
HAL Id: lirmm-01382346
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01382346v3

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explaining the Results of an Optimization-Based
Decision Support System – A Machine Learning

Approach
Michael Morin, Rallou Thomopoulos, Irène Abi-Zeid, Maxime Léger, François

Grondin, Martin Pleau

To cite this version:
Michael Morin, Rallou Thomopoulos, Irène Abi-Zeid, Maxime Léger, François Grondin, et al.. Ex-
plaining the Results of an Optimization-Based Decision Support System – A Machine Learning Ap-
proach. APMOD: APplied mathematical programming and MODelling, Jun 2016, Brno, Czech Re-
public. �lirmm-01382346v3�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01382346v3
https://hal.archives-ouvertes.fr


Explaining the Results of an Optimization-Based Decision

Support System – A Machine Learning Approach

Michael Morin2,?, Rallou Thomopoulos3, Irène Abi-Zeid1,??, Maxime Léger1,
François Grondin4, and Martin Pleau4

1Department of Operations and Decision Systems, Université Laval, Québec, Canada
2Department of Computer Science and Software Engineering, Université Laval, Québec, Canada
3IATE Joint Research Unit, INRA Montpellier, France
4Tetra Tech QI inc., Québec, Canada

Abstract. In this paper, we present work conducted in order to explain the results of a
commercial software used for real-time decision support for the flow management of a
combined wastewater network. This tool is deployed in many major cities and is used on
a daily basis. We apply decision trees to build rules for classifying and interpreting the
solutions of the optimization model. Our main goal is to build a classifier that would help
a user understand why a proposed solution is good and why other solutions are worse.
We demonstrate the feasibility of the approach to our industrial application by generating
a large dataset of feasible solutions and classifying them as satisfactory or unsatisfactory
based on whether the objective function is a certain percentage higher than the optimal
(minimum) objective. We evaluate the performance of the learned classifier on unseen
examples. Our results show that our approach is very promising according to reactions
from analysts and potential users.

1 Introduction

Decision support systems (DSS) and in particular optimization systems are more and more common
in engineering, business, and management environments. Although these systems may be very so-
phisticated and powerful in terms of solving complex mathematical models and providing optimal
recommendations, more often than not, the users of these systems are skeptical of the results pre-
sented. This leads to a resistance and a mistrust with regards to these technologies. More than ever,
it is becoming important to explain the solutions of the optimization systems in terms that users and
operators can understand, in order to be comfortable in following or challenging the recommenda-
tions of these systems. In this paper, we present work conducted in order to explain the results of
a commercial software used for real-time decision support for the flow management of a combined
wastewater network. This tool is deployed in many major cities and is used on a daily basis. Over the
years, our industrial partner has identified the need for explanations of the optimization results which
prompted us to define a collaborative project.

?e-mail: Michael.Morin.3@ulaval.ca
??e-mail: Irene.Abi-Zeid@osd.ulaval.ca



Du et al. [1] distinguish between “backward” and “forward” explanations. Backward explanations
are past-oriented. They seek reasons in the past (actions, events) that led to the observed situation.
Forward explanations are future-oriented. They foresee the future consequences of a possible de-
cision. In the present paper, we propose a forward approach which provides explanations for the
recommendations of an optimization-based DSS. We apply a machine learning technique to build
rules for classifying and interpreting the solutions of the optimization model, namely decision trees.
Our main goal is to build a classifier that would help a user (not a researcher or a practitioner from a
field related to optimization) to understand why a proposed solution is good and why other solutions
are worse.

The paper is structured as follows: Section 2 presents a brief literature review, Section 3 includes
the problem background and methodology, Section 4 contains a description of the experiment and the
results. We conclude in Section 5.

2 Literature Review

Decision support systems have been around for several decades now. Interestingly, since the 90s, sev-
eral studies have pointed out that end users have a low acceptance level of the solutions computed by
DSSs [2–5]. These studies have explored, respectively, the importance of feedback about a decision
made, the role of cognitive biases in human decision errors, the complexity of the requirements pri-
oritization which implies an iterative decision-making process, and the importance of contextual and
causal information in forecasting.

