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Abstract—The emergence of power as a first-class design
constraint has fueled the proposal of a growing number of
optimization techniques, seeking the best tradeoff to reach
the maximum energy efficiency. Effective adaptation strategies
depend critically on the monitoring method as an incorrect assess-
ment of the system’s state will result in poor decision making.
Yet it is indeed a fundamental issue: how to get a precise estima-
tion of the system’s state, and especially in a cost-effective way?
We address this question for the self-observation of the power
consumption. We develop a method that combines several data
mining algorithms to monitor the toggling activity on a few rele-
vant signals selected at the register transfer-level. Our approach
is based on a generic flow that is able to produce a power model
for any register transfer level (RTL) circuit on any technology.
This contribution is evaluated on a system on chip RTL model
implemented on an field-programmable gate array technology.
The experiments demonstrate that the proposed method achieves
the accuracy of analog power sensors (error lower than 1%) at
a finer granularity and in a cost-effective way.

Index Terms—Data mining, design-time method, field-
programmable gate array (FPGA), power modeling, register
transfer-level, system on chip (SoC) monitoring.

I. INTRODUCTION

THE CONTINUING trend in applications for ever increas-
ing functionality, performance and integration within

systems on chip (SoCs) is leading to circuits with a high power
dissipation. Thus, to be able to continue to provide new and
improved features, both design and run-time optimization are
indispensable in today’s systems. Due to time-to-market con-
straints and uncertainties at design-time, many techniques seek
to make run-time tradeoffs with the goal of adapting to an
application’s or execution environment’s need. The adaptation
in embedded systems allows the tuning of hardware/software
parameters to perform tradeoffs between power consumption
and performance during execution. Adaptation techniques can
make use of operational parameters of the system at run-
time and make decisions that alter the future operation of the
system.
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However, effective adaptations depend critically on the mon-
itoring method, which should provide accurate estimations
about the system state in a cost-effective way. Several tech-
niques for power management have been proposed that require
knowledge of how much energy has actually been consumed
by the device to make run-time decisions. Among these, the
reactive techniques that aim to adapt the system behavior [1],
and the proactive approaches that use the information of power
to predict future undesired states [2].

The monitoring of the power consumption can be either
done by a direct measurement using analog sensors, or by an
indirect estimation using information about resource utilization
and the system parameters such as chip temperature, process
variation, etc. The advantage of the first approach is the high
temporal resolution and the high accuracy of the measured
power values. But, the scalability is poor for complex sys-
tems, as only few sensors can be employed due to their high
costs. However, indirect solutions are usually cheaper with a
reasonable accuracy.

Monitoring the power consumed every time is crucial for
building a fully self-adaptive system and depending on the
granularity of the monitoring, the system will be able to react
more efficiently. Consider a motivating example: In case of
measuring the total power using analog sensors or an addi-
tional equipment, thermal hotspots may not be identified. But
however, it is possible to predict them more accurately by hav-
ing a more detailed power information (in time and space).
Hence, a proactive adaptation can be performed to avoid a
critical temperature before it actually occurs. As a result,
reliability can be significantly improved [2].

The internal activity depends on the switching activity of
the transistor and consequently affects the power consumption,
and can be appraised at different levels of abstraction. It is
therefore a question of: how to accurately observe the internal
activity in complex SoCs, and especially in a cost-effective
way for an efficient monitoring of the power consumption?

This paper addresses this challenge, proposing a system-
atic and a generic method for the monitoring of the power
consumption. The activity is appraised using the toggling
information at the hardware level. At this stage, the tracking of
fine-grain power variations is more accurate, compared to the
information abstracted at higher levels, e.g., using performance
counters. In fact, the most precise switching information that
directly affects the power consumption would be obtained by
counting activities for each transistor. However, this is not
realistic as it would be too much expensive and would con-
sume more power to monitor the original circuit itself. A good
tradeoff to reduce the cost of the monitoring would be to esti-
mate the activity by observing only the toggling events on
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Fig. 1. Envisioned monitoring of the dynamic power for a generic SoC.

few strategic signals from the interfaces between components
of the design. In Fig. 1, the envisioned monitoring method
is exemplified on a generic SoC. Event counters (ECs) are
inserted at design-time to report the activity on some chosen
signals by counting switching events; a processor dedicated for
the monitoring retrieves the values, and evaluates the dynamic
power consumption of the circuit. However, the increase of
the SoCs complexity goes hand-in-hand with the growth of the
number of wires in a single chip. Therefore a subset of sig-
nals has to be selected from a large number of wires, in order
to estimate the global activity. To find these correlations, this
implies the development of efficient algorithms, which manage
large amounts of data. For this purpose, we investigate data
mining techniques that are utilized in this paper to extract a
subset of strategic signals and to build a cost-effective model
in order to estimate online the dynamic power. Hence, our
method is as accurate as a power sensor at high temporal res-
olution, and in addition it has a low area, performance and
energy overheads.

II. BACKGROUND AND RELATED WORK

Adaptive integrated systems require a control loop based
on a three-step process: 1) monitoring; 2) diagnosis, which
analyzes the observed data, e.g., dynamic workloads, to adapt
performance and quality-of-service, to optimize resource uti-
lization, or to achieve high energy efficiency; and 3) action,
which tunes system parameters accordingly. In this process,
the first step is crucial as an incorrect assessment of the sys-
tem’s state will result in poor decision making. This subject
is extensively discussed in [3], in which the authors present
a survey of existing techniques at all levels of abstraction,
aiming to collect system’s information, e.g., debugging, per-
formance, quality-of-service, power/energy, temperature, and
other metrics. The authors highlight the need of an efficient
and generic strategy, which could be used in all SoCs including
heterogeneous multicores systems.

The straightforward approach to monitor the power con-
sumption is to online measure it, using analog sensors, such
as in [4] that presents a dedicated circuit in a 45 nm SOI sil-
icon technology. The proposed on-chip sensor measures the
voltage drop due to a current load and converts it into pulse
counts to get a power estimation, and requires 0.02 mm2

area. Moreover, Bhagavatula and Jung [5] presented an opti-
mized analog power sensor that shows an improvement in time

response, but also occupies 0.01 mm2 area in a 130-nm tech-
nology. Although this seems to be a very promising solution,
it is not a generic one and the scalability is quite limited.
This is the reason why there is a growing interest for indirect
approaches.

