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ABSTRACT 
Scalability and programmability are important issues in large 
homogeneous MPSoCs. Such architectures often rely on explicit 
message-passing among processors, each of which possessing a 
local private memory. This paper presents a low-overhead 
hardware/software distributed shared memory approach that 
makes such architectures multithreading-capable. The proposed 
solution is implemented into an open-source message-passing 
MPSoC through developing a POSIX-like thread API, which 
shows excellent scalability using application kernels used for 
benchmarking in shared-memory systems. This approach 
efficiently draws strengths from the on-chip distributed private 
memory that opens the way to exposing the multithreading 
programmability/capabilities of that component as a general-
purpose accelerator. 

Categories and Subject Descriptors 
B.7.1 [Integrated Circuits]: Types and Design Styles – advanced 
technologies, VLSI (very large scale integration). 

General Terms 
Design, Experimentation, Performance, Verification. 

Keywords 
Programmability, Multithreading, Distributed memory 
organization, NoC-based MPSoCs. 

1. INTRODUCTION 
MPSoC have become the de-facto platform template in many 
application domains ranging from consumer market products such 
as smart phones to hard real-time systems. In most cases, high 
performance allied to low power consumption [1] is required. Due 
to the increasing complexity of both platform architecture and 
application software, programming such multiprocessor systems is 
a challenge and demands for better programming model facilities 
[2]. Parallel programming models for embedded systems have 
long been explored and some used in high-performance computing 
(HPC) have been ported and adapted to embedded systems, such 

as the Message Passing Interface (MPI). The use of such APIs 
allows software designers to model explicit parallelism and 
synchronization between tasks/processor nodes at a reasonable 
level of abstraction while allowing better utilization of hardware 
resources [3]. 

The objective of this paper is exploring the opportunity of 
developing a POSIX-like threads API (Pthreads) [4], very popular 
in general-purpose and high-performance computing, onto a 
distributed private memory NoC-based MPSoC. This API 
commonly used for simultaneous multithreading (SMT) on 
symmetric multiprocessing (SMP) systems assumes a coherent 
shared memory architecture that each processor may access at any 
time. As the target architecture is of distributed private memory 
type, the proposed approach relies on additional hardware that 
makes it possible to expose a logically shared memory 
architecture based on physically distributed memories. Different 
from ccNUMA architectures (cache-coherent Non-Uniform 
Memory Machines) that use complex cache-coherence protocols 
for enforcing strict memory consistency, our approach targets 
embedded devices and therefore aims at minimizing additional 
hardware through a software-oriented approach. Since the 
resulting architecture retains its purely distributed nature, clusters 
operating in this distributed shared memory mode (referred to as 
vSMP for Virtual Symmetric Multiprocessing) are of arbitrary size 
and geometry, and can be decided at run-time for better suiting 
application needs. 

The contributions of this paper may be summarized as follows: (i) 
providing multithreading capability onto a RTL distributed private 
memory NoC-based MPSoC, (ii) implementation of a hardware 
module that enables vSMP clusters definition at run-time, along 
with a software-based memory consistency approach. These 
contributions allow us to evaluate the resulting system, 
demonstrating its efficiency in terms of scalability of platform and 
application, as well as better throughput for several 
application/benchmarks scenarios. 

This paper is organized as follow: Section 2 presents related work 
in MPSoCs programmability. Section 3 describes the basic 
concepts inherent to the adopted NoC-based MPSoC along with 
proposed API and hardware. Section 4 describes the experimental 
setup. Section 5 gives results in term of performance scalability 
and analyzes the overhead created. Finally, Section concludes and 
points out future work directions. 
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2. RELATED WORK 
Several studies have been aimed at improving MPSoCs 
programmability by including/extending different APIs primitives, 
as well as proposing tools that can help designers to program 
parallel embedded applications. For instance, Ceng et al. [3] 
propose the MAPS framework that can be employed to guide 
application designers during the parallelization process. A similar 
framework that allows to explore different parallelization 
alternatives at high-level is described in [5]. Both approaches 
generate a parallel version of a sequential C code, which is 
validated on the top of a shared-memory system. In turn, 
Marongiu et al. [2] extended the OpenMP API, allowing 
allocating array data over multiple distributed scratchpad 
memories (SPMs) based on profile information to optimize data 
allocation. Two MPSoC models were implemented in a SystemC 
full-system simulator in order to validate the proposed OpenMP 
API (e.g. primitives, compiler). The proposed approach differs 
from Marongiu’s in four main aspects: (i) processors are 
interconnected by a cross-bar, while a mesh NoC is employed in 
the present work, which makes our system more scalable while 
consuming less energy and area when compared to a cross-bar;  
(ii) no OS/library support for thread creation and management is 
available in Marangiu’s approach, (iii) only benchmarks that fit 
entirely in cache memories were used in [2] since no cache 
coherence protocol is supported in his work, while our system 
implements cache coherence protocol, allowing  to execute 
applications that deal with larger memory footprint (e.g. MJPEG) 
and (iv) the proposed Pthreads approach was evaluated in a real 
NoC-based MPSoC that has already been prototyped in different 
FPGAs and also ported to ASIC to evaluate the area overhead, 
while Marangiu’s approach uses a simulator to validate his idea. 
Ophelders [6] proposes a software cache coherence protocol that 
was validated on a dual-core ARM9 architecture using the 
SPLASH2 benchmark. Ophelders work differs from ours in two 
aspects. First it considers a system with MMU, and a 4-set 
associative cache, allowing high-level memory management; 
while our approach relies on compact scalar MMU-less processor 
architecture with direct mapped caches, which impacts on less 
memory utilization. Second, our approach to memory coherence is 
software-based and relies on flushes and invalidations, not 
allowing remote execution that implies in less memory access.  