However, during the 2000s, studies about the effects of providing explanations on DSS advice
acceptance were still extremely rare [6] and they have only recently begun to emerge as an important
consideration [7]. In their paper, Du et al. [7] use two machine-learning techniques, namely rough
sets and dependency networks, to mine DSS solutions. The mining results are then provided as
explanations of the DSS solutions. Both techniques provide different, but not disjoint, results, which
are used by the authors to classify the mining results as strong or weak explanations.

In [6], two types of explanations are distinguished: technical ones, tracing the process used to
make a forecast, and managerial ones, providing a justification based on the meaning of the forecast.
Both types of explanations were estimated to increase decision-makers confidence. This diagnostic
is confirmed by Gonul et al. [8]. Based on their review and conclusions, we have built the following
three tables which summarize some conclusions about the categories, the roles and the added value of
explanations. These are presented respectively in Tables 1, 2 and 3.

3 Background and Methodology

The commercial DSS that we are interested in is a software for real time control and management
of a combined wastewater network, provided by our industrial partner. It includes a simulator and
an optimizer. The network is made-up of controlled and uncontrolled sections. Based on weather
forecasts over a given time period, the simulator simulates the flow in the uncontrolled parts of the
network that provide the inputs to the controlled parts of the network. The optimizer’s role is to
provide the complete set of control point configurations (decision variables values) that minimizes the
overflow cost (objective function) for the considered period. It establishes, based on water flows in
the network, a set of instructions that are sent to local stations to regulate flows using sluice gates and
pumps. Constraints describe the behavior of the network and the cost function is defined to minimize
overflow volumes, storage facility dewatering time, to ensure a balanced hydraulic load distribution
throughout the network and to minimize the associated management costs [9]. The provided solution,



Table 1. Categories of explanations

Categories Subcategories Remarks

Depending on the content of
explanations

Explanations on the how: system
reasoning mechanism (information
used, rules, steps)

Explanations on the why:
justification of a decision
highlighting the reasons behind the
decision

The most efficient for the
acceptance of the result
provided

Strategic explanations: overview of
the whole issue and the stakes
tackled by the system

Less used since their
obtention is difficult

Depending on the way of
providing explanations

On user demand

Automated

Intelligent: when a need for
explanations is detected by the
system

Complex mechanism

Depending on the format in
which explanations are
presented

Text-based: predefined sentences
or combinations following some
rules

Natural language-style
sentences improve
understanding and acceptance
of the system

Multimedia: graphs, pictures,
animations

Costly implementation but
persuasive and efficient to
obtain users’ confidence

Table 2. Roles of explanations

Objectives Benefits for users

Explain a detected anomaly Understand a recommendation

Verify that it satisfies the expectations

Solve a contradiction between the users and the system

Provide complementary information Participate in solving a problem (short-term)

Facilitate learning Perform better in future tasks (long-term)



Table 3. Added value of explanations

Effects on users Consequences Result

Better understanding
Learning

Perform better decision making
(accuracy and speed)

Accept the system as logical
and thus grounded and useful

Follow the logical reasoning
used by the system

Positive perception of the system
(ease of use, usefulness,
satisfaction, confidence)

although optimal with respect to the objective function in the model used by the optimizer, can be
modified by the end-user.

A solution fully describes, in terms of the values of the decision variables, the state of the con-
trolled section of the network. Decision variables determine, in particular (but not exclusively), the
positions of all the control gates regulating the wastewater system flow management. These can be
closed or open to a certain extent.