Therefore, the total power consumption can be expressed as

Ptotal = Pdyn + Pstat = αCV2
dd f + VddIleakage (1)

where Pdyn is the dynamic power and depends on: the activ-
ity factor α, the switching capacitance C, the supply voltage
Vdd, and the frequency f . The leakage power Pstat is estimated
as VddIleakage, where Ileakage is the leakage current. C and
Ileakage are platform-specific and depend on several parameters
such as chip temperature, threshold voltage, etc. The couple
( f , Vdd) is either constant or tunable such as in case of a
dynamic voltage and frequency scaling. However, the activ-
ity factor (α) is proportional to the average rate of transistor
commutations during the estimation period of the power con-
sumption. And as the monitoring of the global system activity
is very expensive at transistor level, research efforts try to
estimate it at a higher level of abstraction.

Pathania et al. [6] used the CPU utilization at software level
as an approximate representation of the application activity
factor for a given power mode ( f , Vdd). Also in [7], a char-
acterization method is proposed in order to approximate α for
each application executed by the ARM big.LITTLE platform.
But these approaches are not suitable for complex systems run-
ning multitask programs in parallel, where the activity always
varies. On the contrary, an intensive activity in a short period
of time may have a significant impact on the system behavior,
e.g., by producing a thermal hotspot.

Moreover, there also exist research efforts that use the per-
formance events from the preintegrated performance counters
to appraise the global activity such as in [8]. Choi et al. [9]
estimated the power for a dynamic thermal and power man-
agement on the ARM11 MPCore platform using a simple
linear combination of five performance events: 1) the num-
ber of instructions executed; 2) the number of L1 data cache
access; 3) the number of L2 cache access; 4) the number
of stall cycles due to data dependency; and 5) the num-
ber of coherence transactions. Moreover, Bellosa et al. [10]
estimated the power as a linear combination of processor-
internal event energy, such as the energy consumed while the
execution of a branch misprediction or memory retired, etc.
Another approach was proposed in [11] and [12], in which
authors compute a weighting factor of maximum power for
each component in the system. These factors were approx-
imated using the access rate for each component based on
the performance events, for example, the bus control access
rates were obtained by counting all bus transactions (all reads,
writes and prefetches). Furthermore in [13], analytic power
models were provided for each component of the Pentium IV
system after a selection of some relevant performance events.
Another method is addressed in [14], where power models
are represented by an analytical function or by a table of con-
sumption values, which depend on a set of parameters such
as cache miss rate and pipeline stall rate. These models are
extended in [15] to address the OMAP (ARM + DSP) platform.
These approaches may have a good accuracy in some cases,
but are quite design specific. Although there is a high num-
ber of available events for few configurable hardware counters.
This leads to a limitation in the number of simultaneous events
that can be counted in a single execution. Additionally, these
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counters are only included on high performance processors,
so they may not be suitable for other embedded systems.
The methodology described in this paper is applicable to any
type or size of embedded system, and attempts to minimize
the additional hardware required for the monitoring of the
power consumption to efficiently allow the decision making
for power optimizations.

In previous methods, run-time estimations of the power con-
sumption are based on the information available at the system
and software levels, which limits the preciseness or requires
additional characterizations. However, there exist also several
works that use the toggling information at hardware level
to estimate the activity factor α. A technique based on hid-
den Markov models is proposed in [16] to track at run-time
the system power modes. Power variations are represented as
a fix number of power modes depending on the activity of
strategic nets chosen at the register transfer (RT)-level. This
approach is interesting, but assumes a set of power modes that
is suitable for components such as memories, but too lim-
ited for complex components such as processors. Moreover,
Peddersen and Parameswaran [17] proposed a method that
identifies the control signals for each component of the pro-
cessor, on which events counters are then added to monitor
the activity that contribute to power variations. This method
seems to be similar in the concept to the one proposed in
this paper, but it is not a systematic one and authors do not
address complex systems. The selection of events was based
on the study of the correlation between signals and power, and
also a linear regression was used to estimate the power.

The selection of relevant events for power modeling was
only addressed in [18], in which authors present a statistical
analysis to achieve their purposes. They first computed the
correlation coefficient between each performance event and
the power consumption for the Dell PowerEdge R805 SMP
platform for each application separately. Then, they ranked
events for the selection, based on the median of the com-
puted correlation for all applications. But in complex systems,
the processors execute many applications in parallel and their
proposed statistical analysis is no longer applicable.

From the variety of approaches in the literature, it is clear
that current solutions are either imprecise or too design and
technology specific. Our estimation method relies on the infor-
mation at the hardware level, which compared to existing
hardware-level methods [16], [17], is a systematic and generic
approach addressing complex systems and can be applied to
any circuit and any technology. In our method, the global activ-
ity is appraised from the toggling activity on few strategic
signals at the RT-level. Compared to software approxima-
tions [6], [7] and performance counters estimations [9], [10],
our approach does not require any preintegrated counters or
characterizations and is more accurate at high temporal reso-
lution. Furthermore, the originality comes from the developed
selection method inspired from data mining, and also from the
proposed models that accurately track fine-grain variations in
the power consumption.

III. GENERAL METHODOLOGY AND
DATABASE GENERATION

The general idea behind our estimations is to use the
information of toggling activity from the hardware level to
accurately appraise the global system activity that affects the
power consumption. Our aim is to be as generic as possible

Fig. 2. Generic flow for the generation of the databases.

and, at the same time, to have precise estimations in a cost-
effective way. One way to achieve this is to search for
correlations with the power consumption among the wires
from the communication interfaces connecting the components
at RT-level of the design. Our method tries to identify at this
stage the strategic signals, on which ECs are attached at design
time to observe at run-time the global system activity. Indeed,
the estimation of the power consumption by considering the
switching information from a lower abstraction layer may be
more accurate, but also the number of required counters will
be much higher. In all cases, our method can be applied at
any hardware level and at any stage from the design hierar-
chy. However, it is always a question of the tradeoff between
the accuracy and the cost of the monitoring.

Furthermore, a significant increase in the number of wires is
expected due to the continuing trend for the increase in designs
complexity. In order to tackle this challenge, we developed a
method based on data mining techniques. Data mining encom-
passes several competences from different domains, including
statistical analysis, databases, machine learning and artificial
intelligence. In this paper, we investigate the features selection
methods from data mining to identify relevant and strategic
signals among all signals from the interfaces between com-
ponents. The regression techniques and nonlinear models are
also compared to model the power in terms of the toggling
activity of the selected signals.

