorms( tnormName, expression1, expression2): applies a TNorms of name

“tnormName” on expression1 and expression2

• TCoNorms(type, expression1, expression2): same as TNorms but this time

for t-conorms.

Cypherf is processed by an underlying fuzzy framework called “Fuzzy4S” that

implements the fuzzy logic. Fuzzy4S has been developed explicitly as part of Cypherf

implementation but can be used separately in other projects. Upon this library an

open Domain Specific Language (DSL) has been built to define approximate queries

at an abstract level.

Figure 9 provides some examples of using membership functions of Fuzzy4S both

in Scala code and with the external DSL.

As shown in Listing 5, a point can be expressed as a pair of two numbers, the

first one defining the value in the universe and the second one the membership

degree. A membership function is provided with an optional function name and

some parameters (point or number). A Term defines a fuzzy set; it is composed

of a name and a membership function. A fuzzy linguistic variable is composed of

a name, for instance age, and of all the terms that compose this fuzzy linguistic

variable (young, old, etc.) such as those defined in Listing 5 and represented by
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Listing 5. Fuzzy variable example: fuzzy linguistic definition of VAge

1 FUZZIFY Vage
2 TERM young := (25 ,1 ) (40 ,0 ) ;
3 TERM middle := trape 25 40 50 65 ;
4 TERM old := (50 ,0 ) (65 ,1 ) ;
5 END_FUZZIFY

U0 20 40 60 80 100

25 40 50 65µ

Fig. 10. Result of listing 5

Listing 6. Fuzzy Partition of Quantifiers

1 FUZZIFY quantifiers
2 TERM veryFew := trape 0 0 10 20 ;
3 TERM few := trape 0 0 20 40 ;
4 TERM almostHalf := trape 20 40 60 80 ;
5 TERM most := trape 60 80 100 100 ;
6 END_FUZZIFY

Figure 10.

Adding fuzzy quantifier to structural summary

A fuzzy variable can be defined as in Listing 6 and represented by Figure 11.

This method have been tested on several real databasesc, showing its limits on

large datasets that it cannot process successfully, as described below and discussed

in the next section:

chttp://neo4j.com/developer/example-data

U0 20 40 60 80 100

Few Almost half Most

µ

Fig. 11. Fuzzy Quantifiers
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Listing 7. Retrieving Structure Summaries with fuzzy query

1 MATCH ( a ) -[ r ] -> ( b )
2 WITH DISTINCT labels ( a ) AS labelsA , type ( r ) AS typeR , labels ( b ) AS ←↩

labelsC , toFloat ( count (∗ ) ) AS countS
3 MATCH ( a1 ) -[ r2 ] -> ( m )
4 WHERE labels ( a1 )= labelsA AND type ( r2 )= typeR
5 WITH DISTINCT labelsA , typeR , labelsC , countS , labels ( a1 ) AS labelsA 1 , ←↩

type ( r2 ) AS typeR 2 , count (∗ ) AS count 2
6 RETURN labelsA , typeR , labelsC ,
7 tofloat ( countS ) / count 2 AS Truth ,
8 fuzzyLT (” fuzzyQuantifier . fl” , tofloat ( countS ) / count 2 ) as ←↩

quantifiedTruth

Fig. 12. Neo4j execution of Listing 7

Listing 8. Retrieving Structure Summaries with fuzzy query

1 MATCH ( a ) -[ r ] -> ( b )
2 WITH DISTINCT labels ( a ) AS labelsA , type ( r ) AS typeR , labels ( b ) AS ←↩

labelsC , toFloat ( count (∗ ) ) AS countS
3 MATCH ( a1 ) -[ r2 ] -> ( m )
4 WHERE labels ( a1 )= labelsA AND type ( r2 )= typeR
5 WITH DISTINCT labelsA , typeR , labelsC , countS , labels ( a1 ) AS labelsA 1 , ←↩

