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Scalability and Fuzzy Systems: What
Parallelization Can Do

P. Malaquias Quintero F., Anne Laurent, Federico Del Razo, Nicolas Sicard and
Pascal Poncelet

Abstract (Fuzzy) Database management systems aim at providing tools for data
storage and querying. Based on the information stored, systems can offer analytical
functionalities in order to deliver decisional database environments. In this frame-
work, fuzzy systems have been proven to be efficient for modeling, reasoning, and
predicting. So far, success has been achieved in several application areas. However,
expanding the frontiers of such areas or exploring new domains is often limited
when facing real world data: more possibilities must be explored, more computation
time and memory space are required. In this paper, we discuss how the paralleliza-
tion of fuzzy algorithms is crucial to tackle the problem of scalability and optimal
performance in the context of database mining. More precisely, we present the par-
allelization of fuzzy database mining algorithms on multi-core architectures of four
knowledge discovery paradigms, namely fuzzy association rules, fuzzy clustering,
fuzzy gradual dependencies, and fuzzy tree mining (for example in the case of XML
databases).
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1 Introduction

In recent years fuzzy set and fuzzy logic theory have found application in mathe-
matical theory, artificial intelligence, non-linear control, real-time systems, database
mining, machine learning, database management systems, decision making, con-
sumer electronics, expert systems, economics, finance, software engineering, among
other interesting areas of application [19] [23] [45] [51]. The expression “fuzzy sys-
tems” is the name commonly used to refer in general to the resulting systems from
the different applications of fuzzy logic [23]. Whereas for referring to specific sys-
tems, we are using expressions such as fuzzy control, fuzzy database management
systems, fuzzy database mining techniques, etc..

Fuzzy systems are computer systems inspired in the linguistic processing of infor-
mation, where representation and processing of imprecise and uncertain data is done
through fuzzy set theory and fuzzy logic (fuzzy inference) respectively [23] [45].
Such systems aim at implementing on the machines, models and algorithms related
to information processing by approximate reasoning and methods to extract auto-
matically knowledge from large and complex databases efficiently [19] [51].

Approximate reasoning is defined as the process of obtaining precise infor-
mation from imprecise data [23]. The automatic extraction of knowledge from
databases, also known as Knowledge Discovery in Databases and defined as a
multi-step process of discovering potentially useful information from large and
complex databases [40]. In this framework, fuzzy database management systems
and fuzzy database mining techniques have an important role [3] [19] [21] [34].

With the emergence of innovative and accessible models of parallel computa-
tion, fuzzy systems can improve their performance by using parallel computing
architectures. In this paper, we discuss how important the parallelization of fuzzy
algorithms can be to tackle the problem of scalability and optimal performance in
the framework of fuzzy database mining. More precisely, we discuss the paralleliza-
tion of fuzzy database mining algorithms on multi-core architectures of four knowl-
edge discovery paradigms, namely fuzzy association rules, fuzzy clustering, fuzzy
gradual dependencies, and fuzzy tree mining (for example in the case for XML
databases). In all cases highlighting the important role of fuzzy databases in the
process of extraction of fuzzy patterns.

The outline of this paper is as follows: In Section 2, we present an overview about
fuzzy database management systems and about fuzzy database mining techniques.
We present a brief review about multi-core programming and GPU computing in
Section 3. In Section 4, we present our review of the parallelization of four fuzzy
database mining algorithms on multi-core architectures, namely fuzzy association
rules, fuzzy clustering, fuzzy gradual dependencies, and fuzzy tree mining. Finally,
we conclude and give some suggestions for future research directions in Section 5.
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2 Fuzzy Databases and Fuzzy Database Mining Techniques

2.1 Fuzzy Databases

In the framework of traditional database management systems, it is common to as-
sume that the data are precise and certain. Unfortunately, real-world data are often
uncertain, imprecise, inconsistent, ambiguous and vague, due to different causes
such as: human errors, instrument errors, recording errors, noisy data, efc. [50].
Fuzzy database management systems aim at providing tools for storage and query-
ing data with the previously mentioned imperfections.

During the last thirty years has been carried out extensive scientific research work
aimed at developing different approaches of how to incorporate different kinds of
fuzziness into of the relational database model (FRDBM) and into of the object-
oriented database model (FOODBM) [33] [38].