In Fig. 2, a complete flow is proposed that is able to gen-
erate the database for the data mining analysis. It is based on
recording: 1) the toggling activity on RT-level simulations and
2) the power consumption on a placed and routed netlist. The
dynamic power consumption is considered for the data analy-
sis, as far as it is directly affected by the internal activity. The
power estimation flow (PEF) is developed to collect the power
trace. A post place-and-route simulation is performed to gener-
ate a value change dump (VCD) file containing net transitions
over time. The generated file is then used by an estimation
tool (e.g., PrimeTime-PX from SYNOPSYS) to estimate the
instantaneous power values. The obtained power trace is a
discrete set of average values over an adjustable time inter-
val T . Since T is the sampling period of the power, it must
be noticed that it is likely to have some impact on model’s
preciseness. This is one way to gather the dynamic power. In
parallel, the events extraction flow (EEF) performs an register
transfer level (RTL) simulation to track the toggling activity
over time, which can be obtained by counting the occurrences
of rising and falling edges on each single bit signal during the
same adjustable time interval T .

This offline flow leads to a database composed of items
recorded at specified time intervals, which are then analyzed
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Fig. 3. Proposed data mining method for a lightweight monitoring of the
dynamic power.

with a Data Mining tool. An example of the generated database
is given in Fig. 3: one line, called item or instance, is added
for each time interval T . It encompasses the counted events
over the last period for each individual signal (one column
refers to one RTL signal), also called attribute. The corre-
sponding power or class for a given item is reported in the
last column. The general method for the data mining anal-
ysis is also depicted in Fig. 3, a two-step process in which
Attribute Selection (also known as feature selection) prepro-
cessing is first performed to select a subset of signals, and
then Classification techniques are applied to build the model.
Algorithms and metrics involved are detailed in the following
sections.

IV. ATTRIBUTES SELECTION

At this stage, the application of the flow proposed in the
previous section for a complex circuit, leads on constructing a
big database with many signals and items. Let Natt be the total
number of attributes and equal to the total number of avail-
able signals at the RT-level. Let Nitem be the total number of
items, that corresponds to the counted events and the equiva-
lent power consumption. The challenge is to find a minimum
number of attributes (k, k � Natt) that is enough for power
modeling. The classical statistical correlations and hypothe-
sis tests operate on each attribute separately and compute the
relationship between each attribute and the power. However,
perfectly correlated attributes are truly redundant in the sense
that no additional information is gained by keeping all, and
also poorly correlated attributes with power can sometimes be
useful together for power modeling.

The Attribute selection methods from data mining encom-
passes the power of statistics and computer science, and offers
several search algorithms that tries to remove as much irrele-
vant and redundant information as possible. For this purpose,
we explore different type of selection method in order to
select a subset of attributes for power modeling. In general,
the attribute selection performs a search through the space of
attribute subsets, and, as a consequence, must address four
basic issues affecting the nature of the search (as shown in
Fig. 3) [19].

A. Starting Point

The search can start from a point in the attribute subset
space from which to begin the search can affect the direction of
the search. One option is to begin with no attribute and succes-
sively add attributes (forward search). Conversely, the search

can begin with all attributes and successively remove them
(backward search). Another alternative is to begin somewhere
in the middle and move outwards from this point.

B. Search Procedure

In artificial intelligence, a search procedure is an algo-
rithm for finding an element with specified properties among
a collection of elements. They are divided into three main
categories: 1) exhaustive; 2) heuristic; and 3) meta-heuristic.
With Natt initial attributes, there exists 2Natt possible subsets.
The exhaustive search consists of systematically enumerating
all possible candidates and checking whether each candidate
satisfies the criterion for the selection.

However, heuristic approaches are techniques designed to
be faster than exhaustive. Their objective is to produce a
solution in polynomial time that is enough for solving the
problem. The basic search strategy, called greedy search (also
known as greedy hill-climbing) [20], considers local changes
to the current attribute subset. Often, a local change is simply
the addition or deletion of a single attribute from the sub-
set depending on the search direction (forward or backward).
At each iteration, it selects the attributes that improves more
the current solution. Therefore, the evaluation function pro-
duces a metric to compare subsets, which is defined later in
the evaluation procedure.

Another approach, called BestFirst (extended to
LinearForwardSelection) [21], allows the backtracking
along the search path. Like greedy hill climbing, best first
moves through the search space by making local changes to
the current attribute subset. However, unlike hill climbing, if
the path being explored begins to look less promising, the
best first search can backtrack to a more promising previous
subset and continue the search from there. Given enough
time, a best first search will explore the entire search space,
so it is common to use a stopping criterion. Normally this
involves limiting the number of backtracking that result in no
improvement.

On the other hand, meta-heuristic methods are based on
stochastic and iterative optimizations. Genetic algorithms are
adaptive meta-heuristic search based on the principles of
natural selection in biology. They employ a population of com-
peting solutions, evolved over time, to converge to an optimal
solution. Effectively, the solution space is searched in parallel,
which helps in avoiding local optima. For attribute selection, a
solution is typically a fixed length binary string representing an
attribute subset, where the value of each position in the string
represents the presence or absence of a particular attribute.
It is an iterative process where each successive generation is
produced by applying genetic operators such as crossover and
mutation to the members of the current generation. Mutation
changes some of the values (thus adding or deleting attributes)
in a subset randomly. Crossover combines different attributes
from a pair of subsets into a new subset. The application of
genetic operators to population members is determined by their
fitness (how good an attribute subset is with respect to an eval-
uation strategy). Better attribute subsets have a greater chance
of being selected to form a new subset through crossover or
mutation. In this manner, good subsets are “evolved” over
time.

C. Evaluation Procedure

The evaluation procedure defines a metric (called merit) to
evaluate the current candidate subset selected by the search
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procedure. There are two main categories: 1) wrapper and
2) filter [19]. Wrappers are algorithms that use feedback
from a classification algorithm in order to determine which
attribute(s) are needed in order to build the most accurate
model. The merit can then be one of the preciseness metrics
such as the root mean squared error (RMSE), mean absolute
error (MAE), etc. The correlation subset evaluation (CSE)
is one of the implementations of the wrapper evaluator. It
measures the RMSE for a given model built with the entire
attributes, and then compares it to the error for each candidate
subset. In the end, the final subset is the one that produces the
most accurate model (lowest RMSE).

