
Explaining the Results of an Optimization-Based
Decision Support System – A Machine Learning

Approach

Michael Morin2, Rallou Thomopoulos3, Irène Abi-Zeid1, and Maxime Léger1

1 Department Operations and Decision Systems
2 Department of Computer Science and Software Engineering

Université Laval, Québec, Canada
Irene.Abi-Zeid@osd.ulaval.ca

{Maxime.Leger.1,Michael.Morin.3}@ulaval.ca
3 IATE Joint Research Unit, INRA Montpellier, France

Rallou.Thomopoulos@supagro.inra.fr

Abstract. In this paper, we present work conducted in order to explain the results
of a commercial software used for real-time decision support for the flow man-
agement of a combined and sanitary wastewater system. This tool is deployed in
many major cities and is used on a daily basis. We apply decision trees to build
rules for classifying and interpreting the solutions of the optimization model. Our
main goal is to build a classifier that would help a user to understand why a
proposed solution is good and why other solutions are worse. We demonstrate
the feasibility of the approach to our industrial application by generating a large
dataset of feasible solutions and classifying them as satisfactory or not based on
whether the objective function is a certain percentage higher than the optimal
objective. We evaluate the performance of the learned classifier on unseen exam-
ples. Our results show that our approach is very promising according to reactions
from analysts and potential users.

1 Introduction

Decision support systems (DSS) and in particular optimization systems are more and
more common in engineering, business, and management environments. Although these
systems may be very sophisticated and powerful in terms of solving complex mathe-
matical models and providing optimal recommendations, more often than not, the users
of these systems are skeptical of the results presented. This leads to a resistance and a
mistrust with regards to these technologies. More than ever, it is becoming important
to explain the solutions of the optimization systems in terms that users and operators
can understand, in order to be comfortable in following or challenging the recommen-
dations of these systems. In this paper, we present work conducted in order to explain
the results of a commercial software used for real-time decision support for the flow
management of a combined and sanitary wastewater system. This tool is deployed in
many major cities and is used on a daily basis. Over the years, our industrial partner
has identified the need for explanations of the optimization results which prompted us
to define a collaborative project.



Du et al.[5] distinguish between “backward” and “forward” explanations. Backward
explanations are past-oriented. They seek reasons in the past (actions, events) that led
to the observed situation. Forward explanations are future-oriented. They foresee the
future consequences of a possible decision. In the present paper, we propose a forward
approach which provides explanations for the recommendations of an optimization-
based DSS. We apply a machine learning approach to build rules for classifying and
interpreting the solutions of the optimization model, namely decision trees. Our main
goal is to build a classifier that would help a user (not a researcher or a practitioner from
a field related to optimization) to understand why a proposed solution is good and why
other solutions are worse.

The paper is structured as follows: Section 2 presents a brief literature review, Sec-
tion 3 includes the problem background and methodology, Section 4 contains a descrip-
tion of the experiment and the results. We conclude in Section 5.

2 Literature Review

Decision support systems have been around for several decades now. Interestingly, since
the 90s, several studies have pointed out that end users have a low acceptance level of
the solutions computed by DSSs [4,8,10,11]. These studies have explored, respectively,
the importance of feedback about a decision made, the role of cognitive biases in human
decision errors, the complexity of the requirements prioritization which implies an iter-
ative decision-making process, and the importance of contextual and causal information
in forecasting.

However, in the 2000s, studies about the effects of providing explanations on DSS
advice acceptance were still extremely rare [9] and they have only recently begun to
emerge as an important consideration [6]. In their paper, Du et al. use two machine-
learning techniques, namely rough sets and dependency networks, to mine DSS solu-
tions. The mining results are then provided as explanations of the DSS solutions. Both
techniques provide different, but not disjoint, results, which are used by the authors to
classify the mining results as strong or weak explanations.

In [9], two types of explanations are distinguished: technical ones, tracing the pro-
cess used to make a forecast, and managerial ones, providing a justification based on the
meaning of the forecast. Both types of explanations were estimated to increase decision-
maker’s confidence. This diagnostic is confirmed by Gonul et al. [7]. Based on their re-
view and conclusions, we have built the following three tables which summarize some
conclusions about the categories, the roles and the added value of explanations. These
are presented respectively in Tables 1, 2 and 3.