In FRDBM there are two kinds of fuzziness called fuzziness in attribute val-
ues and fuzziness in tuple, which can be incorporated according to three princi-
pal approaches called: 1) Fuzzy relation-based model, 2) Similarity relation- based
model and 3) Possibility distribution. In FOODBM there are four kinds of fuzziness
called: Fuzziness in object, fuzziness in class, fuzziness in object-class and Fuzzi-
ness in class-subclass. An extended review of these kinds of fuzziness is presented
in [33] [38] [46].

An interesting analysis of the application and commercialization of fuzzy database
management systems is presented in [38] [46]. Currently, fuzzy database manage-
ment systems and fuzzy database mining techniques are closely related.

2.2 Fuzzy Database Mining Techniques

The aim of database mining can be defined as finding patterns or rules that describe
the meaning of the relationships or dependencies between the data contained in big
and complex databases. Database mining is an interdisciplinary field, which com-
bines research from areas such as machine learning, statistics, theory of fuzzy sets
and logic fuzzy, neural networks, evolutionary computing, high performance com-
puting and parallel programming, and databases [12] [16] [19].

In the pattern mining field, an important problem is the extraction of patterns that
are intrinsically vague, imprecise, uncertain and that can involve data disturbed by
noise [20]. This problem comes from the fact that real-world data tends to be uncer-
tain due to human errors, instrument errors, recording errors, noisy data, so on [50].
Fuzzy databases allow an natural and flexible representation of patterns and data
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with the characteristics mentioned above. In this framework, in recent years, several
extensions of database mining have been developed on the basis of fuzzy sets and
fuzzy logic theory [19], such extensions are known as fuzzy database mining tech-
niques (FDMT) [3].

The following list outlines several representative examples of FDMT:

— Fuzzy association rules, gradual itemsets and gradual dependencies;

— Fuzzy decision-tree: Classification based on models of patterns in the database,
all of the existing data are mapped to predefined set categories;

— Fuzzy frequent subtree: Patterns that are embedded in the semi-structured
database, even if the patterns are only partially present.

— Fuzzy regression: Fuzzy relations describing data in the form of some lin-
ear functional dependencies between variables that are encountered in the
database;

— Fuzzy clustering: Classes (groups) of data are developed based on their simi-
larities and differences;

— Fuzzy summarization: A compact data description, such as fuzzy contingency
table, linguistic data summarization, etc.

Scaling algorithms of FDMT is a challenge [15], because their search spaces, re-
quirements of computation time and memory are larger than of the algorithms used
in crisp database mining methods.

3 Multicore Programming and GPU Computing: An overview

Parallel computing is a viable means to improve performance of algorithms of fuzzy
computing [49]. With the emergence of new generations of multicore processors and
the new generations of graphics processing units (GPU's) as key components of high
performance hardware of a computer system, optimization of fuzzy systems through
its parallelization is possible on general purpose computing platforms [5] [11] [25].

Parallelization-based optimizations of algorithms [2] [49] aim to: i) Reduce the
execution time, ii) Allow Real-time processing, iii) Solve large problems, and iv)
Exploit the computing power of the more and more present high-performance sys-
tems (e.g., multicore processors that now even equip mobile phones and tablets).

3.1 Process & Thread

In multi-core architectures, a parallel program is executed by the processors through
one or multiple control flows referred to as processes or threads [18] [49]. A pro-



Scalability and Fuzzy Systems: What Parallelization Can Do 5

cess can consist of several threads which share a common address space whereas
each process works on a different address space [18]. In order to achieve efficiency,
the multi-core CPUs can use only a few threads, while GPUs may use thousands [4].

In the massively multi-threaded SIMD (Single Instruction Multiple-Data) ar-
chitecture provided by GPUs, threads are extremely lightweight and grouped into
threads blocks [4]. Threads within the same thread block are divided into SIMD
groups, called warps, each of which contain 32 threads [4] [11].

The parallel portions of an application are executed on the device GPU as kernels,
one kernel is executed at a time by an array of threads, where all treads run the same
code and each thread has an ID that it uses to compute memory addresses and make
control decisions [4] [11].

3.2 Parallel Programming Models

The means to program a parallel computer is named parallel programming model
[42] [49] [42]. There are numerous parallel programming models, most notably Dis-
tributed memory, Shared memory, and the Hybrid parallel programming model.

The shared memory model for multi-core CPUs may be implemented through
standardized programming interfaces, like Posix threads (C/C++), OpenMP (C/C++,
Fortran), Python, Java, Melinda, and Automatic parallelization [42] [49].