On the contrary, the Filter approach only uses statistical
dependencies, e.g., correlation, to evaluate an attribute without
any involvement of a classification model. In the literature,
there are many filter evaluators, but most of them address
the nominal and binary databases such as information gain,
gain ratio, relief-F, one-R, chi-squared, etc. The correlation
feature selection (CFS) is widely used for numerical database
problems [22]. It quantifies the fitness of a candidate subset
using the merit measurement shown in (2), where A is the
number of attributes in the candidate subset, r̄ac is the average
correlation between each attribute and the class, and r̄aa is
the average correlation among attributes in the candidate
subset. The subset having the highest merit is the outcome of
the CFS and corresponds to a set of attributes, which highly
correlate with the power and uncorrelated with each other

Ms = A ¯rac√
A + A(A − 1) ¯raa

. (2)

D. Stopping Criterion

Depending on the search procedure, an attribute selector
might stop adding or removing attributes when none of the
resulting attributes improves the merit of the current solution,
e.g., BestFirst and LinearForwardSelection. Alternatively, the
algorithm might continue to revise the attribute subset as long
as the merit does not degrade, e.g., GreedyStepwise, or the
size of the output subset reached a predefined parameter.

V. CLASSIFICATION

In the previous section, we have presented several attribute
selection methods, which allow the selection of a subset with k
signals among the Natt available. The best selection method is
the one that quickly produces a solution with the fewest num-
ber of attributes (k), which are enough to accurately appraise
the global system activity. The objective is then to build a
model that is able to estimate the power consumption in terms
of the toggling activity counted on the k selected signals. This
is the role of the three regression processes described in the
following paragraphs.

A. Linear Regression

Regarding the complexity and the response time, the linear
regression is the simplest model to be used in order to pro-
duce a resourceful estimation of the consumption. Equation (3)
relates the power with the counted events on the k selected sig-
nals. It is composed of a constant term P0, which corresponds
to the idle power consumption, and the sum of terms wiEvi, in
which wi are the coefficients of Evi that weigh the contribution

of each attribute on power variations

Pdyn = P0 +
i=k∑

i=1

wiEvi. (3)

B. Multivariate Adaptive Regression Splines

In complex systems, the toggling activity may have a non-
linear behavior that would have a negative impact on the
linear model accuracy. Therefore, a multilinear based model is
also considered in this paper. Multivariate adaptive regression
splines (MARS) [23] is a nonparametric spline-based method.
It is based on a combination of linear truncated basis functions
to approximate the model. The MARS based power model can
be written as an additive function of the product basis func-
tions as shown in (4) where β0 is the coefficient of the constant
basis function B0 = 1, Bm is the mth basis function, βm is the
coefficient of the basis function, and M is the number of basis
functions in the model. Each basis function is a Hinge func-
tion shown in (5) and depends on the events for one selected
signal where c is a constant compared to the counted events

Pdyn = β0 +
j=M∑

j=1

βjBj (4)

Bj = max(0, c − Ev). (5)

C. Neural Network

Artificial neural networks are used in data mining for
regression analysis, especially for supervised learning to
model nonlinear hypothesis. For this purpose, we aim to
evaluate the multilayer feed forward neural network. It
consists of neurons, that are arranged in layers. The first
layer (input) has k neurons (total of selected signals) and the
output layer contains one neuron that produces the estimation
of the power. The layers between have a configurable number
of neurons, and each neuron has direct connections to all
neurons of the subsequent layer. The connection between the
ith and jth neuron is characterized by the weight coefficient
wij and the ith neuron by the threshold coefficient ri. The
weight coefficient reflects the degree of importance of the
given connection in the neural network. The output value xi
of a neuron is determined by (6), where ϕi is the input of
the transfer function, which is also determined in (7), where
NC is the number of connections to the ith neuron. The
back-propagation algorithm used to train the neural network,
varies the threshold coefficients ri and weight coefficients wij
to minimize the sum of the squared differences between the
computed and required output values

xi = 1

1 + e−ϕi
(6)

ϕi = ri +
j=NC∑

j=1

wijxj. (7)

VI. EXPERIMENTAL SETUP

The generic method presented in this paper is applied for
a demonstration on an field-programmable gate array (FPGA)
technology. Power efficiency has become a major concern for
all electronic devices, including reconfigurable circuits, which
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Fig. 4. Proposed flow that generates the database for the FPGA implemen-
tations.

has led to a growing body of research on power manage-
ment. Estimation of the power consumption for FPGAs is a
topic which is discussed in [24], where precharacterization-
based macro-modeling is used to capture average switching
power per access to both look-up tables (LUTs) and regis-
ters. Another linear-based model for the dynamic power is
proposed in [25], in which the switching activity from the RT-
level is utilized to estimate component power breakdowns for
the FIR filter application with a fair error (10% of average
error). Power models for multiprocessor SoC (MPSoC) cir-
cuit on FPGA is conducted in [26]. The technique is based
on the offline extraction of the abstract profile of an applica-
tion called event signatures used to estimate the average of the
total power consumption. The authors achieve 10% of aver-
age error estimating the average power. It is worth noting that
there is no real contribution addressing the power monitoring
issue, and comparing tradeoffs on model accuracy against the
overhead.

The dedicated flow is depicted in Fig. 4. PEF is adapted
to estimate the Pdyn(t) for designs implemented on FPGAs.
For this purpose, the Xpower tool from Xilinx v13.1 is used:
unfortunately, it only estimates the average of the power con-
sumed during the simulation. Since instantaneous estimation
is required for monitoring purposes, the simulation is split into
periodic time slices to provide Nitem estimations. The Xilinx
tool-chain (XST, translation, mapping, etc.) provides the syn-
thesized, then placed and routed netlist from the HDL files.
A simulation description file [wave long format (WLF)] is
generated along with ModelSim v10.1d. The WLF is then cut
into Nitem subsimulations as described in (8) thanks to wlfinfo
command from ModelSim. T0 is the time set to initialize the
circuit and T is the time interval for each produced WLF file.
The last step of the PEF flow is to convert the WLF to VCD
files and then run the Xpower tool to deliver Nitem estima-
tions, which correspond to Pdyn(t). While PEF produces the
estimation of Pdyn(t), the role of the EEF is to build a toggling
activity report at the RT-level. ModelSim simulation is run to
simulate the RTL description of the system, from which the
activity is extracted

Ttotal = T0 + Nitem × T. (8)

Fig. 5. SecretBlaze SoC.

TABLE I
APPLICATIONS EXECUTED BY THE PROCESSOR

The hardware platform considered in our experiment is the
open-source configurable SoC SecretBlaze [27]. This SoC is
a micro-controller addressed for high performance computing
applications, fully described in VHSIC hardware descrip-
tion language. The architecture is represented in Fig. 5, and
includes a 32-bit processor, an interrupt controller, universal
asynchronous receiver transmitter, timer, instruction/data cache
memories, and a bus as interconnect. All the components of the
SoC communicates through master–slave Wishbone interfaces,
which are also illustrated in this figure. However, going further
in details about the communication protocol is out of the scope
of this paper, but interested readers can refer to [28]. However,
the flattened top level architecture has 1531 single bit sig-
nals, including all master–slave Wishbone connections, which
will be considered as attributes in the generated database
(Natt = 1531).

