
HAL Id: lirmm-01391168
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01391168

Submitted on 29 Jun 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous multithreading support in embedded
distributed memory MPSoCs

Rafael Garibotti, Luciano Ost, Remi Busseuil, Mamady Kourouma, Chris
Adeniyi-Jones, Gilles Sassatelli, Michel Robert

To cite this version:
Rafael Garibotti, Luciano Ost, Remi Busseuil, Mamady Kourouma, Chris Adeniyi-Jones, et al.. Simul-
taneous multithreading support in embedded distributed memory MPSoCs. DAC 2013 - 50th Design
Automation Conference, May 2013, Austin, United States. pp.83:1-83:7, �10.1145/2463209.2488836�.
�lirmm-01391168�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01391168
https://hal.archives-ouvertes.fr

Simultaneous Multithreading Support in Embedded
Distributed Memory MPSoCs

Rafael Garibotti1, Luciano Ost1, Remi Busseuil1, Mamady kourouma1, Chris Adeniyi-Jones2, Gilles Sassatelli1,

Michel Robert1,
1 LIRMM (CNRS-University of Montpellier II) – 161 rue Ada, Cedex 05 - 34095 Montpellier, France

{garibotti, ost, busseuil, kourouma, sassatelli, robert}@lirmm.fr
2 ARM, Ltd. - Cambridge, Cambridgeshire, GB

Chris.Adeniyi-Jones@arm.com

ABSTRACT
Scalability and programmability are important issues in large
homogeneous MPSoCs. Such architectures often rely on explicit
message-passing among processors, each of which possessing a
local private memory. This paper presents a low-overhead
hardware/software distributed shared memory approach that
makes such architectures multithreading-capable. The proposed
solution is implemented into an open-source message-passing
MPSoC through developing a POSIX-like thread API, which
shows excellent scalability using application kernels used for
benchmarking in shared-memory systems. This approach
efficiently draws strengths from the on-chip distributed private
memory that opens the way to exposing the multithreading
programmability/capabilities of that component as a general-
purpose accelerator.

Categories and Subject Descriptors
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced
technologies, VLSI (very large scale integration).

General Terms
Design, Experimentation, Performance, Verification.

Keywords
Programmability, Multithreading, Distributed memory
organization, NoC-based MPSoCs.

1. INTRODUCTION
MPSoC have become the de-facto platform template in many
application domains ranging from consumer market products such
as smart phones to hard real-time systems. In most cases, high
performance allied to low power consumption [1] is required. Due
to the increasing complexity of both platform architecture and
application software, programming such multiprocessor systems is
a challenge and demands for better programming model facilities
[2]. Parallel programming models for embedded systems have
long been explored and some used in high-performance computing
(HPC) have been ported and adapted to embedded systems, such

as the Message Passing Interface (MPI). The use of such APIs
allows software designers to model explicit parallelism and
synchronization between tasks/processor nodes at a reasonable
level of abstraction while allowing better utilization of hardware
resources [3].

The objective of this paper is exploring the opportunity of
developing a POSIX-like threads API (Pthreads) [4], very popular
in general-purpose and high-performance computing, onto a
distributed private memory NoC-based MPSoC. This API
commonly used for simultaneous multithreading (SMT) on
symmetric multiprocessing (SMP) systems assumes a coherent
shared memory architecture that each processor may access at any
time. As the target architecture is of distributed private memory
type, the proposed approach relies on additional hardware that
makes it possible to expose a logically shared memory
architecture based on physically distributed memories. Different
from ccNUMA architectures (cache-coherent Non-Uniform
Memory Machines) that use complex cache-coherence protocols
for enforcing strict memory consistency, our approach targets
embedded devices and therefore aims at minimizing additional
hardware through a software-oriented approach. Since the
resulting architecture retains its purely distributed nature, clusters
operating in this distributed shared memory mode (referred to as
vSMP for Virtual Symmetric Multiprocessing) are of arbitrary size
and geometry, and can be decided at run-time for better suiting
application needs.