type ( r2 ) AS typeR 2 , count (∗ ) AS count 2
6 RETURN labelsA , typeR , labelsC ,
7 tofloat ( countS ) / count 2 AS Truth ,
8 head ( fuzzyLT (” fuzzyQuantifier . dsl ” , tofloat ( countS ) / count 2 ) ) as←↩

quantifiedTruth

Dataset Size Number of Nodes Number of Relationships Result

Dr.Who 0.05MB 1,060 2,286 Passed

Cinema 12.3MB 63,042 106,651 Passed

Musicbrainz 5.4GB 35,778,712 73,433,369 Failed
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Fig. 13. Neo4j execution of Listing 8

4.1.3. Limitation of Graph database engine in summaries extraction

Graph databases solve problems that relational databases struggle to solve, such as

retrieving friends of friends. Graph databases have some great features: transactions,

query language, incremental update and persistence, etc., but they are designed to

work with small pieces of graphs. Indeed, Graph databases are OLTP systems and

are not designed to run an analytical algorithm on an entire graph.

The queries of Listings 3, 4, 7 and 8 are executable in a graph database engine

with datasets of thousands of nodes and relations but not with a real life dataset

that contains millions of relationships and nodes.

Running graph analysis or processing on a massive dataset requires some other

kind of system called “Graph Processing Systems”. These systems are designed for

graph analysis and running algorithms on the entire graph.

There are several Graph Processing systems. The most popular ones are GraphX,

Giraph, and GraphLab, which are implementations of the ideas expressed in the

Google Pregel paper 26 and on Map/Reduce papers 17,19.

In the next section, GraphX, a graph processing system based on Apache Spark

In-Memory BigData processing library, is used to show how graph summarization

can be performed with a Big Data In-Memory approach.

4.2. In Memory-based method

The goal of this section is to explain the different steps that lead to the production

of a graph summary using In-Memory process and data from a graph database

engine. For the sake of simplicity, the structural summary schema will be used as

the running example of this section. The dataset used is taken from MusicBrainzd.

Some basic statistics of this dataset are given in Table 1.

dhttp://musicbrainz.org - http://neo4j.com/developer/example-data
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Number of Artists 1,025,077 Number of URLs 3,240,462

Number of Release Groups 1,250,415 Number of Areas 115,245

Number of Releases 1,546,965 Number of Places 14,453

Number of Mediums 1,733,205 Number of Series 3,895

Number of Recordings 15,511,654 Number of Instruments 759

Number of Tracks 19,439,391 Number of Events 9,523

Number of Labels 101,621 Number of Nodes 35,778,712

Number of Works 657,796 Number of Relationships 73,433,369

Table 1. Statistics on the MusicBrainz Dataset

4.2.1. Overview

Figure 14 is a high level representation of the steps that must be applied to extract

a summary from a graph database:

• Step 1 exports data from Neo4j

• Step 2 imports data to In-Memory based graph processing system

• Step 3 distributes data on workers (node of the cluster that will treat the

data) and executes the treatments

• Step 4 exports the result as some output depending on the way it will be

used (vizualisation, analytics, import back into a graph database engine to

be queried etc.)

4.2.2. Step 1: Retrieving a dataset

Dataset can be retrieved from different datasources. Sometimes it will be retrieved

from text files such as RDF text files of CSV and other times from systems like

relation/graph databases.

In this case study, data will be extracted from a graph database engine, more

specifically Neo4j database. Using Graph Processing Systems in conjunction with

a graph databases gives the best of both worlds: transactions and analytics. There

are two types of extraction that can be done: a “raw” extraction or a specific subset

of the database.

The first solution is to dump the entire database in a specific format (e.g CSV

files). It can be used when all the data is required.

The second solution is to query the graph database engine to retrieve a subset of

the data (a subgraph) that contains the required data. For instance, it is possible to

extract the subgraph of all the nodes that are connected together with a “FOLLOW”

relationship and calculate the Betweeness centrality indicator on them.