The Atlys board which is based on a Xilinx Spartan-6 LX45
FPGA has been chosen for this paper; in particular, it has inte-
grated real-time sensors on its power rails which provide an
interesting feedback to verify design-time and run-time esti-
mations. WEKA [29] was also chosen to put into practice the
search and classification methods on the generated database.
This tool offers several advantages: it is open-source and it
contains a large number of configurable heuristics, parame-
ters, evaluators and classification methods. It was completed
by an open-source toolbox for MATLAB/Octave Areslab [30].

Since this is a programmable system, the internal activity
depends on data and instructions. It is therefore necessary to
set up a test bench that has a large coverage. To this end, sev-
eral benchmark applications were compiled and then executed
by the processor one after the other in a standalone mode
(i.e., without any micro kernel). These programs are listed in
Table I with their corresponding duration in clock cycles, and
a short description of their content. The obtained power profile
is depicted in Fig. 10(b) for the smallest sampling period T
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Fig. 6. Histogram of the computed correlations between attributes and power.

(equal to 100 μs). The first observation that can be made is the
great diversity of behaviors: the power of nschineu maintains a
pretty constant value while MJPEG produces a clear disconti-
nuity. The power of MXM fluctuates around an average value
with small variations, while the following benchmarks have
much higher disparity in power such as compress, statemat and
qurt. Significant variations in power consumption of Whetstone
are due to the execution of different types of functions such as
array initialization, conditional jumps, procedure calls, arith-
metic functions, and others. All applications are executed by
the processor at the maximum operating frequency 25 MHz.
The sampling period of power T is one parameter that can be
adjusted. It will be tailored to analyze the impact on accuracy
and overhead of the generated models.

VII. EXPERIMENTAL RESULTS

The objective of the experiments is to evaluate and com-
pare different methods from data mining for power monitoring
purposes. The challenge is to find the best combination of
algorithms and parameters to achieve the highest accuracy in
a cost-effective way. We first provide an evaluation of the dif-
ferent search and classification methods. Then, we study the
overhead of the proposed monitoring method.

A. Attributes Selection

At this stage, the generated database has initially 1531
attributes (Natt) and 6500 items (Nitem) for the smallest sam-
pling period T (equal to 100 μs), which corresponds to
37.19 MB of data memory size. The standard method that
statisticians use to select a subset of attributes is to mea-
sure the correlation between each attribute and the power.
The significance of any correlation is computed using p-value,
which should be lower than 0.05 for having strong correla-
tion. The application of this method results by selecting 821
attributes that have a significant correlations with the power
with a p-value lower than 0.05. The histogram of the correla-
tion coefficient of the selected signals is shown in Fig. 6, where
various significant correlations can be concluded. This shows
the weakness of the classical statistic method for resolving the
problem of the selection.

The first step consists of evaluating the attribute selec-
tion methods presented in Section IV. For this purpose, the
evaluated methods are shown in Table II, in which we con-
sidered both Greedy and BestFirst from heuristic search and
the genetic search from meta-heuristic. In the literature, the
population size parameter for the genetic algorithm is recom-
mended to be between 50 and 200 for a better selection in the

TABLE II
EVALUATED ATTRIBUTES SELECTION METHODS

TABLE III
METRICS MEASURED FOR THE ATTRIBUTES SELECTION METHODS

genetic search [31]. Whereas, the number of iterations (or gen-
erations) should be large enough to ensure the convergence
toward a solution. For this reason, we set the population size
and the maximum generation to 100 and 200, respectively.
Moreover, the number of neurons at the hidden layer in NN
model has a significant impact on model precision and training
time. According to our experiments, three neurons in the hid-
den layer in the NN model are enough to produce an accurate
and resourceful model. However, the exhaustive search was
eliminated from this evaluation as it is very time consum-
ing and does not complete the search. Moreover, the search
algorithms are completed by both evaluations: the wrapper
using CSE with both LM and NN models and the Filter using
CFS. Furthermore, the selection method in Areslab toolbox
that implements the MARS model, uses the greedy search with
the wrapper approach for the selection of attributes.

The application of the possible selection methods shown in
Table II to the initial database, does not all produce a solu-
tion in a reasonable time. For this reason, the only compared
methods are those completed within three days, while the elim-
inated methods are M7–M10. This is due to the high training
time of both NN and MARS models that highly increases the
time needed to complete the search by the wrapper approach,
which train several times the model at each iteration. The
time needed for the selection, the evaluation merit and the
cardinal of the selected subset are compared in Table III. It
must be noticed that the merit in the filter methods is based
on (2), while in the wrapper methods is equal to the RMSE
of the trained model. For this reason, the comparison between
wrappers and filters should not be based on this metric.

First, the filter based methods (M1–M3) are much faster
than wrappers (M4–M6) according to Table III. They almost
eliminate redundant and useless attributes. Moreover, the
heuristic methods with the filter evaluation is much more
useful than the classical statistic method. For example, M1
and M2 have selected only 72 and 53 attributes, respectively,
compared to 821 selected by the p-value selection method.
Comparing M3 to M1 and M6 to M4 in Table III, the genetic
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Fig. 7. Time taken by the selection methods for different sizes of databases.

search is much slower than heuristic for both filter and wrap-
per based methods. It also selects a higher number of attributes
with a lower merit. Both heuristic search produce a compa-
rable solution (merit: M1 = M2 and M4 = M5), while the
greedy search tends to select a higher number of attributes.
This is due to the stop criterion detailed in Section IV. The
Greedy continue adding attributes as long as the merit does
not degrade, while the BestFirst stops adding attributes when
none of the resulting attributes improves the merit.

B. Scalability

In order to evaluate the complexity of the selection methods,
we apply all remaining methods (M1–M6) on different sizes
of databases. Each database was created by randomly remov-
ing attributes from the initial set. Indeed, the complexity of
these methods depends also on several parameters, including
the number of instances simulated, the order of the attributes
in the database, etc. But, such evaluation allows us to make
a primary approximation about the scalability of these tech-
niques to handle complex systems generating big quantity of
data.