The contributions of this paper may be summarized as follows: (i)
providing multithreading capability onto a RTL distributed private
memory NoC-based MPSoC, (ii) implementation of a hardware
module that enables vSMP clusters definition at run-time, along
with a software-based memory consistency approach. These
contributions allow us to evaluate the resulting system,
demonstrating its efficiency in terms of scalability of platform and
application, as well as better throughput for several
application/benchmarks scenarios.

This paper is organized as follow: Section 2 presents related work
in MPSoCs programmability. Section 3 describes the basic
concepts inherent to the adopted NoC-based MPSoC along with
proposed API and hardware. Section 4 describes the experimental
setup. Section 5 gives results in term of performance scalability
and analyzes the overhead created. Finally, Section concludes and
points out future work directions.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’13, May 29 - June 07, 2013, Austin, TX, USA.

2. RELATED WORK
Several studies have been aimed at improving MPSoCs
programmability by including/extending different APIs primitives,
as well as proposing tools that can help designers to program
parallel embedded applications. For instance, Ceng et al. [3]
propose the MAPS framework that can be employed to guide
application designers during the parallelization process. A similar
framework that allows to explore different parallelization
alternatives at high-level is described in [5]. Both approaches
generate a parallel version of a sequential C code, which is
validated on the top of a shared-memory system. In turn,
Marongiu et al. [2] extended the OpenMP API, allowing
allocating array data over multiple distributed scratchpad
memories (SPMs) based on profile information to optimize data
allocation. Two MPSoC models were implemented in a SystemC
full-system simulator in order to validate the proposed OpenMP
API (e.g. primitives, compiler). The proposed approach differs
from Marongiu’s in four main aspects: (i) processors are
interconnected by a cross-bar, while a mesh NoC is employed in
the present work, which makes our system more scalable while
consuming less energy and area when compared to a cross-bar;
(ii) no OS/library support for thread creation and management is
available in Marangiu’s approach, (iii) only benchmarks that fit
entirely in cache memories were used in [2] since no cache
coherence protocol is supported in his work, while our system
implements cache coherence protocol, allowing to execute
applications that deal with larger memory footprint (e.g. MJPEG)
and (iv) the proposed Pthreads approach was evaluated in a real
NoC-based MPSoC that has already been prototyped in different
FPGAs and also ported to ASIC to evaluate the area overhead,
while Marangiu’s approach uses a simulator to validate his idea.
Ophelders [6] proposes a software cache coherence protocol that
was validated on a dual-core ARM9 architecture using the
SPLASH2 benchmark. Ophelders work differs from ours in two
aspects. First it considers a system with MMU, and a 4-set
associative cache, allowing high-level memory management;
while our approach relies on compact scalar MMU-less processor
architecture with direct mapped caches, which impacts on less
memory utilization. Second, our approach to memory coherence is
software-based and relies on flushes and invalidations, not
allowing remote execution that implies in less memory access.

To the best of our knowledge this work presents the first purely
distributed memory NoC-based MPSoC that supports
multithreading through POSIX thread API while dealing with
cache/memory coherence at OS level. The proposed approach
improves the system programmability; while better scalability and
performance can be achieved once high visibility permits
improving cache coherence and management.

3. MULTITHREADING PLATFORM
3.1 Platform Description
OpenScale1 is a homogeneous message-passing NoC-based
MPSoC with distributed private memories. Each node comprises a
32 bit pipelined CPU with configurable instruction and data
caches. This core implements the Microblaze ISA architecture and
features a timer, an interrupt controller, a RAM and optionally an
UART [7], as illustrated in Figure 1.

1 Available for download at: www.lirmm.fr/ADAC

Figure 1 - Adopted NoC-based MPSoC architecture.