3 Background

The commercial DSS that we are interested in is a software for real time control and
management of a combined and sanitary wastewater system network, provided by our
partner. It includes a simulator and an optimizer.The network is made-up of controlled
and uncontrolled sections. Based on weather forecasts over a given time period, the
simulator simulates the flow in uncontrolled parts of the network providing the inputs



Table 1. Categories of explanations

Categories Subcategories Remarks
Depending on the content Explanations on the how:
of explanations system reasoning mechanism

(information used, rules, steps)
Explanations on the why: The most efficient for the acceptance
justification of a decision of the result provided
highlighting the reasons
behind the decision
Strategic explanations: Less used since their obtention is
overview of the whole difficult
issue and the stakes
tackled by the system

Depending on the way of On user demand
providing explanations

Automated
Intelligent: Complex mechanism
when a need for explanations
is detected by the system

Depending on the format Text-based (predefined Natural language-style sentences
in which explanations sentences or combinations improve understanding and
are presented following some rules) acceptance of the system

Multimedia: graphs, Costly implementation but
pictures, animations persuasive and efficient

to obtain users’ confidence

Table 2. Roles of explanations

Objectives Benefits for users
Explain a detected anomaly Understand a recommendation

Verify that it satisfies the expectations
Solve a contradiction between the users and the system

Provide complementary information Participate in solving a problem (short-term)
Facilitate learning perform better in future tasks (long-term)

Table 3. Added value of explanations

Effects on users Consequences Result
Better understanding Perform better decision Accept the system as logical
Learning making (accuracy and speed) and thus grounded and useful
Follow the logical reasoning Positive perception of the
used by the system system (ease of use, usefulness,

satisfaction, confidence)

to the controlled parts of the network. The optimizer’s role is to provide the complete set
of control point configurations (decision variables values) that minimizes the overflow
cost (objective function) for the considered period. It establishes, based on water flows
in the network, a set of instructions that are sent to local stations to regulate flows using
sluice gates and pumps. Constraints describe the behavior of the network and the cost
function is defined to minimmize overflow volumes, storage facility dewatering time, to
ensure a balanced hydraulic load distribution throughout the network and to minimize
the associated management costs [13]. The provided solution, although optimal with
respect to the objective function in the model used by the optimizer, can be modified by
the end-user.

A solution fully describes, in terms of the values of the decision variables, the state
of the controlled section of the network. Decision variables determine, in particular (but



not exclusively), the positions of all the control gates regulating the wastewater system
flow management. These can be closed, or open to a given extent.

3.1 Methodology

Given an optimal solution to an optimization problem provided by solving a mathe-
matical program, in this case a minimization problem, we wish to enable an end-user
to understand which characteristics of a solution render it more or less suitable (satis-
factory) from the perspective of the decision s/he has to make. From a single objective
optimization perspective, a solution that is optimal minimizes a predefined and accepted
objective function while being feasible, i.e., while respecting a set of pre-defined con-
straints. We employ the term satisfactory to describe a feasible solution that is a suitable
decision in the context where a mathematical program is used as part of a DSS. An op-
timal solution is also satisfactory. Some satisfactory solutions might suboptimal.

Suppose, for instance, that a small increment δ in the objective function value is
tolerable. Any feasible solution x with an objective value f (x) that is not worse than
f (x∗)+δ , i.e., f (x)≤ f (x∗)+δ , is said to be satisfactory. Although x is not optimal, it
is a suitable decision with respect to that criterion.

We therefore need a methodology to build a characterization of the satisfactory
solution set which we can describe using simple rules to allow the user to understand
the following:

1. why a solution (including the optimal one) is satisfactory; and
2. why a single change to an optimal solution might produce a solution that is worse

and potentially catastrophic in practice even if a further optimization step is carried
out.

If a user is not satisfied with the optimal solution initially provided by the DSS for a
number of possible reasons, including the fact that it does not intuitively make sense
to her/him, the rules (explanations) would allow her/him to understand which decision
variables can be modified (and how) before re-optimization so that the DSS can return
a new satisfactory solution.

We chose to use decision trees to produce (learn) such a simple set of rules to char-
acterize the set of satisfactory solutions. This is similar to the approaches in [6], albeit
in a different context and on bigger-size data sets.

3.2 Decision trees and the classification of satisfactory solutions

Decision trees are a widely used machine learning algorithm. In the next subsections,
we briefly present machine learning and decision trees as we applied them to the prob-
lem of characterizing the set of satisfactory solutions.

Machine learning. (Supervised) machine learning is the art of learning by examples [2].
A learning algorithm is provided with a training set S of examples. Each example in set
S is a pair (x,y) where x is an input and y is an output. The output can be a class, a real
number, or it can have a structure [1]. When x ∈ R

n and y ∈ {True,False}, we have a



binary classification problem. We call the entries in x the features and y the class. We
formulate the problem of recognizing satisfactory solutions from unsatisfactory ones as
a binary classification problem.