Fig. 7 plots the time needed to complete the selection by
all techniques for all created databases. It is clear that fil-
ter methods (M1–M3) are faster than the wrappers that uses
the feedback of the linear model to select relevant attributes
(M4–M6). With a simple linear approximation, we can esti-
mate the time needed to complete the search in case of hundred
thousand of signals. M1 and M2 will take around 3 min,
while M4 needs two days to complete the search. However,
the approximated time taken by the wrappers M4 and M5 is
about 150 days, and 2.5 years for M6. We remind that wrapper
approaches with both NN and MARS models were not able
to produce a solution in our case with thousands of attributes,
and were previously eliminated. From this paper, we conclude
that selection methods in the literature must be efficiently used
to address the challenge of managing high quantity of data.

C. Relevant Signals

From the previous study, we conclude that the wrapper
approaches are not suitable in most of selection methods for
complex systems, while the filter methods are able to oper-
ate on big database sizes within a reasonable time. Second,
the heuristic search is able to produce a solution in a reason-
able time with fewer number of attributes compared to the
genetic search. Hereof, we propose to use a combination of
both filter and wrapper methods with an iterative search, to
select the subset that produces the most accurate model for

TABLE IV
SIGNALS SELECTED BY THE THREE WRAPPER

METHODS M4, M7, AND M10

the three classifier LM, NN, and MARS. For this paper, we
use the Greedy search instead of BestFirst, because it provides
a ranking parameter for the selected attributes. The utilization
of BestFirst will also lead to a comparable solution.

M1 selects 72 from 1531 initial attributes that have almost
a significant relation with the power. Then, the application of
M4, M7, or M10 to the resulting database produces a solution
that leads the best for power model’s precision. The selected
attributes are shown in Table IV, where M4 has selected eight
attributes while M7 and M10 have selected six to build the
most accurate model. Most of these signals are related to the
data or address buses from the wishbone interfaces shown
in Fig. 5. It must be noticed that all data and address buses
are connected inside the wishbone and a dedicated controller
manages the control signals to select one target to conduct a
request. In other words, the activity on the data or address
bus connected to the ICache (master 1) is almost the same for
the DCache (master 2). Consequently, snooping the toggling
activity on few bits of these buses is enough to appraise the
global activity, which corresponds to the instruction and data
cache misses, the uncachable write access, the transaction to
the TIMER, etc. At the end, this information could not be
retrieved by a simple observation of previous knowledge of
the hardware. With our method, we are able to extract this
knowledge from the high quantity of data with a reasonable
time.

D. Power Tracking and Models Accuracy

In the previous section, we have evaluated different attribute
selection methods, and selected few signals that relates the best
for power modeling. In this experiment, we aim to evaluate
the accuracy of the three models. For this reason, the gener-
ated set of data is randomly split over items into two parts:
1) training set to build the model and 2) test set to measure
its accuracy. This methodology has been applied for the sub-
sequent described experiments. The LM model achieves an
average error 3.62% on the test set using the events counted
on eight signals, while the error for NN and MARS is 4.02%
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Fig. 8. Coefficient of determination (R-squared) computed for the test
databases.

Fig. 9. Average of error computed for the test databases.

and 2.92%, respectively, with only six signals. The selected
subset illustrated in Table IV corresponds to the maximum
model precision. However, each selected signal requires the
integration on an EC to monitor the occurrence of the tog-
gling activities, which is an extra overhead. For this purpose,
we aim at evaluating the impact of each selected signal on
model precision to find the best tradeoff between the accuracy
and the overhead.

Hereof, we investigate the impact of two parameters on
model accuracy: the number of selected attributes (k) and the
sampling period (T). Let us assume first T is fixed to 100 μs,
while varying the number of attributes. At each iteration, we
remove the attribute that has the lowest impact on model
precision. The coefficients of determination (denoted R2) are
reported in Fig. 8; it measures how well the model predicts
the original values (close to 1 is better). The average of the
error is also used to ascertain the model precision in Fig. 9;
it is the MAE divided by the average of the reference power
values. The three models track very well the power variations
beyond three attributes, where R2 becomes higher than 0.9 and
the average error is lower than 6%.

Also, the gain in accuracy with k higher than 3 is less than
0.5% for each additional attribute. It is interesting to note that
the MARS model outperforms the others, except for k = 1.
We also observe that NN is better than LM for k smaller
than 4, and the error is near for the other cases. We finally
conclude that it is possible to reach a relative good accuracy
over time with a small number of signals, which means that
our methodology is able to provide trustworthy energy esti-
mations. In the next experiments, we consider two cases: 1) k
equal to 3, which is the first value of k for which the three
models achieve a good accuracy and 2) k equal to 8 for LM and
6 for both NN and MARS, which is the most accurate models
achieved.

Fig. 10 shows the reference power profile and the three stud-
ied classification models for the highest precision (k = 8 for
LM and k = 6 for NN and MARS). Three areas of interest

are highlighted on the power trace extracted for the smallest
sampling period T equal to 100 μs. On the first one, when
MJPEG begins, a sudden discontinuity occurs: both LM and
NN are able to follow the reference but with a non-negligible
difference. MARS is the only model that is able to track the
best these discontinuities. In the second situation (MXM), it
can be seen that despite the small variations, it is interesting to
observe that the three models are able to track the consump-
tion. The third case further supports this tendency as linear,
MARS and NN are able to follow the reference on rapid and
significant variations. Fig. 10 is a good illustration, but is not
sufficient enough to appraise the accuracy of the models.

Let us assume now k be the smallest value producing an
accurate model (k equal to 3). The sampling period T should
be considered according to the whole adaptation process. As
T may also have a repercussion on the accuracy and the over-
head, it is therefore appropriate to specify the average error
for different periods. The corresponding values are plotted in
Fig. 11 for the three models. As expected, the error reduces
while increasing T . It is, however, important to remark that
the decrease is faster for MARS and LM models.

To summarize, all the models are able to achieve a good
accuracy with few attributes on various activities, and the
MARS model provides the best results compared to the
other approaches. There is also a tradeoff to find between
the required precision and timings of the adaptation loop.
Moreover, as these two parameters have a direct effect on
the area and power overhead, we must consider this before
drawing the final conclusions.

E. Overhead

The last step of these experiments aims at evaluating the
additional costs required for the implementation of the mod-
els generated by the classification methods. It must be recalled
at this point that the final objective is to monitor the power
consumption at run-time: the estimation should be as precise
as possible, but the area, performance and energy overheads
should be at the same time as small as possible. Power
sampling period T and the number of attributes k are the
two parameters that can be tuned to study different accu-
racy/overhead tradeoffs. k is set to 3, which corresponds to the
minimal number of attributes required for a sufficient accuracy,
and to 8 and 6 for LM and both NN and MARS, respectively,
which corresponds to the highest preciseness. As a reminder,
each attribute corresponds to one selected signal on which EC
should be attached. T is varied from 100 μs to 1 ms.

