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Abstract

Motivation: New long read sequencing technologies, like PacBio SMRT and Oxford NanoPore, can

produce sequencing reads up to 50 000 bp long but with an error rate of at least 15%. Reducing the

error rate is necessary for subsequent utilization of the reads in, e.g. de novo genome assembly.

The error correction problem has been tackled either by aligning the long reads against each other

or by a hybrid approach that uses the more accurate short reads produced by second generation

sequencing technologies to correct the long reads.

Results: We present an error correction method that uses long reads only. The method consists of

two phases: first, we use an iterative alignment-free correction method based on de Bruijn graphs

with increasing length of k-mers, and second, the corrected reads are further polished using long-

distance dependencies that are found using multiple alignments. According to our experiments,

the proposed method is the most accurate one relying on long reads only for read sets with high

coverage. Furthermore, when the coverage of the read set is at least 75�, the throughput of the

new method is at least 20% higher.

Availability and Implementation: LoRMA is freely available at http://www.cs.helsinki.fi/u/lmsalmel/

LoRMA/.

Contact: leena.salmela@cs.helsinki.fi

1 Introduction

With the diminishing costs, high-throughput DNA sequencing has

become a commonplace technology in biological research. Whereas

the second generation sequencers produced short but quite accurate

reads, new technologies such as Pacific Biosciences and Oxford

NanoPore are producing reads up to 50 000 bp long but with an

error rate at least 15%. Although the long reads have proven to be

very helpful in applications like genome assembly (Koren and

Philippy, 2015; Madoui et al., 2015), the error rate poses a chal-

lenge for the utilization of this data.

Many methods have been developed for correcting short reads

(Laehnemann et al., 2016; Yang et al., 2013) but these methods are

not directly applicable to the long reads because of their much

higher error rate. Moreover, most research of short read error

correction has concentrated on mismatches, the dominant error type

in Illumina data, whereas in long reads indels are more common.

Recently, several methods for error correction of long reads have

also been developed. These methods fall into two categories: either

the highly erroneous long reads are self-corrected by aligning them

against each other, or a hybrid strategy is adopted in which the long

reads are corrected using the accurate short reads that are assumed

to be available. Most standalone error correction tools like proov-

read (Hackl et al., 2014), LoRDEC (Salmela and Rivals, 2014), LSC

(Au et al., 2012) and Jabba (Miclotte et al., 2015) are hybrid meth-

ods. PBcR (Berlin et al., 2015; Koren et al., 2012) is a tool that can

employ either the hybrid or self-correction strategy.

Most hybrid methods like PBcR, LSC and proovread are based

on the mapping approach. They first map the short reads on the
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long reads and then correct the long reads according to a consensus

built on the mapped short reads. PBcR extends this strategy to self-

correction of PacBio reads by computing overlaps between the long

reads using probabilistic locality-sensitive hashing and then correct-

ing the reads according to a consensus built on the overlapping

reads. As the mapping of short reads is time and memory consum-

ing, LoRDEC avoids the mapping phase by building a de Bruijn

graph (DBG) of the short reads and then threading the long reads

through this graph to correct them. Jabba is a recent tool that is also

based on building a DBG of short reads. While LoRDEC finds

matches of complete k-mers in the long reads, Jabba searches for

maximal exact matches between the k-mers and the long reads

allowing it to use a larger k in the DBG.

In this paper, we present a self-correction method for long reads

that is based on DBGs and multiple alignments. First our method

performs initial correction that is similar to LoRDEC, but uses only

long reads and performs iterative correction rounds with longer and

longer k-mers. This phase considers only the local context of errors

and hence it misses the long-distance dependency information avail-

able in the long reads. To capture such dependencies, the second

phase of our method uses multiple alignments between carefully se-

lected reads to further improve the error correction.

Our experiments show that our method is currently the most ac-

curate one relying on long reads only. The error rate of the reads

after our error correction is less than half of the error rate of reads

corrected by PBcR using long reads only. Furthermore, when the

coverage of the read set is at least 75�, the size of the corrected read

set of our method is at least 20% higher than for PBcR.