A solution to the binary classification problem is a function h, called a classifier, that
takes an input x ∈R

n and that outputs y ∈ {True,False}. A learning algorithm builds a
classifier h using the set S, i.e., known pairs (x,y) of features and class (training phase).
Once built, the classifier can be used to compute an output class y given an unseen
vector of input features x (testing phase).

Decision trees. A decision tree [3] is a classifier in the form a tree structure. Classifiers
can be either white box or black box models. We chose to use decision trees since a
decision tree is a white box and interpretable model made of simple decision rules. It
takes x as an input, and it outputs a class y. The nodes of the tree are either decision
nodes or leaves. A decision node corresponds to a branching rule based on the value of
a single input feature. A leaf node is assigned a class to predict.

In the training phase, a decision tree is built in a greedy fashion by the learning
algorithm. The examples of the training set S, i.e., the known examples, start at the root
of the tree. A first branching rule is applied at the root on the training examples. The
learning algorithm chooses the branching rule that best partitions the training examples
according to a heuristic. All examples x that respect the branching rules take the left
path. All other examples take the right path. At the next level, a new decision node is
created for each partition and two branching rules are selected according to the parti-
tioning heuristic. Branching stops when all the examples of a partition belong to the
same class. Other stopping criterion to manage the height of the tree can be used. In
this case, not all the examples in a partition that reaches a leaf will have the same class
and the value of the leaf can be set to the majority class in the partition.

In the testing phase, an unseen example x, i.e., an example for which y is unknown,
follows a path from the root to a leaf. The example is tested against each decision rule.
If it respects the rule, it branches left, otherwise it branches right. The predicted class is
that of the reached leaf.

Learning to recognize satisfactory solutions. As mentioned, each node of a decision
tree, except the leaves is a branching rule. A path from the root to a leaf can be seen
as a rule describing the satisfactory solution set. We first learn a decision tree (training
phase). Latter on, this decision tree will be used to determine whether a solution is satis-
factory or not (test phase). Furthermore, since a decision tree is interpretable, it provides
a set of rules characterizing satisfactory solutions. We now describe the process used to
generate the set S of training examples that can be used for learning.

We suppose that an optimal solution has been provided by the DSS and a that sat-
isfactory criterion has been determined. We generate set S by simulating a sufficiently
large number of modifications of the optimal solution by the end-user. Simulating a
modification consists in randomly fixing a decision variable a random value. After each
simulation, we evaluate the value of the solution according to the chosen criterion that
discriminates satisfactory solutions from unsatisfactory ones. We store, in S, the value
of all decision variables along with the class of the newly generated solution: satisfac-
tory (true) or not (false). Finally, one or more decision trees are learned on S.



4 Experiment

In order to demonstrate the feasibility of the approach to our industrial application, we
generated a large dataset of feasible solutions and classified them as satisfactory or not
based on whether the objective function is a certain percentage higher than the optimal
objective. We then used a small subset of these solutions to learn a classifier. The small
subset used for learning is the training set (S). We evaluated the performance of the
learned classifier on the remaining unseen examples. We provide the details on the data
we generated for the experiment in the next subsection.

4.1 Data preparation

In order to learn the characteristics of the satisfactory solution set, we first obtained an
optimal solution to a problem instance using the optimizer of the DSS developed by our
partner. The weather forecast, the simulation results, and the provided optimal solution
belong to a real use-case scenario.

Starting from that optimal solution, we generated 10,000 feasible solutions by sim-
ulating a single modification of one of the decision variables by the end-user. Each
solution of the dataset used for the experiment is generated as follows:

– one of the decision variables is chosen and modified randomly;
– the objective value of the solution resulting from the perturbation of that single

control point is reevaluated.

The resulting dataset contains the values of all the variables of the optimization model
for all the generated solutions along with their objective value. We then filter the dataset
to keep only the variables that can have an explanatory significance for the end-user. The
identification of these variables was performed by the domain experts. We excluded all
the variables that are used as components of the objective function. We then assigned a
class to each solution. For the purpose of the experiment, we assume that a solution is
satisfactory if and only if its objective value exceeds by 5% the optimal value.

In the next subsection, we present, the results of our methodology when used jointly
with decision trees.

4.2 Decision trees and their predictive accuracy

All decision tree experiments are conducted using scikit-learn [12], a machine learning
library for the Python programming language.

