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Abstract. RDF, or Resource Description Framework, is a well-established
format for representing data. Based on the so-called RDF triples, it al-
lows to represent data and properties over the data through the subject-
predicate-object framework. By linking objects defined by unique iden-
tifiers, it is widely used for Open Data and Linked Open Data. On the
other hand, relationships between objects are more and more managed
through NoSQL graph databases which use the property graph model to
structure information. Such databases provide indeed very efficient tools
for handling huge volumes of complex data. They are especially powerful
for retrieving relationships between objects (as for instance the famous
friend of friend query). While many works have dealt with the transfor-
mation from various data formats to RDF, no work has addressed, as far
as we know, the transformation from RDF to NoSQL graph databases.
We thus consider this topic in this paper by proposing transformation
rules and by testing our approach on real data.

Keywords: RDF, Open Data, NoSQL Graph Databases.

1 Introduction

The Semantic Web is now widely recognised as a key for promoting data ex-
changes over the Web of data. Data exchanges rely on the RDF format, espe-
cially considered in the Open Data and Linked Open Data frameworks as a key
component. These frameworks are studied and used by many researchers and
practitioners. For this reason, works have been proposed to translate resources
either into RDF format so as to ease the publication of the data, or from RDF to
perform on them some application-specific processing. Linked open data gathers
a huge number of datasets. It is often represented by pictures such as Fig. 1
taken from the EU research project PlanetData (http://planet-data.eu/).

Besides, NoSQL graph databases have become highly demanded to achieve
the data management needed by some tasks mainly focusing on relationships.
For example, social networks, and variety of scientific and business application
tend to be easy to manage if data were stored and queried as graphs. NoSQL
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Fig. 1. Linked Open Data

graph database engines are recognised as being scalable [2] and efficient for some
complex data management operations.

We thus propose to discuss how RDF data can be managed in NoSQL graph
databases. Our work relies on two main motivations explained below.

First, we consider the extension of proprietary data available in a graph
database. RDF is a standard for data publishing on the Web. Therefore, there
is a wide variety of public data sets available for applications, having their own
permissions and restrictions. Such external data are a rich source of information
and can be used as Background Knowledge by applications either to enhance
the quality of service or to provide users with extra features.

Second, we consider the improvement of performance of data processing ap-
plications. RDF serialization formats, such as RDF/XML, Turtle, and JSON-
LD, are stored as text documents and cannot be queried in an efficient manner
unless loaded into a SPARQL engine. Although studies have driven to some im-
provements in SPARQL efficiency, there are still some limits with complex or
large-scale queries, where some of the current Graph Database solutions gener-
ally show better performance and are open to [2]

The paper is organized as follows. Section 2 recalls the basics of NoSQL graph
databases and RDF data and presents some of the existing work for data trans-
formation in this framework. Section 3 introduces our proposition. Implementa-
tion issues and experiments are reported in Section 4 while Section 5 concludes
the paper and discusses further works.
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2 Related Work

2.1 RDF

RDF stands for Resource Description Framework. A resource may be any type of
object, for instance a person, a picture, a Web page, etc. Resources are identified
by Uniform Resource Identifiers (URI) which are unique sequences of characters.
URLs are a type of URIs. Some examples can be found in [8].

RDF describes information through the (Subject, Predicate,Object) frame-
work. The predicate is a relationship linking the subject to the object. RDF can
thus be seen as a labeled oriented graph, as well as NoSQL graph databases
described below. They are queried through SPARQL queries [7].

2.2 NoSQL Graph Databases

NoSQL has recently emerged as a new framework for databases [5]. The main
advantage of NoSQL databases is often viewed as the capacity to deal with
Big Data. This does not only mean that such NoSQL databases are scalable
and can thus handle huge volumes of data, but also means that it can manage
more complex data. That’s for instance the case with document-oriented NoSQL
databases. That’s also the case with NoSQL graph databases [4] that are espe-
cially designed for managing data that are intrinsically graph-based, such as
social networks, biological data, etc.