2 Overview of LoRDEC

LoRDEC (Salmela and Rivals, 2014) is a hybrid method for the

error correction of long reads. It presents the short reads in a DBG

and then maps the long reads to the graph. The DBG of a read set is

a graph whose nodes are all k-mers occurring in the reads and there

is an edge between two nodes if the corresponding k-mers overlap

by k � 1 bases. LoRDEC classifies the k-mers of long reads as solid

if they are in the DBG and weak otherwise. The correction then pro-

ceeds by replacing the weak areas of the long reads by solid ones.

This is done by searching paths in the DBG between solid k-mers to

bridge the weak areas between them. If several paths are found, the

path with the shortest edit distance as compared to the weak region

is chosen to be the correct sequence, which replaces the weak region

of the long read. The weak heads and tails of the long reads are the

extreme regions of the reads that are bordered by just one solid k-

mer in the beginning (resp. end) of the read. LoRDEC attempts to

correct these regions by starting a path search from the solid k-mer

and choosing a sequence that is as close as possible to the weak head

or tail.

Repetitive regions of the genome can make the DBG tangled.

The path search in these areas of the DBG can then become intract-

able. Therefore, LoRDEC employs a limit on the number of

branches it explores during the search. If this limit is exceeded,

LoRDEC checks if at least one path within the maximum allowed

error rate has been found and then uses the best path found for cor-

rection. If no such path has been found, LoRDEC starts a path

search similar to the correction of the head and tail of the read, to

attempt a partial correction of the weak region.

Some segments of the long reads remain erroneous after the cor-

rection. LoRDEC outputs bases in upper case if at least one of the

k-mers containing that base is solid, i.e. it occurs in the DBG of the

short reads, and in lower case otherwise. For most applications, it is

preferable to extract only the upper case regions of the sequences as

the lower case bases are likely to contain errors.

3 Self-correction of long reads

In this section, we will show how an error correction procedure

similar to LoRDEC can be used to iteratively correct long reads

without short read data. We will use LoRDEC* to refer to LoRDEC

in this long reads only mode. Then, we further describe a polishing

method to improve the accuracy of correction. Figure 1 shows the

workflow of our approach.

3.1 Iterative correction
To describe how LoRDEC can be adapted for self-correction of read

sets, let Q be a set of long reads to be corrected, and let integer h be

the abundancy threshold that is used in choosing the k-mers to the

DBG. The correction procedure repeats for an increasing sequence

k ¼ k1; . . . ; kt the following steps 1–3:

1. Construct the DBG of set Q using as the nodes the k-mers that

occur in Q at least h times;

2. Correct Q using the LoRDEC algorithm with this DBG;

3. Replace Q with the corrected Q.

After the final round, the regions of the reads identified as cor-

rect in the last iteration are extracted for further correction with the

multiple alignment technique by LoRMA.

As the initial error level is assumed high, the above iterations

have to start with a relatively small k¼k1. With a suitable abund-

ancy threshold h, the DBG should then contain most of the correct

k-mers (i.e. the k-mers of the target genome) and a few erroneous

ones. Although path search over long weak regions may not be feas-

ible because of strong branching of the DBG, shorter paths are likely

to be found and hence, short weak regions can be corrected. After

the first round, the correct regions in the reads have become longer

because close-by correct regions have been merged whenever a path

between them has been found, and thus, we can increase k. Then,

with increasing ks, the DBG gets less tangled and the path search

over the longer weak regions becomes feasible allowing for the cor-

rection of the complete reads. A similar iterative approach has previ-

ously been proposed for short read assembly (Bankevich et al.,

2012; Peng et al., 2010).

When the path search is abandoned because of excessive branch-

ing, the original LoRDEC algorithm still uses the best path found so

far to correct the region. Such a greedy strategy improves correction

accuracy in a single run, but in the present iterative approach false

corrections start to accumulate. Therefore, we make a correction

only if it is guaranteed that the correction is the best one available in

the DBG, i.e. all branches have been explored.