Betweenness centrality is an indicator of a node’s centrality in a network. It

is equal to the number of shortest paths from all vertices to all others that pass

through that node. The higher the indicator is, the larger the vertex has influence
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Fig. 14. Overview of In-Memory based Summary process

Listing 9. Export Vertex table

1 import−cypher −d” ” −o . cypher match n re turn id ( n ) , labels ( n )

on the transfer of items through the network (under some assumptions that will

not be covered in this paper).

In GraphX, a graph is a directed multigraph with user-defined objects attached

to each vertex and edge. A directed multigraph is a directed graph with potentially

multiple parallel edges sharing the same source and destination vertex. Such kind

of graph is called ”Property Graph” in GraphX terminology.

To build a property graph, two datasets are required:

(1) The first one should contain for each vertex an identifier and a property bag (if

it exists)

(2) The second should contain the incoming and outgoing node id and property

bag (if it exists) of each edge.

The extractions creating a structural graph summary are shown in List-

ings 9 and 10.
In Listings 9 and 10 the ”-o” parameter is used to define the output file and the

”-d” parameter to define the type of delimiter between each value of a result row
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Fig. 15. GraphX Property Graph representation (official documentation)

Listing 10. Export Edge table

1 import−cypher −d” ” −o edges . cypher match ( a ) -[ r ] -> ( b ) re turn id ( a ) , id (←↩
b ) , type ( r )

(in this case a space). The data of each extraction are provided by the execution of
a Cypher querye on the Neo4j database engine. Results are stored in two text files:
vertices.cypher and edges.cypher.

Extract of vertices.cypher:

...

42886 "[Artist, Group, Entry]"

42887 "[Artist, Group, Entry]"

42888 "[Artist, Person, Female, Entry]"

42889 "[Artist, Person, Male, Entry]"

42890 "[Artist, Person, Female, Entry]"

42891 "[Artist, Person, Male, Entry]"

...

Extract of edges.cypher:

...

16553747 10 "RELEASED_IN"

16553684 10 "RELEASED_IN"

16553679 10 "RELEASED_IN"

16552723 10 "RELEASED_IN"

...

4.2.3. Step 2: Import data as Resilient Distributed Datasets (RDDs)

A Resilient Distributed Dataset (RDD) consists of data partitions distributed ac-

cross the memory of the cluster machines as illustrated in Figure 16. Every RDD is

eusing the Neo4j-shell tools available at https://github.com/jexp/neo4j-shell-tools
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Listing 11. Create RDD from vertices and edges files

1 va l efile = sc . textFile ( ” edges . cypher ” ) //A
2 . persist ( StorageLevel . MEMORY_AND_DISK )
3 va l vfile = sc . textFile ( ” v e r t i c e s . cypher ” ) //B
4 . persist ( StorageLevel . MEMORY_AND_DISK )
5
6 va l vertexRDD : RDD [ ( VertexId , String ) ] = vfile . map ( line => {
7 line . split ( ” ” , 2) match { //C
8 case Array ( idVertex , labels ) => ( idVertex . toLong , labels )
9 }

10 })
11
12 va l edgeRDD : RDD [ Edge [ String ] ] = efile . map ( line => {
13 line . split ( ” ” , 3) match { //D
14 case Array ( vIn , vOut , rel )
15 => Edge ( vIn . toLong , vOut . toLong , rel . toString ) //E
16 }
17 })

immutable (data in RDD never changes) however a new RDD can be created from

an existing one.

Fig. 16. Resilient Distributed Datasets

Listing 11 shows how to create two RDD from the generated two files of Step1.

#A Load as a RDD[String], each line is a String: "idVertex labels"

#B Load as a RDD[String], each line is a String: "idVin idVOut relType"

#C Split the line in an Array of two strings: Array(idVertex, labels)

#D Transform the array in a Tuple of two elements: idVertex as a Long and labels as a String.