The CUDA parallel programming model for many-core GPUs provides support
for parallel programming with C/C++, OpenCL, DirectX Compute, Fortran, Java,
and Python [5].

4 Parallel Fuzzy Database Mining

Parallelizing fuzzy database mining algorithms is a viable means to improve their
performance and for making feasible fuzzy database mining to large-scale [16].
Within the framework of multiprocessor/multi-core architectures of share/distributed
memory, parallel fuzzy database mining as well as parallel database mining fol-
lows two approaches of parallelization: task parallelization and data parallelization
[11] [12] [43].

In task parallelization the processors/cores execute a different task on the (fuzzy)
database. In data parallelization the (fuzzy) database is partitioned among the pro-
cessors/cores and all execute the same task.

Moreover, researchers from academia, software industry such as Microsoft, Or-
acle, SAP, and other corporations are seeing to CUDA architecture for GPUs as a
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scalable solution of their toolboxes of database mining techniques-based data anal-
ysis [7] [25]. For example, Tanay Data Analytics from Fuzzy Logix in-database
analytics engine accelerates financial simulations, database mining, and statistical
methods using GPUs [13] [14].

4.1 Parallel Mining of Fuzzy Association Rules

Fuzzy association rules mining is a process to find out the fuzzy patterns or fuzzy
attributes which frequently occur together from a fuzzy database [8] [32] [34].

Given a subset of fuzzy data records Dg = {ry,r2,...,r,} obtained from a fuzzy
database (fD), a fuzzy association rule is defined as an fuzzy implication of the
form: P; = Py, where P;, P; are fuzzy itemsets belonging to a set of fuzzy items
defined as P={u; € P, p € Ps,..., Uy € Py}, such that y; € P # p; € Py, for
i=1,2,...m, j=1,2,...,m, and m = number of fuzzy items € P.

A rp € Dg denotes the k—th record, represented as a vector with m values,
1 (Pire]), ma(Po[r])s .-, Mm(Pulri])], where uj(Pj[ri]) is membership degree that
item value P;[ry] belongs to fuzzy set u;, and u;(P;j[r¢]) =10, 1], for k =1,2,...,n
and n =number of records € Dg.

In order to mine rules of the form P; = Py, fuzzy support fsupp({F;,P;}) and
fuzzy confidence fconf(P; = Py) can be computed as in equations (1) and (2).

fSMPP({PI,PJ}) _ 22:1ml”(ﬂl(Pl[rk])vﬂj(PJ[”l;}) |I7J€ {1727am}71<‘]) (1)

Feonf(p, = py) = LSupPULL D) o

fsupp(Pr)
The fuzzy association rules with at least a minimum support and a minimum
confidence respectively are extracted and considered as interesting [8] [32] [34].

Bao-wen et al., and Jian-jian et al., presented the adaptation of the Count Distri-
bution Parallel Algorithm to design the parallel algorithm for mining fuzzy associ-
ation rules [1] [27]. Where, quantitative attributes are partitioned into several fuzzy
sets by the parallel fuzzy c-means algorithm (PFCM). The parallel algorithm for
mining Boolean association rules is improved to extract frequent fuzzy patterns. Fi-
nally, the fuzzy association rules with at least fuzzy confidence are generated on all
processors. The parallel algorithm based on the Message Passing Interface (MPI)
was implemented on the distributed linked PC/workstation of six computers with
128 MB RAM, interconnected via a 10 M/100 M hub. The results of experimental
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Fig. 1 Scheme of parallel mining fuzzy association rules.

work showed that the parallel mining algorithm had an excellent scaleup, sizeup
and speedup.

In another approach [17], in order to extract both association rules and member-
ship functions from quantitative attributes, Hong et al., propose a parallel genetic-
fuzzy mining algorithm based on the master-slave architecture. Where the master
processor uses a single population as a simple genetic algorithm, and distributes the
tasks of fitness evaluation to slave processors. The crossover, mutation and produc-
tion are performed by the master processor. The results showed that the speed-up
can increase nearly linear along with the number of individuals to be evaluated.

Fig. 1 shows the general structure of our interpretation of the parallel process of
extracting fuzzy association rules.

4.2 Parallel Fuzzy Clustering: c-means

Clustering is defined as the process of grouping a data set, where the similarity
between data within a cluster is maximised while the similarity between data of dif-
ferent clusters is minimised [26] [39]. There are two main approaches to clustering:
i) Crisp clustering method, and ii) Fuzzy clustering method.