We designed a configurable monitoring unit based on mod-
ules counting the number of rising and falling edges on
selected signals. Each counter can be reset, enabled or dis-
abled when required. The monitoring unit is controlled by the
main processor, which allows managing and synchronizing the
different modules at the software level. Counter’s size depends
on T , 12- to 15-bit here, which leads to the same area on the
SC6LX45 FPGA: each EC occupies eight slice registers and
eight slice LUTs. Compared to the resources required by the
SoC SecretBlaze (1574 slice registers and 2466 slice LUTs),
each counter implies a 0.51% slice register and 0.32% slice
LUTs overheads. Therefore, the area overhead varies between
1.5% for k = 3 and 4% for k = 8.

Once events have been counted over the period T , values
are collected by a monitoring management unit. Its role is
to compute the estimation of the power consumed during T .
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(a)

(b)

Fig. 10. Profile of power and the fitting of the three models with the maximum precision (eight attributes for LM and six attributes for both NN and MARS)
for a sampling period equal to 100 μs. (a) Models fitting. (b) Power profile.

Fig. 11. Average of error of the three model built with three attributes
computed for the test database with different sampling periods.

This calculation is shown in Fig. 12 and depends on the chosen
classification method: LM, NN, or MARS. The three models
have different complexity, which impacts the time needed to
produce the estimations. For the LM model, it only requires
one multiplication and addition for each EC. As mentioned in
Section V, the MARS model is the sum of the product of M
basis functions (4) and (5): M multiplications and additions
are required, as well as a conditional structure for the max
calculus.

The time needed for the neural network based estimation
depends on the number of neurons in the hidden layer. We
approximate the complexity of this model by (9), where NHL
is the number of neurons at the hidden layer, k is the number
of selected attributes, CMult is the number of cycles needed
to execute 1 multiplication, CAdd is the number of cycles
needed to execute 1 addition, and Ct is the number of cycles
needed to execute the sigmoid transfer function shown in (6).
Equation (9) shows the high dependence between the com-
plexity of the neural network and the number of neurons at
the hidden layer (NHL), which justifies the need to minimize

Fig. 12. Computation time of the three models while varying the number of
attributes.

NHL once a steady and accurate model is achieved (in our case
equal to 3). On the other hand, it is clear that the computa-
tion of an exponential function is too much expensive: that is
the reason why the sigmoid function was replaced by a faster
transfer function shown in (10). The faster transfer function
was only considered for the computation of the overhead in
this experiment and does not affect the model precision. In all
cases, the transfer function mainly influences the computing
and training times of the neural network, and has a low impact
on model precision as discussed in [32]

CNN = NHL · (
k · CMult + k · CAdd + Ct

+ CMult + CAdd
) + Ct (9)

FastSigmoid(x) = 0.5 × x

1 + |x| + 0.5. (10)

We considered in the scope of this paper that the man-
agement of the monitoring was handled by the CPU. The
computation overheads for each model have been obtained by
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Fig. 13. Minimum and maximum computation overhead of the three models
for different sampling periods.

programming and running classification models on the proces-
sor. Results are shown in Fig. 13: the overhead is calculated
as the ratio between the number of cycles needed to com-
plete the computation of the power by the processor for a
given model (shown in Fig. 12), and the sampling period T .
The minimum computation overhead corresponds to the cost
of the three models for k equal to 3 (lowest sufficient accu-
racy), while the maximum overhead is the cost of the three
models at higher precision (k = 8 for LM and k = 6 for
both NN and MARS). Not surprisingly, the linear model has
the lowest overhead compared to the other methods. We also
observe that the maximum computation overhead of MARS is
not sustainable: this is due to the selection method on MARS,
which associates several basis functions for a unique signal
that rapidly increases the complexity of the model. The max-
imum overhead of the LM (dotted blue line) and NN (dotted
red line) is lower than 10% for a period greater than 200
and 300 μs, respectively. This overhead reduces significantly
by reducing the number of signals (k) in the models and by
increasing the sampling period; it can achieve 0.3% for LM
(blue line) and 2% for NN models (red line) with three sig-
nals at 1 ms. Moreover, the minimum MARS computation
overhead is about 3% at 1 ms (green line).

Finally, we analyze the energy overhead Eov, which depends
on the power consumed by the ECs over the period T and the
energy consumed by the processor during the model computa-
tion (which is related to the power consumed by the processor
and the time required to produce the estimation). Eov can be
easily expressed as a function of the period T and the num-
ber of attributes k as depicted in (11). EEC corresponds to the
energy consumed by the ECs, and is equal to k ∗ PEC ∗ T . The
maximal power consumed by EC is 0.01 mW. Emin is the min-
imal dynamic energy of the system without any monitoring,
Pmin ∗ T : Pmin is 10 mW, which corresponds to the minimal
dynamic power consumed by the system. Pmodel is the energy
needed to estimate the power by a given model, which is equal
to Pmodel ∗ Cmodel, where Cmodel is the required computation
time that is shown in Fig. 12 for several values of k

Eov = Eextra

Emin
= k × EEC + Emodel

Emin

= k × PEC × T + Pmodel × Cmodel

Pmin ∗ T
. (11)

In all cases, we considered the worst case scenario, e.g.,
we assumed that ECs were always activated. Fig. 14 reports
the minimum energy overhead that corresponds to the cost in

Fig. 14. Worst-case energy overhead corresponding to the energy consumed
by ECs and the energy consumed by the processor to compute the power by
the three models.

energy of the three models for k equal to 3 (lowest sufficient
accuracy), and the maximum energy overhead that is the cost
of the three models at higher precision (k = 8 for LM and
k = 6 for both NN and MARS). In the context of adaptive
systems targeting energy efficiency, it is clear that the preferred
method will be the ones involving the lowest energy overheads.
Regarding this criterion, the maximum energy overhead of LM
(dotted blue line) varies between 11% at 100 μs and 2% at
1 ms, while the minimum energy (blue line) is between 4.2%
at 100 μs and 0.8% at 1 ms. NN and MARS are more expen-
sive: the minimum energy of NN (red line) is between 12% at
100 μs and 2% at 1 ms, while for MARS (green line) varies
between 20% at 100 μs and 3% at 1 ms. We remind that
the worst-case energy is considered in this experiment, where
ECs are designed without any optimization and the overhead
is compared to the minimum dynamic energy consumed by
the system without any monitoring. However, this overhead
is much lower against the total energy consumption [adding
Pstatic ∗ T to the denominator in (11)].