The returned type RDD[(VertexId, String)] because idVertex is cast as a VertexId

#E Split the line in an Array of three strings: Array(vIn, vOut, rel)
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Fig. 17. Stages of GraphX Job to Summarize a Graph Database

4.2.4. Step 3: Extracting a Graph summary

In Spark/GraphX, operations that can be executed on the data within each partition

without the need to access data in other partitions are called “stage”. A job consists

of one or more stages to be performed on the data.

Figure 17 shows the stages needed to import, treat, and output structural graph

summary. The main steps of the algorithm are:

• Create a graph from the vertex and edges RDD

• For each triplet (incoming vertex, edge, outcoming vertex) create a tuple of

three elements: the labels of the incoming vertex, the relation type, the labels

of the outgoing vertex

• remove the duplicates tuples, meaning the tuples with the same incoming labels,

relation type and outgoing labels

• create a new verticesRDD and edgesRDD from the tuples

• create the summary graph

Listing 12 shows the code to extract a summary of the graph database and to

turn it in a new graph called summary graph. Some explanations are provided below

the listing.

#F->I: Transforms all graph relationships in a set of uniques tuples

-----------------------------------------------------

#F Create a Graph from the vertexRDD and the edgeRDD
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Listing 12. Create a Structural Graph Summary

1 va l graph : Graph [ String , String ] = Graph ( vertexRDD , edgeRDD ) //F
2
3 va l triplets = graph . triplets . map { //G
4 t => ( t . srcAttr , t . attr , t . dstAttr ) //H
5 } . distinct // I
6
7 va l schemaVertices = triplets . map ( t => t . _1 )
8 . union ( triplets . map ( t => t . _3 ) ) //J
9 . distinct //K

10 . zipWithIndex //L
11
12 va l schemaEdges = triplets . map ( t => ( t . _1 , ( t . _2 , t . _3 ) ) ) //M
13 . join ( schemaVertices ) //N
14 . map ( t => ( t . _2 . _1 . _2 , ( t . _2 . _2 , t . _2 . _1 . _1 ) ) ) //O
15 . join ( schemaVertices ) //P
16 . map ( t => new Edge ( t . _2 . _1 . _1 , t . _2 . _2 , t . _2 . _1 . _2 ) ) //Q
17
18 va l summaryGraph = Graph ( schemaVertices . map ( _ . swap ) , schemaEdges ) //R

#G graph.triplets return an object of type EdgeTriplet[VD,ED] that is the representation of a relation.

EdgeTriplets contains severals fields:

- attr Attribute data for the edge

- srcId Vertex id of the edge’s source vertex

- srcAttr Attribute data for the edges source vertex

- dstId Vertex id of the edge’s destination vertex

- dstAttr Attribute data for the edges destination vertex

#H Transforms an EdgeTriplets in a tuple of three elements: labelsVin, relType, labelsVout

#I Distinct operation to ensure unique tuple (labels, relType, labels)

#J->L: create a vertexRDD from triplets

--------------------------------------------------------------

#J Transforms (labelsVin, relType, labelsVout) => (labelsVIn)

#K Transforms (labelsVin, relType, labelsVout) => (labelsVOut)

Union of #J and #K => (labels)

#L Distinct operation to ensure unique labels

zipWithIndex add a generated index value to labels => (labels, idVertex)

Return a RDD[String] called schemaVertices that contains all the labels of the graph summary

#M->Q: create an EdgeRDD from triplets

--------------------------------------------------------------

#M Transforms (labelsVin, relType, labelsVout) => (labelsVin, (relType, labelsVout))

#N Join on key labelsVin with schemaVertices => (labelsVin, ((relType, labelsVout), idVIn))

#O Transforms (labelsVin, ((relType, labelsVout), idVertex)) => (labelsVout, (idVIn, relType))