3.1 Methodology

Given an optimal solution to an optimization problem provided by solving a mathematical program, in
this case a minimization problem, we wish to enable an end-user to understand which characteristics
of a solution render it more or less suitable (satisfactory) from the perspective of the decision s/he
has to make. From a single objective optimization perspective, a solution that is optimal minimizes
a predefined and accepted objective function while being feasible, i.e., while respecting a set of pre-
defined constraints. We employ the term satisfactory to describe a feasible solution that is a suitable
decision in the context where a mathematical program is used as part of a DSS. An optimal solution
is of course satisfactory. However, some satisfactory solutions might be suboptimal.

Suppose, for instance, that a small increment δ in the objective function value is tolerable. Any
feasible solution x with an objective value f (x) that is not worse than f (x∗)+δ , i.e., f (x)≤ f (x∗)+δ ,
is said to be satisfactory. Although x is not optimal, it is a suitable decision with respect to that
criterion.

We therefore need a methodology to characterize the satisfactory solution set, using simple rules,
in order to allow a DSS user to understand the following:

1. why a solution (including the optimal one) is satisfactory; and

2. why a given change to an optimal solution might produce a solution that is worse, or potentially
catastrophic in practice.

If a user is not satisfied with the optimal solution initially provided by the DSS for a number of possible
reasons, including the fact that it does not intuitively make sense to her/him, the rules (explanations)
would allow her/him to understand which decision variables can be modified (and how) before the
DSS can re-optimize and return a new satisfactory solution.

We chose to use decision trees to produce (learn) such a simple set of rules to characterize the set
of satisfactory solutions. This is similar to the approaches in [7], albeit in a different context and on
bigger-size data sets.



3.2 Decision trees and the classification of satisfactory solutions

Decision trees are a widely used machine learning technique. In the next subsections, we briefly
present machine learning and decision trees as we applied them to the problem of characterizing the
set of satisfactory solutions.

3.2.1 Machine learning

(Supervised) machine learning is the art of learning by examples [10]. A learning algorithm is pro-
vided with a training set S of examples. Each example in set S is a pair (x,y) where x is an input and
y is an output. The output can be a class, a real number, or it can have a structure [11]. When x ∈ R

n

and y ∈ {True,False}, we have a binary classification problem. We call the entries in x the features
and y the class.

A solution to the binary classification problem is a function h, called a classifier, that takes an
input x ∈ R

n and that outputs y ∈ {True,False}. A learning algorithm builds a classifier h using the
set S, i.e., known pairs (x,y) of features and class (training phase). Once built, the classifier can be
used to compute an output class y given an unseen vector of input features x (testing phase). In this
paper, we formulate the problem of recognizing satisfactory solutions from unsatisfactory ones as a
binary classification problem.

3.2.2 Decision trees

A decision tree [12] is a classifier in the form a tree structure. Classifiers can be either white box or
black box models. We chose to use decision trees since a decision tree is a white box and interpretable
model made of simple decision rules. It takes x as an input, and it outputs a class y. The nodes of the
tree are either decision nodes or leaves. A decision node corresponds to a branching rule based on the
value of a single input feature. A leaf node is assigned a prediction class.

In the training phase, a decision tree is built in a greedy fashion by the learning algorithm. The
examples of the training set S, i.e., the known examples, start at the root of the tree. A first branching
rule is applied at the root on the training examples. The learning algorithm chooses the branching
rule that best partitions the training examples according to a heuristic. All examples x that respect
the branching rules take the left path. All other examples take the right path. At the next level, a
new decision node is created for each partition and two branching rules are selected according to the
partitioning heuristic. Branching stops when all the examples of a partition belong to the same class.
Other stopping criteria to manage the height of the tree can be used. In that case, not all the examples
in a partition that reach a leaf will have the same class and the value of the leaf can be set to the
majority class.

In the testing phase, an unseen example x, i.e., an example for which y is unknown, follows a path
from the root to a leaf. The example is tested against each decision rule. If it respects the rule, it
branches left, otherwise it branches right. The predicted class is that of the reached leaf.