Figure 1 shows the learning curve we obtain on our industrial instance. Most learn-
ing algorithms for decision trees are greedy algorithms. Scikit-learn’s learning algo-
rithm for decision trees makes no exception. In order to evaluate the predictive accuracy
of decision trees in our context, we partitioned the dataset into a training set S and a test
set. Some partitions might be more or less satisfactory for learning. We aggregated the
results of 10 different partitions. We generated the curve of Figure 1 by varying the size
of the subset of S used for training. For each subset of S, from 5 training examples to
200 training examples for a total of 40 subset sizes, we learned 10 different trees and ag-
gregated the results. Each tree is tested against the 9,800 remaining examples in the test



50 100 150 200
Training set size

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
e
a
n
 a

cc
u
ra

cy
 o

n
 t

e
st

 s
e
t

D-tree
Simple

Fig. 1. Learning curve: Mean accuracy of the learned decision trees (solid curve) and of the simple
classifiers (dashed curve) on the test set against various training set sizes with standard deviation
in blue and green shading and upper and lower bounds in light blue and light green

set. Using such a large test set enables us to verify whether a decision tree learning algo-
rithm can generate rules to characterize the satisfactory solutions space of our industrial
problem instance by accessing a few training examples only. The solid curve plots the
average predictive accuracy of the decision trees against the size of the training subsets
used for learning. The blue shaded region shows the standard deviation. The light blue
shaded region shows the minimal and the maximal predictive accuracy encountered for
each size of subset of the training set. The dashed curve plots the average predictive
accuracy achieved by the mean of simple classifiers generating their prediction using
the distribution of the classes in the training set. The standard deviation region and the
region of the bounds of the simple classifiers is displayed in green.

The decision rules learned by the decision trees were validated by experts from the
application field. The tendency of the learning algorithm was to choose high impact
control points (decision variables) in its first few decision rules.

5 Conclusion

In this study, we have proposed an approach using decision trees to explain the results
of a commercial software used for real-time decision support for the combined and
sanitary wastewater system flow management. Our solution allows analysts to identify
the main criteria that influence the DSS outcome, and helps users in understanding the
rationale behind the DSS’s recommendations. The rationale supporting this approach
consists in classifying the space of solutions according to some performance criteria
that characterize the performance of the solutions proposed by the DSS.



We plan to explore several directions in the next stages of this work. First, we will
identify the “optimal” size of the training set, allowing both a good quality of learning
and a reasonable computing time. Several sizes of training sets are currently under
evaluation. Moreover, the robustness of the method will be tested based on the following
factors: on the one hand, the number of variables taken into account, in particular for
increased numbers of predictive variables; on the other hand, the proportion of positive
examples composing the training set. Finally, we plan to experiment our approach on
other kinds of learning algorithms, also able to compute interpretable classifiers, with
the long-term objective to provide users with arguments expressing the learnt rules.

References

1. Bakı̆r, G., Hofmann, T., Schoölkopf, B., Smola, A.J., Taskar, B., Vishwanathan, S.V.N.
(eds.): Predicting Structured Data. MIT press (2007)

2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)
3. Breiman, L., Friedman, J., Olshen, R.A., Stone, C.J.: Classification and Regression Trees.

Chapman and Hall, Belmont, CA (1984)
4. Davis, F.D., Kottemann, J.E.: Determinants of decision rule use in a production planning

task. Organizational Behavior and Human Decision Processes 63(2), 145 – 157 (1995)
5. Du, G., Richter, M., Ruhe, G.: An explanation oriented dialogue approach and its application

to wicked planning problems. Journal of Computing and Informatics 25, 223–249 (2006)
6. Du, G., Ruhe, G.: Two machine-learning techniques for mining solutions of the releaseplan-

ner™ decision support system. Information Sciences 259, 474–489 (2014)
7. Gönül, M.S., Önkal, D., Lawrence, M.: The effects of structural characteristics of explana-

tions on use of a DSS. Decision Support Systems 42(3), 1481–1493 (2006)
8. Kleinmuntz, B.: Why we still use our heads instead of formulas: toward an integrative ap-

proach. Psychological Bulletin 107(3), 296–310 (1990)
9. Lawrence, M., Davies, L., O’Connor, M., Goodwin, P.: Improving forecast utilization by

providing explanations. In: Proc. of 21st International Symposium on Forecasting, Atlanta -
USA (2001)

10. Lehtola, L., Kujala, S.: Requirements prioritization challenges in practice. In: Proc. of 5th
IntÂt’l Conf. on Product Focused Software Process Improvement (PROFES), Kansai Science
City. pp. 497–508 (2004)

11. Lim, J.S., O’Connor, M.: Judgmental forecasting with time series and causal information.
International Journal of Forecasting 12(1), 139–153 (1996)

12. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher,
M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in python. The Journal of
Machine Learning Research 12, 2825–2830 (2011)

13. Pleau, M., Colas, H., Lavallée, P., Pelletier, G., Bonin, R.: Global optimal real-time control
of the quebec urban drainage system. Environmental Modelling & Software 20(4), 401–413
(2005)


	Explaining the Results of an Optimization-Based Decision Support System – A Machine Learning Approach