Abundancy threshold h controls the quality of the k-mers that

are used for correction. In our experiments, we used a fixed

Fig. 1. Workflow of error correction. LoRDEC* is first applied iteratively to the

read set, with an increasing k. The corrected reads are further corrected by

LoRMA, which uses multiple alignments to find long-distance dependencies

in the reads
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threshold of h¼4 in all iterations, meaning that the k-mers with less

than four occurrences in the read set were considered erroneous.

To justify the value of h, we need to analyse how many times a

fixed k-mer of the genome is expected to occur without any error in

the reads. Then an h that is about one or two standard deviations

below the expected value should give a DBG that contains the ma-

jority of the correct k-mers and not too many erroneous ones. We

will use an analysis similar to Miclotte et al. (2015).

Let C‘�k denote the coverage of a genomic k-mer by exact re-

gions of length at least k. Here exact region refers to a continuous

maximal error-free segment of some read in our read set. Figure 2

gives an example of exact regions. Let us add a $ character to the

end of each read, and then consider the concatenation of all these

reads. In this sequence, an exact region (of length 0 or more) ends ei-

ther at an error or when encountering the $ character. Let n denote

the number of reads, N the length of the concatenation of all reads

and p the error rate. Then the probability for an exact region to end

at a given position of the concatenated sequence is

q ¼ ðpN þ nÞ=ðN þ nÞ. As the reads are long and the error rate is

high, we have q � p. The length of the exact regions is distributed

according to the geometric distribution GeomðqÞ, and therefore, the

probability of an exact region to have length i is PðiÞ ¼ ð1� qÞiq.

The expected number of exact regions is Nq. An exact region is

maximal if it cannot be extended to the left or right. Let Ri be the

random variable denoting the number of maximal exact regions of

length i. Then EðRiÞ ¼ NqPðiÞ ¼ Nq2ð1� qÞi.
Let C‘¼i denote the coverage of a k-mer in the genome by maximal

exact regions of length i, and let ri denote the number of maximal

exact regions of length i. An exact region of length i, i � k, covers a

fixed genomic k-mer (i.e. the read with that exact region is read from

the genomic segment containing that k-mer) if the region starts in the

genome from the starting location of the k-mer or from some of the i

� k locations before it. Assuming that the reads are randomly sampled

from the genome, this happens with probability ði� kþ 1Þ=G, where

G is the length of the genome. Therefore, C‘¼i is distributed according

to the binomial distribution Binðri; ði� kþ 1Þ=GÞ (independence of

locations of exact regions is assumed), and the expected coverage of a

genomic k-mer by maximal exact regions of length i is

EðC‘¼iÞ ¼
X1

ri¼0

PðRi ¼ riÞ � ri �
i� kþ 1

G

¼ i� kþ 1

G
EðRiÞ

¼ N

G
q2ð1� qÞi � ði� kþ 1Þ:

By the linearity of expectation, the expected coverage of a gen-

omic k-mer by exact regions of length at least k is

EðC‘�kÞ ¼
X1

i¼k

EðC‘¼iÞ

¼ N

G

X1

i¼k

q2ð1� qÞi � ði� kþ 1Þ:

Because ði� kþ 1Þ=G is small, we can approximate the bino-

mial distribution of C‘¼i with the Poisson distribution. Therefore,

r2ðC‘¼iÞ ¼ EðC‘¼iÞ.

Assuming that the coverages of a genomic k-mer by maximal

exact regions of different lengths are independent, the variance of

the coverage by exact regions of length at least k is

r2ðC‘�kÞ ¼
P

i�k r2ðC‘¼iÞ ¼ EðC‘�kÞ.
Figure 3 illustrates EðC‘�kÞ for various k and q � p, with 100�

original coverage of the target. Note that original coverage of the

target genome by the read set is N/G. For the three datasets in our

experiments (Table 1), with coverages 200�, 208� and 129�, the

expected coverage EðC‘�kÞ has values 9.12, 9.48 and 5.89, respect-

ively, for our initial k¼19 and for our assumed error rate p¼0.15.