Crisp clustering method is used in clustering problems, where the patterns be-
long only to one cluster. The fuzzy clustering method is used in the classification of
patterns that may belong to more than one cluster [26].

Examples of areas of application of fuzzy clustering methods are: Pattern recog-
nition, classification, database mining, image segmentation, medical image data
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analysis and modeling, etc. The most widely used fuzzy clustering algorithm is the
Fuzzy c-Means (FCM) algorithm proposed by Dunn and generalised by Bezdek.

In fuzzy database mining, fuzzy clustering is used to partition the quantitative
attributes of crisp database into several fuzzy sets. As the database size becomes
larger and larger, this usually requires a high volume of computations, and con-
siderable amount of memory which may lead to frequent disk access, making the
process inefficient. With the development of high performance parallel systems, par-
allel fuzzy clustering may be used to improve performance and efficiency of fuzzy
clustering algorithm [26] [37].

In [26], Kwok et al. present a parallel version of FCM algorithm implemented
on an AlphaServer computing cluster with a total of 128 processors and 64 Giga-
bytes of main memory. 32 Compaq ES40 workstations form the cluster, each with
4 Alpha EV68 processors (nodes) running at 833 MHz with 2 Gigabytes of local
main memory. A Quadrics interconnect provides a bandwidth (approx. 200 Mb/sec
per ES40) and low-latency (6 msec) interconnect for the processors. The proposed
paralle]l FCM algorithm is written in C, compiled and linked with the MPI library in-
stalled on top of the UNIX operating system. The resulted object code is distributed
to each processor for parallel execution. In their experimental work, their approach
of parallel FCM algorithm demonstrated to reach almost ideal speedups and excel-
lent scaleup for larger data sets, and it performs equally well when more clusters are
requested.

A high speed parallel FCM algorithm for brain tumor image segmentation has
been proposed by Murugavalli and Rajamani in [37]. This algorithm converts im-
age into pixel values (X = {x¢,x1,...,x,—1}), then pixel values are equally divided
and distributed to all processors so that each processor has n/p number of pixels
(where n is total number of pixel, p is a total number of processor) for execution.
The membership function is provided for each processor to calculate the degree of
membership function, t;(x;). This algorithm avoids the use of external storage de-
vice because each processor uses its own main memory. The initiating processor
divides X into n/p, each processor computes in parallel its center of clusters, its de-
gree of membership matrix (FCM), and each processor defuzzifies its local data and
sends it back to the initiating processor to form the segmented image.

4.3 Parallel Mining of Gradual Patterns

In gradual pattern mining, the aim is to find dependencies between the variation
and direction of change of attribute values of patterns in the database instead of be-
tween the degree of presence or absence of attributes in a transaction [24][22].
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Given a database (Dy), constituted of n objects (transactions or data record), de-
scribed by m numerical attributes. Where T={t,1,,...,tn} are the n transactions,
A={A|,A;,..,Am} are the m numerical attributes, each record #; is represented as
a vector with m values, [A}(u;),A2(u;),...,Am (u;)], such that each A;,(u;) indicates
the value of attribute Ay, in the transaction t; for h = 1,2,....m, and i = 1,2,...,n.
Each attribute Ay, is a vector with n values, [u,us,...,un].

In this framework, a gradual pattern is defined as a relation of simultaneous vari-
ation between values of the attributes of two or more gradual items. Denoted as an
ordered combination of two or more gradual items of the form: GP={gl,gl,...gl},
such that gIy # gl # ... # gly, for s=2,3,...,m, where each gl is a gradual item.

A gradual item is defined as the variation associated to the values of a attribute
A€ D; denoted as Av. Where such variation (v) can be ascending (>) if the attribute
values increase, descending (<) if the attribute values decrease.