NoSQL graph databases implement data management systems based on ori-
ented graphs. These graphs are labeled with a complex structure that contains
information as a set of (key : value) properties. For this reason, we consider such
data as a Property Graph (hereafter PG).

Fig. 2 depicts an example where people and accommodations are managed.
Every object, should it be a node or a relationship, can be associated with
properties. For instance, the RENTS relationship has some properties such as
the fees and the dates of renting.

Serveral graph database engines exist, such as Neo4j, OrientDB, FlockDB,
InfiniteGraph, etc.. In our work, we consider Neo4j (http://neo4j.com/) for
experiments.

Those database management systems are not only data repositories but al-
low to deal with some constraints and provide querying tools. Queries can be
run from a program or can rely on a declarative language. For instance, Neo4j
provides a declarative query language called Cypher.

In this paper, we focus on how to build a bridge between the RDF format
and the concept of property graphs, allowing then to manage these data by a
chosen NoSQL Graph DBMS.

2.3 Graph Transformations

Graphs are usual data structures. Graph transformations have thus been studied
for many years in graph theory and in both the fields of artificial intelligence
and databases.
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Fig. 2. Example of a Property Graph illustrating all the characteristics of the model

Some other works have focused on the transformation of several data formats
to RDF in order to publish information on the Web [3]. One of the main used
languages is R2RML, which provides a markup language to describe how to
transform a given relational database into an RDF triple set[6]. Mappings are
defined between relational data and graph patterns so as to allow the automatic
exportation of table rows to RDF. Examples are provided by Figures 3, 4, 5,
taken from http://www.w3.org/TR/r2rml/.

Fig. 3. Example of a relational database to be transformed with R2RML
(http://www.w3.org/TR/r2rml)

Regarding the transformation of RDF to other formats, little works exist.
SPARQL queries return information in either XML or JSON, or Notation3

(N3) or textual/HTML formats, which allows to export RDF data into several
other formats provided the fact that some transformation tools are available.
CONSTRUCT queries return RDF/XML format. However, direct exportation
has been less addressed in the literature. [1] addresses the topic of transforming
RDF to conceptual graphs.
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Fig. 4. Example of the resulting RDF data from an R2RML mapping
(http://www.w3.org/TR/r2rml)

Fig. 5. Example of an R2RML Mapping (http://www.w3.org/TR/r2rml)

However, as far as we know, no work has addressed the transformation of
RDF to NoSQL graph databases. That is the reason why we propose in this
paper a method to transform RDF data to property graphs. The next sections
detail the rules we propose and the experiments we have conducted in order to
assess our proposition.

3 From RDF Data to NoSQL Graph Databases

The PG model is very general. It extends the basic graph model and adds some
concepts from the class model where objects and attributes are equivalent to
nodes properties. This model has almost no restrictions except the fact that a
relationship can have one and only type. Indeed, if a relationship is multi-typed,
its types are either equivalent and only one should be kept, or different and in
this case a new relationship should be created for every distinct type.

RDF is a very basic model allowing to represent information as triples (Sub-
ject, Predicate, Object). It can be extended to something more complex by
adding a semantic layer.

Since RDF is nothing but a sub-model of PG, a straightforward transition
is possible from RDF to PG. In other words, any set of RDF triples can be
translated into a property graph without any loss in terms of structure.

However, the opposite transition, namely from PG to RDF, is generally
structure-lossy, because some concepts found in property graphs, such as re-
lationship properties and collection properties, cannot be directly represented
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using the (Subject, Predicate, Object) paradigm without a decomposition into
atomic triples.

In both directions, the description of the final usage of the data is what re-
ally determines the appropriate transformations and the semantics of structures,
rather than the trivial correspondences between the two models.