The platform RTOS is a pre-emptive priority-based micro-kernel.
Each processing element (PE) runs its RTOS independently, and
communications and synchronizations are made through a light
implementation of the MPI message-passing library. Applications
are represented through Khan Process Network, a standard
representation in such a message-passing oriented system.
Examples of services supported in the RTOS are: (i) run-time
dynamic applications loading, (ii) preemptive round-robin
scheduler based on thread credits, (iii) system-monitoring
mechanisms (e.g. processor workload) and (iv) API with drivers
support (e.g. UART). The platform supports a number of features
such as task-migration and distributed decision-making
capabilities [7].

3.2 Multithreading hardware support
In order to enable simultaneous multithreading (SMT) on any
multiprocessor architecture, a logically shared memory space must
be exposed to the software. Moreover, as the chosen architecture
is organized into a distributed private memory, the hardware must
also be modified to enable access to remote memories from any
node participating to the vSMP cluster (Virtual Symmetric
Multiprocessing). Figure 1 shows an example of vSMP clusters
that may be defined at run-time using arbitrary size and geometry.
They may communicate with each other using message passing,
but be careful with the placement, because as shown in Figure 1,
perhaps the PE between clusters may incur a communication
performance penalty, depending if this PE is using the NoC to
communicate with another PE or not.

The proposed module that serves this purpose, called remote
memory access (RMA), is composed of an RMA-Send and an
RMA-Reply, which together enable remote memory access
through the NoC, more two asynchronous FIFOs are used for
communication between both modules and the NoC. The RMA
module contains a cache miss handling protocol that comprises
three main steps: (i) whenever a cache miss occurs, the CPU
issues a cache line request routed through the NoC, (ii) the host
RMA reads the desired cache line (i.e. instruction/data), which is
sent back to the remote CPU that resumes thread execution as
soon as cache line is received (iii), as illustrated in Figure 2.

The remote memory access protocol has a latency of 182 clock
cycles at zero NoC load, from the cache line request to the remote
thread execution, which is depicted in details in Figure 3,
remembering that this latency only occurs when trying to access
the shared memory and not accessing the local memory during a
cache miss. The protocol and its implementation have been
optimized for latency and not throughput, as cache miss traffic is
rather more latency-sensitive. Low to moderate latencies are
ensured up to an end-to-end bandwidth of 90MB/s at 500MHz.

RAM

RTOS

Network
interface /

remote
memory access

IT
Cntrol

TimersDFS

SBLAZE

I$ D$

CPU

ROUTER

Node

vSMP
Clusters

Thread

Shared
memory

native message passing

- pthreads (e.g. mutex, barrier)
- preemptive multitasking microkernel
- dynamic loader & memory allocation
- multi-mode communication stack
- message-passing API
- libraries (math, libc, etc.)

Figure 2 - Cache miss RMA protocol.

Note that the host RMA is kept busy during 64 cycles: since there
is one input fifo and output fifo, a new request can be serviced
before the cache line write to NoC (64 cycles), which corresponds
to cache line request acquisition (15 cycles) and local memory
read (14+35 cycles), as shown in Figure 3. This results in a
maximum theoretical bandwidth of 250MB/s when several
requests are aliased.

Figure 3 - Cache miss RMA protocol in a READ transaction.

3.3 Multithreading software support
The in-house RTOS described in 3.1 was modified to support a
configurable processor memory mapping that permits specifying
the ratio of local private data versus local shared data, made
visible to all processors in the cluster as shown in the Figure 4.

Figure 4 - DSM node memory organization.

Moreover, a subset of the widely used POSIX multithreading API
has been ported into the microkernel, as shown in Table 1. The
implementation of this API was focused on three categories:
thread creation, mutexes and barriers for thread mutual exclusions
and synchronizations. The memory consistency model relies only
on the memory coherence guaranteed at each API function call:
which corresponds to a relaxed memory consistency model, i.e.
having a coherent memory whenever synchronization is made.
The protocol operates as follows:

• During a thread creation, data caches are flushed on the
caller side and invalidated on the executer side.