3.2.3 Learning to recognize satisfactory solutions

As mentioned previously, each node of a decision tree, except the leaves, is a branching rule. A path
from the root to a leaf can be seen as a rule describing the satisfactory solution set. We first learn a
decision tree (training phase). Later on, this decision tree is used to determine whether a solution is
satisfactory or not (test phase). Furthermore, since a decision tree is interpretable, it provides a set of



rules characterizing satisfactory solutions. We next describe the process used to generate the set S of
training examples that can be used for learning.

Assume that an optimal solution has been provided by the DSS and that a satisfactory criterion has
been determined. We generate set S by simulating a sufficiently large number of modifications of the
optimal solution. Simulating a modification consists in randomly fixing a decision variable’s value.
After each simulation, we evaluate the value of the solution according to the chosen criterion that
discriminates between satisfactory and unsatisfactory ones. We store in S, the value of all decision
variables along with the class of the newly generated solution: satisfactory (true) or not (false). Finally,
we learn one or more decision trees on S.

4 Experiment

In order to demonstrate the feasibility of the approach to our industrial application, we generated
a large dataset of feasible solutions and classified them as satisfactory or not based on whether the
objective function is a certain percentage higher than the optimal objective. We then used a small
subset of these solutions to learn a classifier. The small subset used for learning is the training set
(S). We evaluated the performance of the learned classifier on the remaining unseen examples. We
provide the details on the data we generated for the experiment in the next subsection.

4.1 Data preparation

In order to learn the characteristics of the satisfactory solution set, we first obtained an optimal solution
to a problem instance using the optimizer of the DSS developed by our partner. The weather forecast,
the simulation results, and the provided optimal solution belong to a real use-case scenario.

Starting from the optimal solution, we generated 10,000 feasible solutions by simulating a single
modification of one of the decision variables by the end-user. Each solution of the dataset used for the
experiment is generated as follows:

• one of the decision variables is chosen and modified randomly;

• the objective value of the solution resulting from the perturbation of that single control point is
reevaluated.

The resulting dataset contains the values of all the variables of the optimization model for all the gen-
erated solutions along with their objective value. We then filter the dataset to keep only the variables
that can have an explanatory significance for the end-user. The identification of these variables was
performed by the domain experts. We excluded all the variables that are used as components of the
objective function. We then assigned a class to each solution. For the purpose of the experiment, we
assume that a solution is nonsatisfactory if and only if its objective value exceeds by 5% (or more) the
optimal value.

In the next subsection, we present, the results of our methodology when used jointly with decision
trees.

4.2 Decision trees and their predictive accuracy

All decision tree experiments are conducted using scikit-learn [13], a machine learning library for the
Python programming language.

Figure 1 shows the learning curve we obtain on our industrial instance. Most learning algorithms
for decision trees are greedy algorithms. Scikit-learn’s learning algorithm for decision trees makes no



50 100 150 200
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 a

cc
u
ra

cy
 o

n
 t

e
st

 s
e
t

D-tree
Simple

Figure 1. Learning curve: Mean accuracy of the learned decision trees (solid curve) and of the simple classifiers
(dashed curve) on the test set against various training set sizes with standard deviation in blue and green shading
and upper and lower bounds in light blue and light green

exception. In order to evaluate the predictive accuracy of decision trees in our context, we partitioned
the dataset into a training set S and a test set. Some partitions might be more or less satisfactory for
learning. We aggregated the results of 10 different partitions. We generated the curve of Figure 1 by
varying the size of the subset of S used for training. For each subset of S, ranging in size from 5 to
200 training examples (for a total of 40 subset sizes), we learned 10 different trees and aggregated
the results. Each tree was tested against the 9,800 remaining examples in the test set. Using such
a large test set enables us to verify whether a decision tree learning algorithm can generate rules to
characterize the satisfactory solutions space of our industrial problem instance by accessing a few
training examples only. The solid curve plots the average predictive accuracy of the decision trees
against the size of the training subsets used for learning. The blue shaded region shows the standard
deviation. The light blue shaded region shows the minimal and the maximal predictive accuracy
encountered for each size of subset of the training set. The dashed curve plots the average predictive
accuracy achieved by the mean of simple classifiers generating their prediction using the distribution
of the classes in the training set. The standard deviation region and the region of the bounds of the
simple classifiers are displayed in green.