F. Result Analysis

The previous experiments have evaluated the precision, the
computation cost and the energy overhead of the proposed
method. The best monitoring method is the one that has the
lowest cost and the highest precision. According to the previ-
ous study, the number of signals k and the sampling period T ,
have a direct impact on the model precision, the performance
and the energy overheads. Therefore, several tradeoffs between
the accuracy and the overhead can be concluded. The first solu-
tion might be the linear model with three signals, where the
models fit most of power variations for a fine-grained adapta-
tion. The average error is about 4%, and the computation and
the energy overheads are equal to 2.7% and 4%, respectively,
at the finest granularity 100 μs. The second solution may use
the MARS model with only three (or four attributes), where
the models tracks very well all power variations and the aver-
age error reaches 2.5%. But, it requires a higher period of the
control loop compared to the first solution: this is because of
the overheads that achieves less than 5% for a sampling period
greater than 700 μs. However, the neural network based solu-
tions can be eliminated, because they achieve a precision equal
to the first solution with a highest computation and energy
overheads.

Previously, in Section II, we presented the main factors that
affect the power consumption, and we discussed the existing
works in the literature. We remind that the internal activity is
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TABLE V
AVERAGE ERROR OBTAINED IN EXISTING WORKS ARE

COMPARED TO OUR METHOD WITH THE THREE

MODELS USING SIX SIGNALS (k = 6)

one factor that can be appraised at different levels of abstrac-
tion. Table V compares the error of the three models using six
signals (the highest accuracy achieved) with the previously
presented works that only consider the variation of the activ-
ity in their models. The most similar approaches are the ones
that appraise the system activity using the toggling informa-
tion with a linear model at the hardware level [16], [17]. The
obtained average error in [16] for the small circuits (RAM and
DSP) is about 7% at the resolution of 100 μs, while in [17]
2.5% of average error was achieved using nine signals for
also small components such as a divider, a multiplier and an
instruction/data caches. Our obtained average error is much
lower compared to [16] at the same granularity, and is com-
parable to [17] with a lower overhead as the number of signals
used in our linear model is lower (6 in this case). Also, our
proposed approach was experimented on a more complex SoC.

On the other hand, several methods presented in the related
works use the performance events from the PMU to estimate
the system activity at higher levels [10]–[12]. The linear model
constructed in [10] for the Pentium IV board has achieved
7% of average error with a fine grain resolution equal to
1 ms, while comparable errors were achieved in [11], and
in [12] for the big core of the ARM big.LITTLE processor at a
much higher granularity. Although our method was tested on
a smaller circuit, but it is more accurate at finer timing resolu-
tions; it is equal to 3.8% at 100 μs compared to 6% at 440 ms
in [11] and 8% at 500 ms in [12]. To summarize, the studied
existing and most similar approaches use a linear combina-
tion to estimate the power in terms of the system activity. Our
solution shows a better accuracy with the same regression, and
also goes further in modeling the power by introducing both
NN and MARS models, which can be interesting for more
complex systems such as MPSoCs.

The overhead of the monitoring is poorly addressed in the
literature, where most of the techniques have evaluated only
the accuracy of the estimations. In order to compare our results
with existing works, we compared our monitoring method with
the PMU, which is widely used for power estimation purposes.
Ho et al. [33] have presented an architecture of a PMU for
the LEON3 system with six hardware counters. Obtained area
overhead on the Xilinx ML605 Virtex-6 FPGA is about 3.2% of
flip-flops and 6% of LUTs. However, our proposed monitoring
method with three ECs requires only 1.53% and 0.96% of
additional flip-flops and LUTs, respectively.

Fig. 15. Comparison between the monitored total power and the one mea-
sured by the off-chip power monitor on the Atlys FPGA at 100 ms timing
granularity.

G. Validation

In all previous experiments, the reference power values were
obtained from the power estimation tool XPower. In this sec-
tion, the objective is to implement the proposed monitoring
method on the Atlys FPGA that offers an off-chip power
monitor based on linear technology’s LTC2481C sigma-delta
analog-to-digital converters. Similar to the simulations, we
also considered the SecretBlaze SoC, but unlike the previous
experiments, it executes three new applications: 1) two sym-
metric crypto algorithms advanced encryption standard and
data encryption standard and 2) NOP application that has only
“nop” instructions. Three ECs were added to the SoC to count
the toggling activity on the previously selected signals: S2,
S4, and S5 illustrated in Table IV. The power estimated by
our on-chip monitoring was compared to the power measured
by the off-chip power monitor for a timing resolution equal
to 100 ms.

The tracking of power is shown in Fig. 15, where the black
corresponds to the total power measured by the power mon-
itor and the red, blue and green are the estimated values
by LM, NN, and MARS, respectively. Our method achieves
the accuracy of a power sensor, where the obtained average
error is about 0.9% compared to 1% the error of the off-
chip LTC2481C. It therefore becomes possible to monitor the
power consumption at fine-grained timing resolution using an
on-chip lightweight monitoring subsystem. Finally, this exper-
iment highlight the reliability of the analysis done about the
signals selection and power modeling.

VIII. CONCLUSION

We have proposed a new approach for the run-time mon-
itoring of the dynamic power in SoCs, that is achieved by
the insertion of ECs to monitor the relevant toggling activity
on some strategic signals at the RT-level and using a dedi-
cated power model. We proposed a method inspired from data
mining algorithms to produce a lightweight and accurate mon-
itoring subsystem. First, we introduced the power monitoring
flow, which generates the databases from the offline simula-
tions. We then presented a combination of algorithms from
the attributes selection methods that select the relevant sig-
nals from the databases. Three classifiers were also explained
and compared in this paper to model the dynamic power: the
linear model, the neural network and the MARS model. This
approach was demonstrated on a basic SoC architecture imple-
mented on the Xilinx Spartan-6 LX45 FPGA. A useful study
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was done in the experiments, from which we compared the
accuracy and the overhead of all models.

Our experimental results indicate that our approach is able
to automatically identify and select a small number of signals
correlating with the power without any previous knowledge.
The useful study of the different tradeoffs between the accu-
racy of models and the overhead in terms of area, energy
and computation, revealed the originality of our approach that
helps designers to easily set up a lightweight and accurate
monitoring subsystem for the modern SoCs. The validation of
our method by a real power measurement shows the efficiency
of the proposed monitoring that is able to achieve the accu-
racy of power sensors at finer granularity. In future works, we
will investigate additional parameters in order to have a model
capable of taking temperature, process variations, frequency,
etc., into account.
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