How to deal with heterogeneous data?
Mathieu Roche

To cite this version:
Mathieu Roche. How to deal with heterogeneous data?. SIMBig: Symposium on Information Management and Big Data, Sep 2015, Cusco, Peru. pp.19-20. lirmm-01382015

HAL Id: lirmm-01382015
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01382015
Submitted on 15 Oct 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
1 Introduction
The Big Data issue is traditionally characterized in terms of 3 V, i.e. volume, variety, and velocity. This paper focuses on the variety criterion, which is a challenging issue.

Data heterogeneity and content
In the context of Web 2.0, text content is often heterogenous (i.e. lexical heterogeneity). For instance, some words may be shortened or lengthened with the use of specific graphics (e.g. emoticons) or hashtags. Specific processing is necessary in this context. For instance, with an opinion classification task based on the message SimBig is an aaaaattractive conference!, the results are generally improved by removing repeated characters (i.e. a). But information on the sentiment intensity identified by the character elongation is lost with this normalization. This example highlights the difficulty of dealing with heterogeneous textual data content.

The following sub-section describes the heterogeneity according the document types (e.g. images and texts).

Heterogeneity and document types
Impressive amounts of high spatial resolution satellite data are currently available. This raises the issue of fast and effective satellite image analysis as costly human involvement is still required. Meanwhile, large amounts of textual data are available via the Web and many research communities are interested in the issue of knowledge extraction, including spatial information. In this context, image-text matching improves information retrieval and image annotation techniques (Forestier et al., 2012). This provides users with a more global data context that may be useful for experts involved in land-use planning (Alatrista Salas et al., 2014).

2 Text-mining method for matching heterogenous data
A generic approach to address the heterogeneity issue consists of extracting relevant features in documents. In our work, we focus on 3 types of features: thematic, spatial, and temporal features. These are extracted in textual documents using natural language processing (NLP) techniques based on linguistic and statistic information (Manning and Schütze, 1999):

- The extraction of thematic information is based on the recognition of relevant terms in texts. For instance, terminology extraction techniques enable extraction of single-word terms (e.g. irrigation) or phrases (e.g. rice crops). The most efficient state-of-the-art term recognition systems are based on both statistical and linguistic information (Lossio-Ventura et al., 2015).

- Extracting spatial information from documents is still challenging. In our work, we use patterns to detect these specific named entities. Moreover, a hybrid method enables disambiguation of spatial entities and organizations. This method combines symbolic approaches (i.e. patterns) and machine learning techniques (Tahrat et al., 2013).

- In order to extract temporal expressions in texts, we use rule-based systems like HeidelTime (Strötgen and Gertz, 2010). This multilingual system extracts temporal expressions from documents and normalizes them. HeidelTime applies different normalization strategies depending on the text types, e.g. news, narrative, or scientific documents.

These different methods are partially used in the projects summarized in the following section. More precisely, Section 3 presents two projects
that investigate heterogeneous data in agricultural the domain.\footnote{http://www.textmining.biz/agroNLP.html}

3 Applications in the agricultural domain

3.1 Animal disease surveillance

New and emerging infectious diseases are an increasing threat to countries. Many of these diseases are related to globalization, travel and international trade. Disease outbreaks are conventionally reported through an organized multilevel health infrastructure, which can lead to delays from the time cases are first detected, their laboratory confirmation and finally public communication. In collaboration with the CMAEE\footnote{Joint research unit (JRU) regarding the control of exotic and emerging animal diseases – http://umr-cmaee.cirad.fr} lab, our project proposes a new method in the epidemic intelligence domain that is designed to discover knowledge in heterogeneous web documents dealing with animal disease outbreaks. The proposed method consists of four stages: data acquisition, information retrieval (i.e. identification of relevant documents), information extraction (i.e. extraction of symptoms, locations, dates, diseases, affected animals, etc.), and evaluation by different epidemiology experts (Arsevska et al., 2014).

3.2 Information extraction from experimental data

Our joint work with the IATE\footnote{JRU in the area of agro-polymers and emerging technologies – http://umr-iate.cirad.fr} lab and AgroParisTech\footnote{http://www.agroparistech.fr} deals with knowledge engineering issues regarding the extraction of experimental data from scientific papers to be subsequently reused in decision support systems. Experimental data can be represented by \(n\)-ary relations, which link a studied topic (e.g. food packaging, transformation process) with its features (e.g. oxygen permeability in packaging, biomass grinding). This knowledge is capitalized in an ontological and terminological resource (OTR). Part of this work consists of recognizing specialized terms (e.g. units of measures) that have many lexical variations in scientific documents in order to enrich an OTR (Berrahou et al., 2013).

4 Conclusion

Heterogenous data processing enables us to address several text-mining issues. Note that we integrated the knowledge of experts in the core of research applications summarized in Section 3. In future work, we plan to investigate other techniques dealing with heterogeneous data, such as visual analytics approaches (Keim et al., 2008).

References