In order to measure the strength of the dependency or correlation between the
variation and direction of change of attribute values of a gradual pattern/dependency,
there are various approaches and each has its own method to compute the support
(see [24] [30] and [35] for more details). We comment them briefly as follows:

e Numerical approach: Such as analysis of contingency diagrams by means of tech-
niques from statistical regression analysis, suggested in [22], the validity of the
gradual tendency is evaluated from the quality of the regression, measured by the
normalised mean squared error R?, together with the slope of the regression line;

e Qualitative alternative: Count the number of pairs of points (Ax (u;),Ay (#;)) and
(Ax(uj),Ay(u;)) for which Ax (u;) < Ax(u;) and Ay (u;) < Ay (u;), association
rules in [36], and fuzzy association rules in [35] are used in order to mine gradual
dependencies type { the more Ax, the more Ay }. Other methods and algorithms
of this category are: approach based on conflict sets [30], approach based on the
precedence graph [28] [29], and approach based on rank correlation measures
(GRAANK) [30];

e Numerical-qualitative approaches: This kind of techniques combines properties
of both approaches, the numerical and the qualitative one, in order to measure
not only the existence of a tendency, but its strength in terms of a fuzzy rank cor-
relation measure [24] [41], or terms of fuzzy association rules and fuzzy gradual
dependence [35] [36].

Recently, in [28] and [29], Laurent et al. have presented PGP-mc a multicore
parallel approach for mining gradual patterns where the evaluation of the correlation
and support is based on conflict sets and precedence graph approaches [30]. In this
approach, new tasks are dynamically assigned to a pool of threads on a “first come,
first server” basis.

PGP-mc was implemented using the g++ 3.4.6 and 4.3.2 with POSIX threads,
on two different workstations: i) COYOTE machine, with § AMD Opteron 852 pro-
cessors (each with 4 cores), 64 GB of RAM with Linux Centos 5.1. and ii) ID-
KONN machine, with 4 Intel Xeon 7460 processors (each with 6 cores), 64 GB of
RAM with Linux Debian 5.0.2. Experiments were led on synthetic databases au-
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tomatically generated by a tool based on adapted version of IBM Synthetic Data
Generation Code for Associations and Sequential Patterns. For example, the se-
quential processing of the 350 attributes database took more than five hours while
it spend approximatively 13 minutes using 24 threads on IDKONN. Furthermore,
speed-up results are particularly stable from one architecture to another (IDKONN
and COYOTE). Detailed results are available on-line at http://www.lirmm.fr/~ lau-
rent/DASFAA10.

An efficient parallel mining of closed frequent gradual patterns, named PGLCM
has been proposed by Do et al. en [44]. This approach is based on the principle of the
LCM algorithm for mining closed frequent patterns, an adaptation of LCM named
GLCM in order to mine closed frequent gradual patterns, and parallelization of the
GLCM algorithm named PGLCM based on the Melinda parallelism environment.
It consists of shared memory space, called TupleSpace, where all the threads can
either deposit or retrieve a data unit called Tuple, via two primitives get(Tuple) and
put(Tuple). All the synchronizations for accessing the TupleSpace are handled by
the Melinda framework.

The comparative experiment is based on synthetic databases produced with the

same modified version of IBM Synthetic Data Generator for Association and Se-
quential Patterns. All the experiment is conduced on a 4-socket server with 4 Intel
Xeon 7460 with 6 cores each, for a total of 24 cores and 64 GB of RAM.
The experimental work has been conducted in two stages, the first one to evaluate
the performance of the sequential version of GLCM and PGP-mc (known as Grite),
the second one to evaluate the scaling capacities of PGLCM and PGP-mc (known
as Grite-MT). Evaluation criteria were the execution time and memory consump-
tion. Where GLCM/PGLCM compute only the closed frequent gradual patterns,
whereas Grite/PGP-mc compute all the frequent gradual patterns (see [28] and [29]
for more details).

4.3.1 Parallel Fuzzy Orderings for Fuzzy Gradual Pattern Mining

We addressed the problem of automatically finding correlations between positive
and/or negative small variations in the values of attributes affected by noise and
non-linear nature. Consequently, we implemented the Fuzzy Ordering-Based Rank
Correlation Coefficient according to the formal description presented by Boden-
hofer and Klawond in [6] and used by Koh and Hiillermeier in [24] and Quintero in
[41]. We adopted the idea of storing the fuzzy concordance degrees C(i, j) in sparse
matrices. In order to reduce memory consumption, each matrix of concordance de-
grees C(i, j) is represented and stored according to the Yale Sparse Matrix Format,
such as only non-zero coefficients are retained.

The evaluation of the correlation, support and generation of gradual pattern can-
didates are tasks that require huge amounts of processing time, memory consump-
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{Parallel Generation of Fuzzy Frequent Gradual Dependencies}
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Fig. 2 Parallel Generation of Fuzzy Frequent Gradual Dependencies: OpenMP model-based ap-
proach.

tion, and load balance. In this context we addressed these problems using the shared
memory architecture API of OpenMP, which is ideally suited for multi-core archi-
tectures [42].