#P Join on key labelVout with schemaVertices => (labelsVout, ((idVIn, relType),idVout)

#Q Transforms (labelsVout, ((idVIn, relType),idVout) => (idVin, idVout, relType)

#R Create a new graph representing the summary of the original graph

The resulting graph summary is composed of:

• 157 nodes (0.0004388 % of the 35,778,712 original nodes)

• 5948 relationships (0.00000081 % of the 73,433,369 original relationships)
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Listing 13. Example of a minimal GEXF file

1 <?xml version=”1 . 0” encoding=”UTF−8”?>
2 <gexf xmlns=”http : //www. gex f . net /1 .2 d ra f t ” ve r s i on=”1.2”>
3 <meta lastmodifieddate=”2009−03−20”>
4 <creator>Gexf . net</creator>
5 <description>A hello world ! file</description>
6 </meta>
7 <graph mode=”static ” defaultedgetype=”directed”>
8 <nodes>
9 <node id=”0” label=”Hello ” />

10 <node id=”1” label=”Word ” />
11 </nodes>
12 <edges>
13 <edge id=”0” source=”0” target=”1” />
14 </edges>
15 </graph>
16 </gexf>

4.2.5. Step 4: Exporting and Visualizing the summary

The summary graph can be exported in many formats. It can be output as a seri-

alized text file that can be processed again in a Graph processing system for futher

treatment or it can be output as a textual human readable text file such as:

(a:Artist)-[FROM_AREA]->(Country)

This section introduces two more possibilities: output the summary graph as it

can be vizualized and analyzed in a vizualisation platform or inject the summary

in a graph database engine.

Summary as a GEXF file

GEXF (GraphX Echange XML Format) is an open language for describing com-

plex network structures, their associated data and dynamics. A basic example for

a static graph containing 2 nodes and 1 edge between them is shown in Listing 13.

The aim of transforming a graph into a gexf file is to provide a format exploitable

by an interactive visualization exploration platform such as Gephi.

Gephi 4 is an open-source network visualization platform that helps data ana-

lysts make hypotheses, intuitively discover patterns, and isolate structure singular-

ities or faults during data sourcing.

The algorithm that transforms a Graph(verticesRDD, edgesRDD) into a GEXF

file is shown in Listing 14.

The visualization from Gephi of the result of the transformation of the Structural

summary of MusicBrainz in the GEXF file is shown in Figure 18.

Summary as a Neo4j Graph database

Step 3 allows the user to generate a new graph, which is a summary graph,

from the inital graph. This summary graph can be parsed to generate a new graph

database or to be inserted in the original graph database. Importing a graph sum-

mary in a graph database engine such as Neo4j can be useful for several practical
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Listing 14. Export a GraphX graph to GEXF

1 de f toGexf [ VD , ED ] ( g : Graph [ VD , ED ] ) =
2 ”<?xml ve r s i on=\”1.0\” encoding=\”UTF−8\”?>\n” +
3 ”<gex f xmlns=\” http ://www. gex f . net /1 .2 d r a f t \” ve r s i on=\”1.2\”>\n” +
4 ” <graph mode=\” s t a t i c \” de fau l t edge type=\” d i r e c t ed \”>\n” +
5 ” <nodes>\n” +
6 g . vertices . map ( v => ” <node id=\”” + v . _1 + ”\” l a b e l=\”” +
7 v . _2 + ”\” />\n” ) . collect . mkString +
8 ” </nodes>\n” +
9 ” <edges>\n” +

10 g . edges . map ( e => ” <edge source=\”” + e . srcId +
11 ”\” ta r g e t=\”” + e . dstId + ”\” l a b e l=\”” + e . attr +
12 ”\” />\n” ) . collect . mkString +
13 ” </edges>\n” +
14 ” </graph>\n” +
15 ”</gexf>”

Fig. 18. Summary visualization from Gephi

applications such as running pattern matching queries, searching for intelligence,

etc.