Hence, our adopted threshold h¼4 is from 0.8 to 1.8 standard devi-

ations below the expected coverage meaning that most of the correct

k-mers should be distinguishable from the erroneous ones.

3.2 Polishing with multiple alignments
The error correction performed by LoRDEC* does not make use of

long range information contained in the reads. In particular, ap-

proximate repeats of the target are collapsed in the DBG into a path

with alternative branches. In practice, such repeat regions are cor-

rected towards a copy of the repeat but not necessarily towards the

correct copy. However, the correct copy is more likely uncovered

because we choose the path that minimizes the edit distance between

the weak region to be corrected and the sequence spelled out by the

path. Therefore, if we have several reads from the same location, the

majority of them are likely corrected towards the correct copy.

Our multiple alignment error correction exploits the long range

similarity of reads by identifying the reads that are likely to originate

from the same genomic location. If the reads contain a repeat area,

the most abundant copy of the repeat present in the reads is likely

the correct one. Then by aligning the reads with each other we can

correct them towards this most abundant copy. The approach we

use here bears some similarity to the method used in Coral (Salmela

and Schröder, 2011).

As preprocessing phase for the method, we build a DBG of all

the reads using abundancy threshold h¼1 to ensure that all k-mers

present in the reads are indexed. Then we enumerate the simple

paths of the DBG and find for each read the unique path that spells

it out. Each such path is composed of non-overlapping unitig seg-

ments that have no branches. We call such segments the parts of a

path. We associate to each path segment (i.e. a unitig path of the

DBG) a set of triples describing the reads traversing that segment.

Each triple consists of read id, part id and the direction of the read

Fig. 2. Division of a read into maximal exact regions, shown as boxed areas.

The shaded boxes give the regions that could cover a 4-mer

Fig. 3. Expected coverage of a genomic k-mer by exact regions of length at

least k for a read set with coverage 100� for different error rates p

Accurate self-correction of long reads 3
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on this path. Hence, the path for a read i consists of segments who

have a triplet with i as the read id and with part id values 1, 2,. . .,

the path being composed of these segments in the order of the part

id value (Fig. 4). Using this information, it is now possible to recon-

struct each read from the DBG except that the reads will be prefixed

(suffixed) by the complete simple path that starts (ends) the read.

In the second phase of our method, we take the reads one by one

and use the DBG to select reads that are similar to the current read.

We follow the path for the current read and gather the set of reads

sharing k-mers with it, which can be done using the triplets of the

augmented DBG. Out of these reads, we then first select each read R

such that the shared k-mers span at least 80% of the shorter one of

the read R and the current read. Furthermore, out of these reads, we

select those that share the most k-mers with the current read. We

call this read set the friends of the current read. The number of se-

lected reads is a parameter of our method (by default 7).

We then proceed to compute a multiple alignment of the current

read and its friends. To keep the running time feasible, we use the

same simple method as in Coral (Salmela and Schröder, 2011). First,

the current read is set to be the initial consensus. Then we take each

friend of the current read one by one, align them against the current

consensus using banded alignment, and finally update the consensus

according to the alignment. Finally, we inspect every column of the

multiple alignment and correct the current read towards the consen-

sus if the consensus is supported by at least two reads.

We implemented the above procedure in a tool called Long Read

Multiple Aligner (LoRMA) using the GATB library (Drezen et al.,

2014) for the implementation of the DBG.

4 Experimental results

We ran experiments on three datasets that are detailed in Table 1.

The simulated Escherichia coli dataset was generated with PBSIM

(Ono et al., 2013) using the following parameters: mean accuracy

85%, average read length 10 000, and minimum read length 1000.

The other two datasets are real data. Although our method works

solely on the PacBio reads, the table also includes statistics of com-

plementary Illumina reads that were used to compare our method

against hybrid methods that need also short reads. All experiments

were run on 32 GB RAM machines equipped with 8 cores.