The pseudo-code of the Algorithms 1, 2 and 3 shows a simplified view of our
parallel process of gradual dependencies mining. The set of fuzzy frequent gradual
patterns of output is represented by Frgp, the set of patterns of level 1 is denoted
by Zist_gls, the fuzzy frequent gradual patterns of level k = 2 are represented by
Fy—2, the fuzzy frequent gradual patterns of level k > 2 are represented by %
generated from (k — 1)—frequent gradual patterns in .%_;.

Algorithm 1: Fuzzy Gradual Pattern Mining
Data: Transactions Database Dy, Set_of Attributes{Ay}, minSupp
Result: Fuzzy Frequent Gradual Dependencies .Frgp
Frp < 0;
Zist_gls + Gen_gltems({Ay } x v{<,>});
k <+ 2;
Fr—p < GenFuzzyFrequenty—,(List gls,aValues,minSupp);
Frep « FrepU{Fi};
ket +;
repeat
Fi. + GenFuzzyFrequenty (1 .Matrices,level (k),minSupp);
Frep < FrepU{ T}
Delet(F_1.Matrices);
k++;
until Zrgp does not grow any more;

In our approach, we exploit the advantages of the memory and execution mod-
els of OpenMP. Fig. 2 gives an overall view of our approach, where we propose
to parallelize the two mains regions of our sequential algorithm, these being the
following:
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Algorithm 2: Parallel Fuzzy Frequent Gradual Dependency Mining: Level k =2
Data: List_of_gradual Items(ZList_gls), Attributevalues(aValues), minSupp, # Threads(Nt)
Result: Fuzzy Frequent Gradual Dependencies (%—;)

T2 +—0; g1,
/*Each thread computes its fuzzy frequent gradual dependency of level k = 2*/;
for all(thread in(0,1,2,....N—1)) do

Ypci—y < GenCand({ List_gls},size(k = 2),level (k = 2));

Gdcy g  FirstCandidate € 9pcy—s;

foreach Gdcy 4, € Ypci—2 do

Gdcyg-Matrix < EvaluationFuzzyCorrelation(Gdcy 4, Gdcy 4.aValues);

Support(Gdcy q) < EvalSupport(Gdcy 4. Matrix);

/* minSupp stands for a user-specified minimum support value */

if Support(Gdcy ) > minSupp then

| Critical section : Fy + F U{Gdcr g}
q++;

Gdcy g < NextCandidate € Ypcy;

Algorithm 3: Parallel Fuzzy Frequent Gradual Dependency Mining: Level k > 2
Data: Fuzzy Frequent Gradual Dependency(.%;_1), level (k > 2), minSupp, #Threads(Nt)
Result: Fuzzy Frequent Gradual Dependencies .%

T 0, g+ 1;
/*Each thread computes its fuzzy frequent gradual dependency of level k > 2 */;
for all(thread in(0,1,2,....N —1)) do

Ypci < GenCand({Fi_ },level(k));

Gdcy 4 < FirstCandidate € Ypcy;

foreach Gdcy , € 9pcy do

Gdcy g.Matrix <T-norm(Gdcy_ o.Matrix,Gdcy_ . .Matrix);

Support(Gdcy ) < EvalSupport(Gdcy 4.Matrix);

/* minSupp stands for a user-specified minimum support value */

if Support(Gdcy4) > minSupp then

| Critical section : Fy « F; U{Gdcy4};
q++;

Gdcy 4 < NextCandidate € Ypcy;

— Automatic extraction of frequent gradual patterns of level k=2. The pseudo-
code of the Algorithms 2 shows the corresponding parallel region.

— Automatic extraction of frequent gradual patterns of level k>>2. The pseudo-
code of the Algorithms 3 shows the corresponding parallel region.

Open Multi-Processing (OpenMP) is a shared memory architecture API, that sup-
ports multi-platform for writing shared memory parallel applications in C, C++, and
Fortran on many architectures, including UNIX and Microsoft Windows platforms.
It consists of a set compiler directives, runtime routines, and environment variables
that influence runtime behaviour [47] [48].
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Fig. 3 Threads vs. elapsed time with a database of 500x50 and minSupp=.30 and .35, using un-
compressed binary matrices of concordance degrees.
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Fig. 4 Speedup with a database of 500x50 and minSupp=.30 and .35, using uncompressed binary
matrices of concordance degrees .