Listing 15 presents the algorithm used to produce a Cypher creation query that

can be executed on a Neo4j engine. Parts of the cypher query are presented in the
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Listing 15. Export a GraphX graph to Cypher

1 de f toCypher [ VD , ED ] ( g : Graph [ VD , ED ] ) = ” c r ea t e ”+
2 g . vertices . map ( v => ” ( node” + v . _1 + ” : ” + v . _2+ ”) ,\n” ) . collect .←↩

mkString +
3 g . edges . map ( e => ” ( node”+e . srcId+”) ”+”− [ : ”+e . attr+”]−>(node”+e . dstId+”←↩

) ” ) . collect . mkString ( ” ,\n” ) ”

Listing 16. Cypher file for importing graph Summary into Neo4j

1 c r ea t e ( node 134 : ” [ Work , Partita , Entry ] ”) ,
2 ( node 0 : ” [ Recording , Entry ] ”) ,
3 ( node 1 : ” [ Other , Release , Official , Entry ] ”) ,
4 ( node 135 : ” [ Work , Concerto , Entry ] ”) ,
5 ( node 136 : ” [ Other , Release , Promotion , Entry ] ”) ,
6 ( node 2 : ” [ Label , Distributor , Entry ] ”) ,
7 ( node 137 : ” [ Work , Madrigal , Entry ] ”) ,
8 ( node 3 : ” [ Release , SlimJewelCase , Bootleg , Entry ] ”) ,
9 ( node 4 : ” [ Work , Entry ] ”) ,

10 . .
11 ( node 140 ) -[ : ” CONDUCTOR_POSITION ” ] -> ( node 155 ) ,
12 ( node 155 ) -[ : ” HAS_ALIAS ” ] -> ( node 154 ) ,
13 ( node 155 ) -[ : ” INSTRUMENTAL_SUPPORTING_MUSICIAN ” ] -> ( node 155 ) ,
14 ( node 155 ) -[ : ” COLLABORATION ” ] -> ( node 155 ) ,
15 ( node 155 ) -[ : ” CATALOGUED ” ] -> ( node 155 ) ,
16 ( node 155 ) -[ : ” SUPPORTING_MUSICIAN ” ] -> ( node 155 ) ,
17 ( node 155 ) -[ : ” VOCAL_SUPPORTING_MUSICIAN ” ] -> ( node 155 ) ,
18 ( node 155 ) -[ : ” PARENT ” ] -> ( node 155 ) ,
19 ( node 155 ) -[ : ” IS_PERSON ” ] -> ( node 155 ) ,
20 ( node 155 ) -[ : ” MEMBER_OF_BAND ” ] -> ( node 155 ) ,
21 ( node 152 ) -[ : ” CREDITED_ON ” ] -> ( node 156 )

Listing 16.

5. Conclusion and Perspectives

This paper concerns NoSQL graph databases that are attracting more and more

interest and are used in many companies and organizations dealing with large real

databases. In this framework, we define four types of summaries for the purpose of

assisting the users in their understanding of the data content and semantic. These

summaries can be extracted using the native declarative query languages available in

the NoSQL graph engines. In our work, such queries are extended using two frame-

works (the Fuzzy4S DSL and the Cypherf declarative query language) to facilitate

the user experience. However, experimental results run on a real database containing

more than 35 million nodes and 73 million relationships show that NoSQL engines

cannot manage the efficient extraction of such summaries. We thus introduce an

original method based on in-memory graph processing systems.

This article opens up numerous possibilities. Future work includes experiments

on several datasets. Moreover, the quality measures will be explored together with

data visualization challenges. Protoforms may also be extended in the case of our
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complex summaries in order to contain several relationships. Finaly, we aim to

develop algorithms to retrieve the most significant “contradictory” summaries, such

as Most of the students rent a one-room studio in the city but the youngest ones

rent a room in a student residence.
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