The decision rules learned by the decision trees were validated by experts from the application
field. The tendency of the learning algorithm was to choose high impact control points (decision
variables) in its first few decision rules.

5 Conclusion

In this study, we have proposed an approach using decision trees to explain the results of a commercial
software used for real-time decision support for combined wastewater system flow management. Our



solution allows analysts to identify the main criteria that influence the DSS outcome, and helps users
in understanding the rationale behind the DSS’s recommendations. The rationale supporting this
approach consists in classifying the space of solutions according to some criterion that characterizes
the performance of the solutions proposed by the DSS.

We plan to explore several directions in the next stages of this work. First, we will identify
“optimal” sizes of the training set and tree depths, allowing for both a good learning quality and
a reasonable computing time. Moreover, the robustness of the method will be tested based on the
following factors: on the one hand, the number of variables taken into account, in particular for
increased numbers of predictive variables; on the other hand, the proportion of positive examples
composing the training set. Finally, we plan to experiment our approach on other kinds of learning
algorithms, also able to compute interpretable classifiers, with the long-term objective of providing
users with arguments expressing the learnt rules.

References

[1] G. Du, M. Richter, G. Ruhe, An explanation oriented dialogue approach and its application to
wicked planning problems, Journal of Computing and Informatics 25(2–3), 223 (2006)

[2] F.D. Davis, J.E. Kottemann, Determinants of decision rule use in a production planning task,
Organizational Behavior and Human Decision Processes 63(2), 145 (1995)

[3] B. Kleinmuntz, Why we still use our heads instead of formulas: Toward an integrative approach,
Psychological Bulletin 107(3), 296 (1990)

[4] L. Lehtola, S. Kujala, Requirements prioritization challenges in practice, in Proc. of the 5th
International Conference on Product Focused Software Process Improvement (PROFES) (2004),
pp. 497–508

[5] J.S. Lim, M. O’Connor, Judgmental forecasting with time series and causal information, Inter-
national Journal of Forecasting 12(1), 139 (1996)

[6] M. Lawrence, L. Davies, M. O’Connor, P. Goodwin, Improving forecast utilization by providing
explanations, in Proc. of the 21st International Symposium on Forecasting (ISF) (2001)

[7] G. Du, G. Ruhe, Two machine-learning techniques for mining solutions of the ReleasePlanner™
decision support system, Information Sciences 259, 474 (2014)

[8] M.S. Gönül, D. Önkal, M. Lawrence, The effects of structural characteristics of explanations on
use of a DSS, Decision Support Systems 42(3), 1481 (2006)

[9] M. Pleau, H. Colas, P. Lavallée, G. Pelletier, R. Bonin, Global optimal real-time control of the
Quebec urban drainage system, Environmental Modelling & Software 20(4), 401 (2005)

[10] C.M. Bishop, Pattern Recognition and Machine Learning (Springer, 2006)
[11] G. Bakı̆r, T. Hofmann, B. Schoölkopf, A.J. Smola, B. Taskar, S.V.N. Vishwanathan, eds., Pre-

dicting Structured Data (MIT press, 2007)
[12] L. Breiman, J. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression Trees (Chap-

man and Hall, 1984)
[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg et al., Scikit-learn: Machine learning in Python, The Journal of
Machine Learning Research 12, 2825 (2011)


	Introduction
	Literature Review
	Background and Methodology
	Methodology
	Decision trees and the classification of satisfactory solutions
	Machine learning
	Decision trees
	Learning to recognize satisfactory solutions


	Experiment
	Data preparation
	Decision trees and their predictive accuracy

	Conclusion