We propose describing in this work a solution to convert RDF data to fit
the Property Graph model. Our solution comprises two approaches: the first
is to establish direct correspondences between RDF triples and the primitives
of property graphs; the second approach offers more flexibility by integrating a
detailed mapping for each category of RDF triples.

3.1 Approach 1: Direct Correspondences

This approach processes RDF triples in the most intuitive manner and uses
correspondences that are generally correct for the majority of known datasets. Its
objective is to simply afford a conversion that meets the nature of the data, and
thus allow to start processing them as soon as possible using a graph database.

The conversion system is illustrated by Fig. 6

Fig. 6. Description of RDF to PG Conversion System - Approach 1

First, the system takes an input triple (S, P,O) and injects it into the Clas-
sifier. The Classifier then annotates the triple according to its structure (i.e. the
nature of the object O and the predicate P’s name). The annotated triple is
then passed to the Query Builder which integrates the three parts of the triple
in an insertion query, taking in account the previously added meta-data. The
consequent query is finally sent to the output of the system where the graph
database engine is awaiting for it to be executed.
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Below, we concisely define the chosen matching between RDF and Property
Graph entities, and explain the rules used to convert any given set of triples into
insertion queries intended to be run on a NoSQL graph database.

RDF Entities Property Graph Primitives

Resource (URI) Node {Key}
Literal Node Property value

RDF Triple Classes Property Graph Structures

(Resource, Property, Literal) (Node {Key, Property : Value)})
(Resource, Property, Resource) (Node {Key})[r :Relationship]-(Node {Key})
(Resource, rdf:type, Type) (Node:Type {Key})

Table 1. Direct correspondences between RDF and PG model entities

The rules are :

– Rule #1: Every RDF resource becomes a PG node. Since the subject in
RDF is always a resource, there is at least one PG node created or merged
into an existing node.

– Rule #2: If the object is a literal, the predicate and object become respec-
tively a propertys name and value. The property is added to the created or
existing node corresponding to the resource.

– Rule #3: If the object is a resource, then the subject and object are each
transformed into a node. A relationship between them is created and it holds
the predicate’s name as a relationship type.

– Rule #4: If the predicate is rdf:type, the subject becomes a node having a
label set to the objects name (which is actually the resource type).

This rule set is minimal. It guarantees a coverage of the three different classes
defined DF triples. A concise example of the application of these rules is described
in Fig. 7

The main advantage of this method is that all the rules are triple-intrinsic.
in other words, the conversion system processes only one triple at a time and
doesn’t take in account many triples. This makes it possible to handle the input
as a serial or continuous stream of RDF triples and achieve conversions on-the-
fly. This system can fit well with continuously evolving data such as data series,
dynamic databases and transactional databases in general.

The main drawback of this approach is the fact it doesn’t make full use
of the Property Graph model. In fact, the conversion system cannot produce
any properties over relationships. Relationships are provided only by applying
Rule #3 defined above. But since all the data are present, it is possible to
extend this conversion with refactoring queries executed by the graph database
engine: their role is to match specific graph patterns and apply on them some
modifications to create new structures.
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Fig. 7. Description of RDF to PG Conversion System - Approach 1

3.2 Approach 2: Correspondences by Mapping

This approach is an extension of the previous system. The Query Builder is
enhanced with an input mapping that associates to each RDF entity a chosen
correspondence among many possibilities.

The conversion system for this approach is described by Fig. 8

Fig. 8. Description of RDF to PG Conversion System - Approach 2

The mapping is divided into 4 sub-mappings, each of them is stored in a
(key:value)-style vector. We define them as follows:

1. Literal Datatype Mapping: RDF data types are not always rigorously
attributed to literals. We thus propose this mapping as a correction measure



Exploiting RDF Open Data Using NoSQL Graph Databases 9

Mapping Key Possible values

Literal Datatype Mapping Predicate Name Primitive data types : Integer, Float, String

Literal Mapping Predicate Name Property, Node with Property, Collection Property

Resource Type Mapping rdf:type Object Label, Label Collection Property

Structural Mapping Graph Pattern Graph Pattern replacement
Table 2. Table of Mappings

in order to store literal values in the most efficient manner. The output type
is by default String and it can be set to an Integer or Float value.