• During a mutex lock, cache lines that possibly contain
shared data that can be accessed between the locking and
unlocking are invalidated.

• During a mutex unlock, those same lines are flushed.

• During the barrier calls, the shared memory is also flushed
and invalidated.

Table 1 - Implemented Pthread primitives.

Pthread primitives Description
pthread_create() Creates a new thread in the calling process
pthread_exit() Terminates the calling thread
pthread_join() Waits for the specified thread to terminate
pthread_mutex_init() Initializes the specified mutex
pthread_mutex_destroy() Destroys the specified mutex
pthread_mutex_lock() Locks the mutex object
pthread_mutex_unlock() Unlocks the mutex object
pthread_barrier_init() Initialize a barrier object

pthread_barrier_wait() Synchronizes participating threads at the
barrier pointed to by the barrier argument

This is the smallest protocol that ensures cache coherency
hardware and software support: the invalidation and flush
operations of any cache line are performed only if the cache line
tag corresponds to the address specified by the instruction. This
condition avoids unnecessary cache flushes / invalidations of
cache lines containing unrelated data.

4. EXPERIMENTAL SETUP
4.1 Application kernels
Three application kernels often employed in multithreaded
architectures benchmarking were selected: Smith Waterman
(DNA sequence-alignment matching application), MJPEG
encoder and FFT (Fast Fourier Transform). A pthread
implementation was developed for each, in which threads
granularity is sound. MJPEG threads process entire images,
whereas Smith-Waterman implementation relies on worker
threads that run sequence alignment algorithm on different data
sets. FFT is made of a number of threads, each of which performs
a number of butterfly operations for minimizing data transfers.
Table 2 gives benchmark-specific figures expressed in terms of
single-thread processing time (using 16kB of cache), computation
to data ratio and code size. Due to the different natures of those
applications, execution time varies greatly and ranges from less
than 2 million clock cycles (4ms at 500MHz) to more than 13
million clock cycles (26ms at 500MHz).

Table 2 - Performance information of adopted applications.

Application
name

Single thread
execution time

Computation
to Data Ratio

Instruction size
of a thread

MJPEG 5.3 Mega cycles 5.34 52kB
Smith Waterman 13.2 Mega cycles 7.08 3.8kB

FFT 1.9 Mega cycles 4.18 5kB

The second important factor provided by this table is the
computation to data ratio. This number is the ratio between the
number of actual compute instructions (e.g. add, mul, jump, etc.)

3

NoC

HOST

2
reads instructions/data

cache line

RR

R R

1

Message Module

FIFO

NI

RMA Module

FIFOs

RMA-Reply

RMA-Send

CPU
D$ I$

REMOTE

cache line
request
RAM

Message Module

FIFO

NI

RMA Module

FIFOs
RMA-Send

RMA-Reply

CPU
DI

instructions
data/

0010101
1110101

RAM

HOST
LOCAL RAM

cache
miss

sendCacheLineRequest
(packet)

getCacheLine
(address)

requestCacheLine
(address)

CacheLineRequest
(address)

cacheLine

cacheLine

sendCacheLine
(packet)

CacheLine
(data/instruction)

Ti
m

e
(c

lo
ck

 c
yc

le
s)

HOST
RMA NoC REMOTE

RMA
REMOTE

CPU

21
clocks

22
clocks

2
clocks

15
clocks

14
clocks

35
clocks

64
clocks

9
clocks 182

clocks

8 kB

Host
Shared

data

56 kB Private
data

64 kB RTOS

Node 1

Private
data

RTOS

Node n

Private
data

RTOS

over the number of memory instruction (load / store) executed by
a thread, which gives an overview of the importance of instruction
loading in regards of data loading. Hence, an application having a
high computation to data loading ratio would be instruction
accesses dominated, with therefore proportionally less data
accesses. Note that Smith Waterman has the highest computation
data, when compared to the others. Fourth column in Table 2
shows the thread code size of each application. A thread with large
code size would potentially lead to more instruction cache misses,
because a smaller fraction of it would fit in the cache.