OpenMP provides a multi-threaded capacity, where a loop can be parallelized
easily by invoking subroutine calls from OpenMP thread libraries and inserting the
OpenMP compiler directives. In this way, the threads can obtain new tasks, the un-
processed loop iterations, directly from local shared memory and data can be shared
or private [42] [47] [48].

Experiments
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Fig. 5 Threads vs. elapsed time with a database of 500x100 and minSupp=.375 and .38, using
uncompressed binary matrices of concordance degrees.
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Fig. 6 Speedup with a database of 500x100 and minSupp=.375 and .38, using uncompressed bi-
nary matrices of concordance degrees.

We present an experimental study of the scaling capacities of our approach
on several cores, for the database C500A50 with 500 records and 50 attributes,
and database C500A100 with 500 records and 100 attributes, which were used in
[28] [44] and produced with the IBM Synthetic Data Generator for Association and
Sequential Patterns.

Our experiments were performed on a workstation with up to 32 processing
cores, named COYOTE, with 8 AMD Opteron 852 processors (each with 4 cores),
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Fig. 7 Threads vs. elapsed time with a database of 500x100 and minSupp=.375 and .38, using
compressed matrices of concordance degrees.

64 GB of RAM with Linux Centos 5.1, GCC OpenMP 3.1.
Results

The first experiment involves a database with 500 lines and 50 attributes, Fig-
ures 3 and 4 depict the execution time and speed-up related to: 1, 2, 4, 6, 8§, 10, 12,
14, 16, 18, 20, 22, 24, 26, 28, 30, and 32 threads, on the test database, from which
were found 59810 frequent gradual patterns for a minimum threshold of 0.30, and

Database of 500 records
18 and 100 attributes
1 (CM)

Minimum threshold = .375 —%—%—
Number of patterns found= 186994

i Minimum threshold = .38
el A Number of patterns found= 121154

T T T 1
0 5 10 15 20 25 30 35

Number of threads *

Fig. 8 Speedup with a database of 500x 100 and minSupp=.375 and .38, using compressed matrices
of concordance degrees.
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2758 frequent gradual patterns for a minimum threshold of 0.35. In the first case
we reach a memory consumption of 12.6% with uncompressed binary matrices of
concordance degrees and 3.5% with compressed matrices of concordance degrees
(Yale Sparse Matrix Format). While for the second case we obtained a memory con-
sumption of 0.6% with uncompressed binary matrices of concordance degrees and
of 0.3% with compressed matrices of concordance degrees.

The second experiment involves a database with 500 lines and 100 attributes,
Figures 5 and 6 depict the execution time and speed-up related to: 1, 2, 4, 6, . . .,
to 32 threads, on the test database, from which were found 186994 frequent gradual
patterns for a minimum threshold of 0.375, and 121154 frequent gradual patterns for
a minimum threshold of 0.38. In the first case we reach a memory consumption of
36.2% using uncompressed binary matrices of concordance degrees and of 14.4%
using compressed matrices of concordance degrees (Yale Sparse Matrix Format).
While for the second case we obtained a memory consumption of 24.7% with un-
compressed binary matrices of concordance degrees and of 10.3% with compressed
matrices of concordance degrees. Within this experimental framework, Figures 7
and 8 illustrate the execution time and speed-up of our approach using compressed
matrices of concordance degrees.

4.4 Parallel Mining of Fuzzy Trees

With the development of Internet and Web, frequent pattern mining has been ex-
tended to more complex patterns like tree mining, graph mining, and fuzzy tree
mining. Such applications arise in complex domains like bioinformatics, Web min-
ing, banking, marketing, biology, health, etc. especially to handle complex databases
such as semi-structured data or tree databases (for example in the case of XML
databases) [9] [10].

Tree mining consists in discovering all the frequent subtrees Fg from a database
D of trees [10], as shown on Fig. 9. The frequency is computed using the notion of
support: Given a database D, the support of a tree S is the proportion of trees 7 from
D where S is included:

S (S) #of trees T where S is embedded
uppor =
pp #of treesin D

S is said to be frequent if Support(S) > o where o is a user-defined minimal sup-
port threshold. There are two types of inclusion: induced inclusion and embedded
inclusion, see Fig. 10, where a tree S is included in another tree 7 of a database D
of trees, if all nodes in S are included in 7.