4.1 Evaluation of the quality of error correction
In the simulated dataset, the genomic position where each read de-

rives from is known. Therefore, the quality of error correction on

the simulated dataset is evaluated by aligning the corrected read

against the corresponding correct genomic sequence. We allow free

deletions in the flanks of the corrected read because the tools trim

regions they are not able to correct. To check if the corrected reads

align to the correct genomic position, we aligned the corrected reads

Table 1. Datasets used in the experiments

E.coli (simulated) E.coli Yeast

Reference organism

Name Escherichia coli Escherichia coli Saccharomyces cerevisiae

Strain K-12 substr. MG1655 K-12 substr. MG1655 W303

Reference sequence NC_000913 NC_000913 CM001806-CM001823

Genome size 4.6 Mbp 4.6 Mbp 12 Mbp

PacBio data

Number of reads 92 818 89 481 261 964

Avg. read length 9997 10 779 5891

Coverage 200� 208� 129�

Illumina data

Accession number – ERR022075 SRR567755

Number of reads – 2 316 613 4 503 422

Read length – 100 100

Coverage – 50� 38�

Fig. 4. Augmented DBG. For simplicity, reverse complements are not considered. The lower graph only shows the branching nodes of the DBG and the labels on

the paths/edges are of the form read id: read part id. For example, the path for read 2 consists of segments with labels 2:1, 2:2, 2:3, 2:4 and 2:5
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on the reference genome with BLASR (Chaisson and Tesler, 2012)

keeping only a single best alignment for each read. The following

statistics were computed:

• Size: The relative size of the corrected read set as compared to

the original one.
• Error rate: The number of substitutions, insertions and deletions

divided by the length of the correct genomic sequence.
• Correctly aligned: The relative number of reads that align to the

same genomic position where the read derives from.

To evaluate the quality of error correction on the real datasets,

we used BLASR (Chaisson and Tesler, 2012) to align the original

and corrected reads on the reference genome. For each read, we

used only a single best alignment because a correct read should only

have one continuous alignment against the reference. Thus, chimeric

reads will be only partially aligned. We computed the following

statistics:

• Size: The relative size of the corrected read set as compared to

the original one.
• Aligned: The relative size of the aligned regions as compared to

the complete read set.
• Error rate: The number of substitutions, insertions and deletions

in the aligned regions divided by the length of the aligned regions

in the reference sequence.
• Genome coverage: The proportion of the genome covered by the

aligned regions of the reads.

Together, these statistics measure three aspects of the quality of

error correction. Size measures the throughput of the method.

Aligned and error rate together measure the accuracy of correction.

Finally genome coverage estimates if reads deriving from all regions

of the genome are corrected.

4.2 Parameters of our method
We ran experiments on the real E.coli dataset to test the effect of

parameters on the performance of our method. First, we tried sev-

eral progressions of k in the first phase where LoRDEC* is run itera-

tively. We started all iterations with k¼19 because given the high

error rate of the data k must be small for correct k-mers to occur in

the read data. The results of these experiments are presented in

Table 2. With more iterations, the size of the corrected read set and

the aligned proportion of reads decrease, but the aligned regions are

more accurate. The decrease in the size of the corrected read set may

be a result of better correction because PacBio reads have more in-

sertions than deletions. However, the decrease in the aligned propor-

tion of the reads may indicate some accumulation of false

corrections. The runtime of the method increases with the number

of iterations but later iterations take less time as the reads have al-

ready been partially corrected during the previous rounds. To bal-

ance out these effects, we chose to use a moderate number of

iterations, i.e. k¼19, 40, 61, by default, which also optimizes the

error rate of the aligned regions.

LoRMA also builds a DBG of the reads and thus we need to spe-

cify k. We investigated the effect of the value of k on the E.coli data-

set. Table 3 shows the effect of k on the performance of LoRMA.

Because the DBG is only used to detect similar reads in LoRMA, the

performance is not greatly affected by the choice of k. There is a

slight decrease in the throughput of the method as k increases as

well as a slight increase in runtime but these effects are very modest.

For the rest of the experiments, we set k¼19.