4.2 Reference Platforms
GEM5 Simulator [8] was used to produce the reference platforms.
It was chosen because its good tradeoff between simulation speed
and accuracy, besides modeling a real Realview Platform
Baseboard Explore for Cortex-A9 (ARMv7 A-profile ISA) [9].

To create the desired ARM system, the CPU model and Linux
bootloader have been modified to enable configurations with more
than 4 cores and different interconnection network topologies
were evaluated: (a) bus-based and (b) mesh. The reference
platforms are configured as follows: (i) up to 8 ARM Cortex-A9,
(ii) CPU running at 500MHz, (iii) Linux Kernel 2.6.38, (iv) 16kB
private L1 data and instruction caches, (v) 32bits channel width,
(vi) DDR physical memory running at 400MHz and (vii) 256MB
unified L2 cache (only for mesh network) where the MOESI
Hammer [10] is the cache coherence protocol used in these
topologies. It is noteworthy that to avoid any traffic with DDR
physical memory during benchmark execution was selected this
huge L2 cache size.

4.3 Platform Setup
The platform is configured as follows: (i) 3x3 processor array,
NoC with 4 position input buffers and 32 bits channel width, (ii)
processor cache size was set to 4kB, 8kB and 16kB, 8 words per
lines, direct mapped caches, (iii) 500MHz frequency for both
processor nodes and NoC routers and (iv) CPU with hardware
multiplier, divider and barrel shifter. Figure 5 shows the thread
mapping used for the experiments. In those, shared data reside in
the top-left processor node, and are accessed by the threads
running in other nodes (one per node).

Figure 5 - Adopted scenario.

These mappings incur higher cache miss latencies as all traffic
converges and flows through south and east ports of the top-left
processor node. Results have however shown that mapping
influence on performance remains below 5% in our setup, because
of the NoC link bandwidth (1GB/s) corresponding to less than
20% bandwidth usage in all used configurations. All results were
gathered on a synthesizable RTL VHDL description of the
architecture. Note that all features inherent to prototype (e.g. run-
time vSMP cluster definition) were also evaluated in FPGA (i.e.
simplistic scenarios due to the memory limitation).

5. RESULTS
5.1 Speedup
The first experiment evaluates the platform scalability considering
all applications as shown in Figure 7. Architecture scalability was
evaluated and compared to different interconnection network
topologies made from 1 to 8 ARMv7 CPU cores with cache sizes
matching those of our vSMP MPSoC. In order to maximize
speedup, one thread per node was used in all experiments, thereby
avoiding performance penalties resulting from context switching.
Figure 7a shows near-perfect linear speedup for the Smith-
Waterman application, for all platforms. As being very compute
oriented (as shown in the third column of Table 2), few data
communication occur and thread code fit in the local caches for all
tested configurations (as shown in the fourth column of Table 2),
resulting in limited cache miss rate, but even under these
conditions, our proposed MPSoC has a better performance
compared to the mesh reference platform in which reached his
maximum speed up of 6.3. In turn, b shows a similar speedup for
cache sizes of 8kB and 16kB in the MJPEG, this can be easily
explained by observing the behavior of the application shown in
Figure 6, where it looks totally scalable, since the barriers would
be found only at the end of each processing frame. But even
though a scalable application, the shared-bus platform reaches a
plateau from 5 cores, while the mesh platform reaches a plateau
from 6 cores, they are due to the bus saturation. The same
behavior is also observed with the proposed accelerator when
using cache sizes of 4kB, but this will be explained in details in
Section 5.2.

Figure 6 - Behavior of MJPEG Pthread implementation.