Fuzzy approaches have been proposed in order to soften the constraint on the
patterns (frequent subtrees) found by the algorithms. In fuzzy tree mining a tree S is
included in another tree T of a database D of trees, with a degree of inclusion (S, T).
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Four types of fuzzy inclusion has been proposed: Ancestor-descendant degree, Sib-
ling ordering degree, Partial inclusion, and Node similarity. A detailed treatment of
these approaches is given in [10] [31]. The frequency is computed using the notion
of fuzzy support: Given a database D and a tree S, the support of S in D is given by:

Support(S) = Aggrep((S,T))

where Agg is a function of aggregation. For instance, the average is:

sumrep(7(S,T))
#of treesin D

The core of the process for fuzzy tree mining is briefly described in algorithm
4. Several methods have been proposed for generating candidates from frequent
subtrees. Most of the methods rely on the construction of candidates by using an
extension on the right most branch. The trees are numbered in a depth-first enumer-
ation from the root to the right most leaf. Then, for every frequent tree of size k
(containing k nodes), candidates are generated by adding a node on the right after
considering all the possible 2-trees whose first node corresponds to the anchoring
node.

Recently, [43] have developed PaFUTM: Parallel Fuzzy Tree Mining a parallel
version of algorithm 4. Fig. 11 illustrates the general structure of PaF UTM where the
computation of the fuzzy support is parallelized using a pool of 1 to 32 threads and
a dynamic queue of tasks type “first come, first served”. For each level k, potential
k+1 candidates are queued. Then each idle thread extract a non-processed candidate,
calculates its frequency and fuzzy support according to a fuzzy inclusion 7(S,T) type
Ancestor-descendant degree. This fuzzy inclusion is defined by a discrete fuzzy set
interpreted as a fuzzy scope for the ancestor-descendant relationship “scope no more
than 5 nodes” .

Support(S) =

Candidate Trees
I, w =
C AT Y
\ [) " ¢
k=1 \

A
k=2

Fig. 9 Scheme of process of tree mining.
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Induced Inclusion

Embedded Inclusion
S T T,

Fig. 10 Types of inclusion of trees.

Algorithm 4: Fuzzy Frequent SubTrees Mining

Data: Tree Database D

Result: Fuzzy Frequent Subtrees .#

F 0

k+1;

repeat

St < Gen_Cand(k);

foreach s € .7 do

Support(s) < 0;

foreach T € D do
/* If degree of fuzzy inclusion is relevant, computing Support(s) */
if Fuzzy_inclusion_ degree 1(s,T) then

| Support(s) = Aggrep(t(s,T));

/* minSupp stands for a user-specified minimum support value */
if Support(s) > minSupp then
| F«FU{sh

k++;
until .7 does not grow any more;

PatFUTM was implemented using the g++ 3.4.6 and evaluated with POSIX
threads, on a 32-core machine, with 8 AMD Opteron 852 processors (each with
4 cores), 64 GB of RAM with Linux Centos 5.1, g++ 3.4.6. And evaluated with two
types of datasets: B datasets (BA, BB and BC) that contain lots of relatively small
trees and C datasets (CG, CH, CJ) that contain a smaller amount of larger trees.

5 CONCLUSION

In this paper, we discuss the importance of the scalability of fuzzy systems in general
and the scalability of fuzzy database mining algorithms in particular. We analyze the
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Fig. 11 Parallel fuzzy tree mining.

possibilities of scalability offered by architectures of multi-core processors and its
potential for parallel processing. We present a study of parallel programming of
fuzzy database mining algorithms based on Multithreading.

We present our review of the parallelization of four fuzzy database mining algo-
rithms on multi-core architectures, namely fuzzy association rules, fuzzy clustering,
fuzzy gradual dependencies, and fuzzy tree mining. This in order to substantiate our
position that parallelization can help address the problem of search space and re-
quirements of computation time and memory for fuzzy models that are larger than
of crisp models.

We focus mainly on the parallelization of fuzzy database mining algorithms
on multi-core architectures of shared memory and on multi-core architectures of
distributed memory. The algorithms that we are interested in researching their
parallelization are: Fuzzy orderings-based extraction of gradual patterns, fuzzy
orderings-based extraction of sequential gradual patterns. Parallel programming
models we are interested in exploring are: Task Parallelism, Data parallelism, and
Task-Data parallelism.
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