Another parameter of the method is the size of the set of friends

of the current read (-friends parameter). We tested also the effect of

this parameter on the E.coli dataset. As the optimal value of this

Table 2. The progression of k for the iterations of LoRDEC*

k progression Size

(%)

Aligned

(%)

Error

rate (%)

Elapsed

time (h)

19 64.901 99.499 0.294 4.08

19,22,25,28,31 66.702 99.302 0.276 12.97

19,22,25,28,31,34,37,40,43,46 66.630 99.311 0.274 20.65

19,22,25,28,31,34,37,40,43,46,

49,52,55,58,61

66.546 99.296 0.271 27.53

19,26,33 66.401 99.329 0.274 9.58

19,26,33,40,47 66.230 99.298 0.271 13.07

19,26,33,40,47,54,61 66.144 99.283 0.266 16.08

19,33 66.705 99.358 0.277 7.68

19,33,47 66.178 99.352 0.268 10.58

19,33,47,61 65.991 99.301 0.261 11.92

19,40 66.619 99.360 0.272 8.32

19,40,61 66.223 99.317 0.257 10.30

Table 3. The effect of the k-mer size in LoRMA. The elapsed time is

the runtime of LoRDEC*+LoRMA

k Size Aligned Error rate Elapsed time Memory peak

(%) (%) (%) (h) (GB)

19 66.238 99.306 0.256 10.38 17.197

40 66.170 99.309 0.258 10.53 16.958

61 65.941 99.313 0.261 13.87 16.908

Table 4. The effect of the size of the friends set on the quality of the

correction. The elapsed time is the runtime of LoRDEC*+LoRMA

Friends 5 7 10 15 20

Coverage 75�
Size (%) 59.173 59.164 59.146 59.109 59.085

Aligned (%) 98.894 98.983 99.099 99.192 99.226

Error rate (%) 0.169 0.156 0.148 0.131 0.128

Gen. cov. (%) 90.918 90.907 90.900 90.888 90.884

Elapsed time (h) 1.13 1.22 1.53 1.88 2.27

Memory (GB) 14.522 14.518 14.522 14.515 14.525

Disk (GB) 1.076 1.076 1.076 1.076 1.076

Coverage 100�
Size (%) 65.759 65.738 65.723 65.670 65.607

Aligned (%) 98.091 98.317 98.491 98.556 98.620

Error rate(%) 0.152 0.140 0.134 0.114 0.110

Gen. cov. (%) 99.404 99.403 99.405 99.403 99.405

Elapsed time (h) 2.53 3.32 4.32 5.80 7.08

Memory (GB) 14.720 14.720 14.712 14.723 14.720

Disk (GB) 1.417 1.416 1.417 1.416 1.416

Coverage 175�
Size (%) 66.933 66.906 66.905 66.852 66.816

Aligned (%) 98.927 98.973 99.153 99.011 99.104

Error rate(%) 0.222 0.194 0.191 0.140 0.133

Gen. cov. (%) 100.000 100.000 100.000 100.000 100.000

Elapsed time (h) 6.77 8.35 10.62 14.07 17.22

Memory (GB) 16.009 16.016 16.003 16.002 16.006

Disk (GB) 2.361 2.361 2.362 2.362 2.362
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parameter might depend on the coverage of the dataset, we created

several subsets of this dataset with different coverage to investigate

this. Table 4 shows the results of these experiments. We can see that

the accuracy of the correction increases as the size of the friends set

increases. However, for the dataset with the lowest coverage, 75�,

the coverage of the genome by the corrected reads decreases when

the size of the friends set is increased indicating that lower coverage

areas are not well corrected. We can also see that increasing the size

of the friends set increases the running time of the method. To keep

the running time reasonable, we decided to set the default value of

the parameter at a fairly low value, 7.