Figure 7c shows the performance scalability of FFT, regarding the
adopted scenario (Figure 5). Due to the sequential
synchronizations, the parallelization capability of FFT is low.
Thus, with a 16kB cache configuration, the application can only
achieve a speedup of 4.6. However, such results show a better
performance when compared to other systems, which no one
overcomes a speed up of 2.8. Different from the previous
benchmarks, the FFT application was employed to explore
synchronization primitives (e.g. Mutexes and Barrier) when
multiple threads issue concurrent accesses to same data/variables
(e.g. during a read/write operation). In this situation, Mutexes are
used to allow exclusive Pthread data access and Barrier are used to
coordinate the parallel execution of threads during their
synchronization.

(a) vSMP with 1 thread (b) vSMP with 2 threads

T
RMA Inst./data

00100101
11101110
10111001 T T

(c) vSMP with 8 threads

T T

T T T

T T T

Inst./data
00100101
11101110
10111001

Inst./data
00100101
11101110
10111001

Main
Program

T T T

T T T

T T

Main
Program
Shared
Memory

T T T

T T T

T T

Shared
Memory

 Frames stored in the
shared between accessed

by processing threads

 Each thread
decodes the same
number of frames

A

B

A

B

Shared
Memory

Initialisation

pthread_create()

pthread_join()

PE
01

PE
02

PE
XX

Main Program

Main Program

(a) Smith Waterman (b) MJPEG (c) FFT

Figure 7 - Architecture scalability, considering different applications and varying the cache memory size in 4kB, 8kB and 16 kB.

Another example to demonstrate this synchronization is shown in
Figure 8, where the Mutex primitive is used to identify each thread
(Thread_id) before starting their execution by using a single
variable (shared_var) into the Host shared memory (i.e.
instructions / data). This part of the application is inherently
sequential due to the time of creation and identification of threads.

Figure 8 - Example of Mutex variable implementation.

5.2 RMA and NoC Throughput
Figure 9 shows the average bandwidth during MJPEG execution
for the two used NoC links at the host level (south and east) as
well as the RMA, which is the aggregated bandwidth of those.
Thread mapping plays an important role in the NoC usage, as
explained in Section 4.3.

Figure 9 - Average bandwidth for the MJPEG application.

It can be observed that south link is unused for 1 and 2 threads,
because of the decided mapping. But as the number of threads
grows, the south link begins to be massively used (XY routing)

causing most of the host data flows through this south NoC link.
Although overall the bandwidth grows linearly versus the number
of threads for 16kB cache sizes, which is similar to 8kB. Using
4kB cache sizes results in a significant bump in bandwidth usage,
mostly because of much increased instruction cache miss rate. A
plateau is observed from 4 threads at around 200MB/s, which is
about 80% of the maximum theoretical bandwidth of the RMA
module (250MB/s). This explains the plateau observed in speedup
in Figure 7b, because of the RMA saturation.

Figure 10 shows the average bandwidth for the FFT application.
Similar to 4kB MJPEG scenario, saturation threshold around
200MB/s is achieved when more than 4 threads are executed
considering 4kB cache configuration (similar to 8kB cache). This
explains the plateau observed for speedup illustrated in Figure 7c.
However, the average bandwidth of the 16kB scenario does not
reach the saturation threshold, which infers that the maximum
speed up of 4.6 (Figure 7c) is not related to the communication,
but rather to the application behavior explained in Section 5.1 and
shown in Figure 6.

Figure 10 - Average bandwidth for the FFT application.