2. Literal Mapping: A literal found in a triple always causes a property to
be created. The goal of this mapping is to define the correct structure of this
property. Fig. 9 shows an example with a bibliographic dataset. The choice
of the mapping is established according to the relevance of the information
to the user: If authors are auxiliary they can be grouped in a Collection
Property as in (C), and if they are important, they can be represented with
Nodes as in (B).

3. Resource Type Mapping: rdf:type objects are by default mapped to la-
bels over the nodes. But when many rdf:type statements are defined for the
same resource, this may pollute the label space and affect performance. This
mapping offers the possibility to store insignificant rdf:type objects within a
Collection Property instead of a Label.

4. Structural Mapping: The three previous mappings are all triple-intrinsic
and are not designed to handle multi-triple based conversions. The role of
Structural mapping is to achieve any missing transformations. It concerns
the post-import phase and works directly on the graph database. It defines
a set of match-replace rules to build the necessary refactoring queries. .
Fig. 10 takes the output of the previous email data sample conversion shown
in Fig. 7, and runs a refactoring query on it by replacing every match of the
pattern:

(p1)← [: FROM ]− (e : EMAIL{$1})− [: TO]→ (p2)

by the pattern:

(p1)− [: EMAILED{$1}]→ (p2)

where $1 is used to capture all the properties of nodes labeled EMAIL and
adds them as properties to the new relationship EMAILED. This mapping
reduces a node with two relationships into a relationship holding the node’s
properties.

The use of a mapping is common in most data conversion solutions. However,
it assumes the user has a good knowledge, not only about his input dataset, but
also the final graph processing application, and this is generally not the case.
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Fig. 9. Mapping RDF literals to PG structures. A is the original RDF sample. B and
C are PG conversions of A with different mapping parameters.

Fig. 10. Example of structural mapping applied on an e-mail graph database
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3.3 Discussion

NoSQL Graph Database Engines are characterized by multi-level cache manage-
ment policies. In other words, data primitives (node, relationship, properties ...)
are not always stored in the same cache or accessed in same manner. This leads
to a contrast in the time necessary to retrieve a specific information. For exam-
ple, Neo4j defines the following cache priority order over its different primitives
(1 being the highest priority) :

1. Nodes + Labels, Relationships + Types
2. Indexed Properties
3. Unindexed properties:

(a) Static size properties (int, float, etc.)
(b) Dynamic size properties (Collections, Strings)

This access policy and caching should be taken into account to make the
good mapping decisions that will likely improve query performance. Indeed, any
frequently accessed information should be put forward as a node or a relationship
if possible. or as an indexed priority. The same goes for irrelevant information
that should be kept away from being cached by putting them in Dynamic size
properties, or even by removing them if necessary.

As mentioned at the end of section 3 as a drawback for the second approach,
when the user is inexperienced, it is preferable to employ user-friendly solutions
with a higher abstraction level to help him understand the needs of the system,
and assist him to make the good decisions. Thus we propose two ideas worth
working on :

1. One keypoint is to deal with the structure of the data. Some works in the
literature have dealt with schema extraction in the context of semi-structured
graph data, i.e., XML data.

2. Another part of the issue is how to know more about the application. In this
case, instead of taking a mapping as an input, we can generate a mapping
from a given application profile. The profile is supposed to provide infor-
mation about Graph Database queries, their extent, frequency, and their
estimated running time. If such information is not available, it is still possi-
ble to ask the user in a more user-friendly way about the application through
a set of artificially generated questions. The user’s answers on those ques-
tions will allow to define specific constraints on the nature of the queries
and make, according to that, the necessary refactoring and optimizations to
improve the overall performance.