4.3 Comparison against previous methods
We compared our new method against PBcR (Berlin et al., 2015;

Koren et al., 2012) which is to the best of our knowledge, the only

previous self-correction method for long reads, and LoRDEC

(Salmela and Rivals, 2014), proovread (Hackl et al., 2014) and

Jabba (Miclotte et al., 2015) which also use short complementary

reads. Table 5 shows the results on the simulated dataset comparing

our new method to PBcR using long reads only. Table 6 shows the

results of the comparison of our new method against previous meth-

ods on the real datasets. In the following, we will use LoRDEC to

refer to the hybrid correction method using also short reads and

LoRDEC*þLoRMA for our new method in which LoRDEC* is run

in long reads selfcorrection mode followed by LoRMA.

PBcR pipeline from Celera Assembler version 8.3rc2 was run

without the assembly phase and memory limited to 16 GB. PBcR was

run both only using PacBio reads and by utilizing also the short read

data. For PBcR utilizing also short read data, the PacBio reads were

divided into three subsets each of which was corrected in its own run.

Proovread v2.12 was run with the sequence/fastq files chunked to

20M as per the usage manual and used 16 mapping threads.

LoRDEC used an abundancy threshold of 3 and k-mer size was set to

19 similar to the experiments by Salmela and Rivals (2014). Jabba

1.1.0 used k-mer size 31 and short output mode. LoRMA was run

with 6 threads. The k-mer sizes for LoRDEC*þLoRMA iteration

steps were chosen 19, 40 and 61. For proovread and LoRDEC, we

present results for trimmed and split reads.

Table 5 shows that on the simulated data both PBcR and

LoRDEC*þLoRMA are able to correct most of the data. Our new

method achieves a lower error rate and higher throughput. We see

that the fraction of corrected reads aligning to the correct genomic

position is lower for LoRDEC*þLoRMA than for PBcR when all

reads are considered, which suggests that LoRDEC*þLoRMA tends

to overcorrect some reads. However, for corrected reads longer than

2000 bp this difference disappears, and thus, we can conclude that

the overcorrected reads are short. When compared to the other self-

correction method, PBcR, our new tool has a higher throughput and

produces more accurate results on both real datasets as shown in

Table 6. Out of the hybrid methods, Jabba has a lower error rate

than LoRDEC*þLoRMA but its throughput is lower. When com-

pared to the other hybrid methods, LoRDEC*þLoRMA has com-

parable accuracy and throughput. All hybrid methods produce

corrected reads that do not cover the whole E.coli reference, which

could be a result of coverage bias in the Illumina data. On the yeast

data proovread produced few corrected reads and thus the coverage

of the corrected reads is very low.

Table 6 shows that our method is slower and uses more memory

than PBcR in self-correction mode but its disk usage is lower. On

the E.coli dataset our new method is faster than proovread and

PBcR utilising short read data but slower than LoRDEC, Jabba or

PBcR using only PacBio data. On the yeast dataset, we are faster

than PBcR in hybrid mode but slower than the others.

Table 5. Comparison of LoRDEC*þLoRMA against PBcR (PacBio only) on the simulated E. coli dataset

Tool Size Error rate Correctly aligned Correctly aligned Elapsed time Memory peak Disk peak

(%) (%) (%) �2000 bp (%) (h) (GB) (GB)

Original 100.000 13.015 99.997 99.997 – – –

PBcR (PacBio only) 92.457 0.604 99.953 99.984 2.63 9.066 17.823

LoRDEC�þLoRMA 94.372 0.109 96.866 99.987 14.30 17.338 3.192

Table 6. Comparison of both hybrid and self-correction tools on PacBio data

Tool Size Aligned Error rate Genome coverage Elapsed time Memory peak Disk peak

(%) (%) (%) (%) (h) (GB) (GB)

