Relational Concept Analysis for Relational Data Exploration

Abstract : Relational Concept Analysis (RCA) is an extension to the Formal Concept Analysis (FCA) which is an unsupervised classification method producing concept lattices. In addition RCA considers relations between objects from different contexts that allow for the creation of links between lattices. This feature makes it more intuitive to extract knowledge from relational data and gives richer results. However, data with many relations imply scalability problems and results that are difficult to exploit. We propose in this article a possible adaptation of RCA to explore relations in a supervised way in order to increase the performance and the pertinence of the results.
Type de document :
Chapitre d'ouvrage
Advances in Knowledge Discovery and Management, 5 (Part II), pp.57-77, 2016, 978-3-319-23751-0. 〈10.1007/978-3-319-23751-0_4〉
Liste complète des métadonnées

Littérature citée [1 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01382348
Contributeur : Clémentine Nebut <>
Soumis le : dimanche 16 octobre 2016 - 21:24:19
Dernière modification le : vendredi 20 juillet 2018 - 19:58:02

Fichier

akdm.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Xavier Dolques, Florence Le Ber, Marianne Huchard, Clémentine Nebut. Relational Concept Analysis for Relational Data Exploration. Advances in Knowledge Discovery and Management, 5 (Part II), pp.57-77, 2016, 978-3-319-23751-0. 〈10.1007/978-3-319-23751-0_4〉. 〈lirmm-01382348〉

Partager

Métriques

Consultations de la notice

302

Téléchargements de fichiers

292