4 Implementation Issues

We have implemented the conversion system detailed by the Approach 2 (see
Fig. 8). The solution is coded in Java. It uses Apache Jena packages to parse
and process RDF triples, and imports data into a Neo4j Graph database by
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generating and running Cypher queries directly using the Neo4j API. It is also
possible to provide the queries in an output file instead of injecting them into
the database engine directly.

The experiments are led on the DBLP database dump provided in RDF
format by RKBExplorer (http://dblp.rkbexplorer.com/).

4.1 Evaluation Measures

In order to check the reliability of our method and provide the user with a
relevant feedback to make some changes on his input mapping, we define three
quality measures. Given a Graph Database G = (N,R) where an N and R are
respectively the node set and the relationship set of G:

1. Conciseness: this measure simply calculates the sum of the number of nodes
and the number of relationship instances in the Graph database. The lower
this number, the better the performance.

Conciseness(G) = |N |+ |R|

Can be used can be used to calculate the variation of the graph size when
the user has to make a choice among different mappings.

2. Connectivity: it is defined as the the number of relationships among the
total number of nodes.

Connectivity(G) =
|R|
|N |

A connected graph has a connectivity around 1 and a graph having at least
Connectivity(G) > 1.5 is considered good for processing. Higher values mean
the graph database contains strong connections between its nodes. This mea-
sure can be seen as the average rank of a vertex in graph theory.

3. Key Connectivity: instead of calculating the connectivity of the whole
graph database, we focus here only on a set of predefined key relationship
types. We note R′ as the set of key relationship instances, and N ′ the set
of distinct Nodes related by the elements of R′. R′ and N ′ are by definition
subsets of R and N respectively.

KeyConnectivity(G) = Connectivity((N ′, R′)) =
|R′|
|N ′|

The smallest value of KeyConnectivity(G) is 0.5 and is obtained when we
choose a single relationship type, or many unrelated relationship types. Any
value larger than this reference means that elements of N ′ are related by
more than one relationship. This measure can be interpreted in several ways
and depends of the elements of R′. The principle is similar to independence
calculations of statistical variables.
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Total Nodes 3406
Total Relationships 9862
Total Relationships for has author 2364
Total Nodes related by has author 4728

Conciseness 13268
Connectivity 2.895
Key Connectivity for has author 0.5

Table 3. Import results and evaluation measures

We applied these measures on an imported chunk of the DBLP dataset in
Neo4j and we obtained the results shown in Table 3

Connectivity is around 3 which means our graph is rich in terms of relation-
ships. it can thus be used and explored in different ways since its nodes have
many connections.

Key connectivity equals 0.5. As seen in definition, considering has author as
the only key relationship type, this value means there are no double relationship
instances between nodes related by has author. It would be interesting if the
measure is applied on more relationship types, but since the database is small,
other relationship type are under-represented.

5 Conclusion

In this paper, we discuss how to transform RDF data to Property Graph (PG)
in the NoSQL graph database context. Transformation rules are proposed. They
have been implemented and tested on real data. There is still room for im-
provements in theory as well as practice. For example, we can define explicitly
what kind characteristic information should reflected by the application’s and
the dataset’s profiles. And then how to use those profiles to achieve conversion
in a more automatic way with a minimum user intervention.

Further work will also include the study of transformations in the opposite
direction, i.e. from property graphs to RDF. A transition from the property
graph model to RDF is mainly motivated by:

– The need to publish data: RDF is a standard of the Semantic Web. It is not
only a data representation convention but also a set of ready-to-use tools
which have been studied and developed in way that guarantees interoper-
ability with different applications.

– The need to link the published dataset with other existing open data sources
on the Web (for instance, the LOD project) to make it more useful. This
can be done by enriching datasets with a semantic RDFS/OWL layer named
ontology.

Our main research is about using NoSQL graph databases as support for
summarizing Open Data, and this paper has details one preliminary phase in
this process and provides a way to import data from RDF triplestores to Graph
Databases built upon the Property Graph paradigm.
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