E. coli Original 100.000 71.108 16.9126 100.000 – – –

LoRDEC 65.672 98.944 0.1143 99.820 0.96 0.368 1.570

proovread 61.590 98.603 0.2789 99.728 28.65 9.522 7.174

PBcR (with Illumina) 52.103 98.507 0.0682 98.769 15.13 17.429 160.154

Jabba 2.873 99.945 0.0003 99.745 0.02 0.168 0.606

PBcR (only PacBio) 51.068 86.023 0.6905 100.000 1.68 22.00 16.070

LoRDEC*þLoRMA 66.223 99.318 0.2572 100.000 10.40 16.984 2.824

Yeast Original 100.000 89.929 16.8442 99.974 – – –

LoRDEC 75.522 97.337 0.9987 99.833 3.17 0.451 2.776

proovread 0.306 97.156 0.8004 20.346 11.18 4.764 7.162

PBcR (with Illumina) 57.337 98.100 0.3342 99.652 22.05 20.085 157.726

Jabba 24.979 99.484 0.1279 99.900 0.17 1.031 0.993

PBcR (only PacBio) 60.065 95.822 2.1018 99.907 4.42 9.571 24.610

LoRDEC*þLoRMA 71.987 98.088 0.3644 99.375 21.08 17.968 4.852

Results for tools utilizing also Illumina data are shown on a grey background
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On the E.coli and yeast datasets, LoRDEC*þLoRMA uses 45%

and 37%, respectively, of its running time on LoRDEC* iterations.

On both datasets, the error rate of the reads after LoRDEC* iter-

ations and trimming was 0.5%.

4.4 The effect of coverage
Especially for larger genomes, it is of interest to know how much

coverage is needed for the error correction to succeed. We investi-

gated this by creating random subsets of the E.coli dataset with

coverages 25�, 50�, 100� and 150�. We then ran our method and

PBcR (Berlin et al., 2015; Koren et al., 2012) on these subsets to in-

vestigate the effect of coverage on the error correction performance.

Table 7 shows the results of these experiments. The other tools,

LoRDEC, Jabba and proovread, use also the complementary

Illumina reads and the coverage of PacBio reads does not affect their

performance.

When the coverage is high, the new method retains a larger pro-

portion of the reads than PBcR and is more accurate, whereas when

the coverage is low, PBcR retains more of the data and a larger pro-

portion of it can be aligned. However, the error rate remains much

lower for our new tool. The reads corrected by PBcR also cover a

larger part of the reference when the coverage is low.

5 Conclusions

We have presented a new method for correcting long and highly er-

roneous sequencing reads. Our method shows that efficient align-

ment free methods can be applied to highly erroneous long read

data. The current approach needs alignments to take into account

the global context of errors. Reads corrected by the new method

have an error rate less than half of the error rate of reads corrected

by previous self-correction methods. Furthermore, the throughput

of the new method is 20% higher than previous self-correction

methods with read sets having coverage at least 75�.

Recently several algorithms for updating the DBG instead of

constructing it from scratch when k changes have been proposed

(Boucher et al., 2015; Cazaux et al., 2014). However, these methods

are not directly applicable to our method because also the read set

changes when we run LoRDEC* iteratively on the long reads.

Our method works solely on the long reads, whereas many previ-

ous methods require also short accurate reads produced by e.g.

Illumina sequencing, which can incorporate sequencing biases in

PacBio reads. This could have very negative effect on sequence qual-

ity, especially since Illumina suffers from GC content bias and some

context-dependent errors (Nakamura et al., 2011; Schirmer et al.,

2015).

As further work, we plan to improve the method to scale up to

mammalian size genomes. We will investigate a more compact

representation of the path labels in the augmented DBG to replace

the simple hash tables currently used. Construction of multiple

alignment could also be improved by exploiting partial order align-

ments (Lee et al., 2002) which have been shown to work well with

PacBio reads (Chin et al., 2013).

Another direction of further work is to investigate the applicabil-

ity of the new method on long reads produced by the Oxford

NanoPore MinION platform. Laver et al. (2015) have reported an

error rate of 38.2% for this platform and they also observed some

GC content bias. Both of these factors make the error correction

problem more challenging, and therefore, it will be interesting to see

a comparison of the methods on this data.

Funding

This work was supported by the Academy of Finland (grant 267591 to L.S.),

ANR Colib’read (grant ANR-12-BS02-0008), IBC (ANR-11-BINF-0002) and
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