5.3 Miss Rate and Cache Miss Latency
Figure 11 shows both the average instruction and data cache miss
latencies for MJPEG. Excellent scalability is observed for 2 cache
configurations (8kB and 16kB), whereas 4kB configuration shows
a steep latency increase due to the RMA saturation (Section 5.2).
The average cache miss latencies for (a) instructions and (b) data
for the FFT application for 4kB, 8kB and 16kB cache
configuration is illustrated in Figure 12.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p

e
e

d
u

p

of CPUs and threads

XY
OpenScale 16kB
OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

of CPUs and threads

XY
OpenScale 16kB

OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

S
p
e
e
d
u
p

of CPUs and threads

XY
OpenScale 16kB
OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

M
B

/s

east 4kB
south 4kB
RMA 4kB

 0

 10

 20

 30

 40

 1 2 3 4 5 6 7 8

M
B

/s

of Threads

east 16kB
south 16kB
RMA 16kB

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8

M
B

/s

east 4kB
south 4kB
RMA 4kB

 0

 40

 80

 120

 1 2 3 4 5 6 7 8

M
B

/s

of Threads

east 16kB
south 16kB
RMA 16kB

(a) instruction cache miss (b) data cache miss

Figure 11 – Average instructions and data cache miss latencies
for MJPEG.

Note that the saturation factor is related to the instruction cache
miss latency. For instance, for the 4kB and 8kB scenarios the
instruction cache miss latency increases almost linearly from 4 to
8 threads. In turn, due to the small number of data cache miss the
latency does not have the same behavior.

(a) instruction cache miss (b) data cache miss

Figure 12 – Average instructions and data cache miss latencies
for FFT.

5.4 Communication Overhead
As pointed out during the introduction, the placement of the
desired cluster may interfere in the system performance. To
demonstrate this situation the following scenarios are proposed: (i)
3 different clusters are defined at run-time by running the same
FFT application without any communication between them, (ii)
the application running in the first and third clusters has been
modified to exchange results between them, while the second
cluster will not run, and (iii) is a mix between the first two
experiments, as shown in the Figure 13.

Figure 13 – Scenarios used to explore communication

interference.

Table 3 shows that the communication overhead is 9.82%, and
when the second cluster is running the first and third clusters are
affected by the system and the execution time increases more
19.32%, showing qualitatively as interference can impact on the
system.

Table 3 – Execution time considering scenarios with and
without communication interference between clusters.

Scenarios Execution Time (Clock cycles) Interference
i 2356281 ------
ii 2578409 9.42 %
iii 3076780 19.32 %

5.5 Placement Overhead
Another experiment which shows the placement overhead is
demonstrated in Figure 14, where three scenarios are proposed
varying the host position: (i) default scenario, where two threads
will communicate through a port while all other threads will
communicate using another, (ii) similar to previous, this scenario
will decrease NPU-Host distance from 4 to 3 hops and (iii) the
best scenario, where NPU-Host distance is balanced and in the
worst case is just 2 hops away.

Figure 14 – Scenarios used to explore host position.

As displayed in Table 4, the best gain using cache size of 8kB or
16kB is about 3% by changing only the host position, this can be
explained by the fact that the MJPEG application is scalable and
the NoC was not saturated in these scenarios. But when the NoC is
saturated (4kB cache size), the placement can be very weighty,
showing a gain of almost 10% using the best configuration.

Table 4 – Larger differences exploring the host position.

Cache Size Performance best case
Host_00 Host_10 Host_11

4 kB 100% 98.81% 90.51%
8 kB 100% 97.10% 96.84%

16 kB 100% 98.62% 96.90%

5.6 Area Overhead
To evaluate the area overhead of the proposed idea, two
approaches were used: (i) ASIC and (ii) FPGA.

In these results, the processor architecture was shifted to a
floating-point capable low power embedded processor [11].
Moreover, the synthesizable version has no optional IO (e.g. no
UART). Table 5 shows that this contribution adds an area
overhead between 5,72% and 15,59%, using respectively 256kB
and 64kB of RAM in a 40nm CMOS Technology.

An additional analysis was performed using a Xilinx Spartan-3
FPGA (XC3S1000), where system with the RMA module incurs
an area overhead ranging from 7% to 15% also depending on the
memory size.

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

C
lo

ck
 C

yc
le

s

CPUs and Threads

cache 4kB
cache 8kB

cache 16kB

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

C
lo

ck
 C

yc
le

s

CPUs and Threads

cache 4kB
cache 8kB

cache 16kB

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

C
lo

ck
 C

yc
le

s

CPUs and Threads

cache 4kB
cache 8kB

cache 16kB

 100

 200

 300

 400

 500

 600

 700

 1 2 3 4 5 6 7 8

C
lo

ck
 C

yc
le

s

CPUs and Threads

cache 4kB
cache 8kB

cache 16kB

Table 5 – PE area evaluated at 40nm CMOS Technology.

Memory Size Low-Power core
with FP

Low-Power core
with FP + RMA Area Overhead

64 kB 0.2803 !!! 0.3240 !!! 15.59 %
128 kB 0.4392 !!! 0.4829 !!! 9.94 %
256 kB 0.7650 !!! 0.8088 !!! 5.72 %

6. CONCLUSION
This paper presents a multithreading approach for a distributed
memory NoC-based MPSoC. The proposed solution was validated
on FPGA and ASIC and incurs a limited area overhead (around
10%), because it relies on a relaxed memory consistency model
that permits avoiding complex cache coherence protocols. This
combined to the intrinsically low latencies of on chip NoC
communications results in a promising solution that shows good
performance scalability and enables facilitated programming
through the use of POSIX thread API.

Future explorations will aim at investigating power efficiency and
scalability with hundreds of processor nodes, besides also evaluate
qualitatively our approach against NUMA systems. Some
enhancements of this design are also envisioned, such as aliasing
of both data and instruction spread over several processor nodes so
as to better balance memory accesses, avoid code replication (such
as microkernel) and achieve higher performance.

7. ACKNOWLEDGEMENT
The research leading to these results has received fund- ing from
the European Communitys Seventh Frame- work Programme
(FP7/2007-2013) under the Mont-Blanc Project:
http://www.montblanc-project.eu, grant agree- ment no 288777.

8. REFERENCES
[1] Marculescu, R., Ogras, U.Y., Li-Shiuan Peh, Jerger, N.E. and

Hoskote, Y. 2009. Outstanding Research Problems in NoC
Design: System, Microarchitecture, and Circuit
Perspectives.” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 28(1), 3-21.

[2] Marongiu, A. and Benini, L. 2010. An OpenMP Compiler for
Efficient Use of Distributed Scratchpad Memory in MPSoCs.
IEEE Transactions on Computers, vol. 62(1), 222-236.

[3] Ceng, J. 2008. MAPS: An Integrated Framework for MPSoC
Application Parallelization. In Design Automation
Conference (DAC), 754-759.

[4] 9945-1I. 1996. The POSIX threads standard.
[5] Baert, R. 2009. Exploring Parallelizations of Applications for

MPSoC platforms using MPA. In Design, Automation and
Test in Europe Conference (DATE), 1148-1153.

[6] Ophelders, F. 2009. A Tuneable Software Cache Coherence
Protocol for Heterogeneous MPSoCs. Master's Thesis,
Eindhoven University of Technology.

[7] Busseuil, R., Barthe, L., Almeida, G. M., Ost, L., Bruguier,
F., Sassatelli, G., Benoît, P., Robert, M. and Torres, L. 2011.
Open-scale: A scalable, open-source noc-based mpsoc for
design space exploration. International Conference on
Reconfigurable Computing and FPGAs. 357–362.

[8] Binkert N. 2011. The gem5 simulator. ACM SIGARCH
Computer Architecture News, vol.39 (2).

[9] ARM. 2011. RealView Platform Baseboard Explore for
Cortex-A9 User Guide, DUI0440B.

[10] AMD, 2002. AMD Opteron Shared Memory MP Systems.
[11] ARM, 2009. Cortex-M4 Technical Reference Manual,

DDI0439C.