To the best of our knowledge this work presents the first purely 
distributed memory NoC-based MPSoC that supports 
multithreading through POSIX thread API while dealing with 
cache/memory coherence at OS level. The proposed approach 
improves the system programmability; while better scalability and 
performance can be achieved once high visibility permits 
improving cache coherence and management. 

3. MULTITHREADING PLATFORM 
3.1 Platform Description 
OpenScale1 is a homogeneous message-passing NoC-based 
MPSoC with distributed private memories. Each node comprises a 
32 bit pipelined CPU with configurable instruction and data 
caches. This core implements the Microblaze ISA architecture and 
features a timer, an interrupt controller, a RAM and optionally an 
UART [7], as illustrated in Figure 1. 

                                                
1 Available for download at: www.lirmm.fr/ADAC 

 
Figure 1 - Adopted NoC-based MPSoC architecture. 

The platform RTOS is a pre-emptive priority-based micro-kernel. 
Each processing element (PE) runs its RTOS independently, and 
communications and synchronizations are made through a light 
implementation of the MPI message-passing library. Applications 
are represented through Khan Process Network, a standard 
representation in such a message-passing oriented system. 
Examples of services supported in the RTOS are: (i) run-time 
dynamic applications loading, (ii) preemptive round-robin 
scheduler based on thread credits, (iii) system-monitoring 
mechanisms (e.g. processor workload) and (iv) API with drivers 
support (e.g. UART). The platform supports a number of features 
such as task-migration and distributed decision-making 
capabilities [7]. 

3.2  Multithreading hardware support 
In order to enable simultaneous multithreading (SMT) on any 
multiprocessor architecture, a logically shared memory space must 
be exposed to the software. Moreover, as the chosen architecture 
is organized into a distributed private memory, the hardware must 
also be modified to enable access to remote memories from any 
node participating to the vSMP cluster (Virtual Symmetric 
Multiprocessing).  Figure 1 shows an example of vSMP clusters 
that may be defined at run-time using arbitrary size and geometry. 
They may communicate with each other using message passing, 
but be careful with the placement, because as shown in Figure 1, 
perhaps the PE between clusters may incur a communication 
performance penalty, depending if this PE is using the NoC to 
communicate with another PE or not.  

The proposed module that serves this purpose, called remote 
memory access (RMA), is composed of an RMA-Send and an 
RMA-Reply, which together enable remote memory access 
through the NoC, more two asynchronous FIFOs are used for 
communication between both modules and the NoC. The RMA 
module contains a cache miss handling protocol that comprises 
three main steps: (i) whenever a cache miss occurs, the CPU 
issues a cache line request routed through the NoC, (ii) the host 
RMA reads the desired cache line (i.e. instruction/data), which is 
sent back to the remote CPU that resumes thread execution as 
soon as cache line is received (iii), as illustrated in Figure 2. 

The remote memory access protocol has a latency of 182 clock 
cycles at zero NoC load, from the cache line request to the remote 
thread execution, which is depicted in details in Figure 3, 
remembering that this latency only occurs when trying to access 
the shared memory and not accessing the local memory during a 
cache miss. The protocol and its implementation have been 
optimized for latency and not throughput, as cache miss traffic is 
rather more latency-sensitive. Low to moderate latencies are 
ensured up to an end-to-end bandwidth of 90MB/s at 500MHz.  
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Figure 2 - Cache miss RMA protocol. 

Note that the host RMA is kept busy during 64 cycles: since there 
is one input fifo and output fifo, a new request can be serviced 
before the cache line write to NoC (64 cycles), which corresponds 
to cache line request acquisition (15 cycles) and local memory 
read (14+35 cycles), as shown in Figure 3. This results in a 
maximum theoretical bandwidth of 250MB/s when several 
requests are aliased. 

 
Figure 3 - Cache miss RMA protocol in a READ transaction. 

3.3 Multithreading software support 
The in-house RTOS described in 3.1 was modified to support a 
configurable processor memory mapping that permits specifying 
the ratio of local private data versus local shared data, made 
visible to all processors in the cluster as shown in the Figure 4. 

 

Figure 4 - DSM node memory organization. 

Moreover, a subset of the widely used POSIX multithreading API 
has been ported into the microkernel, as shown in Table 1. The 
implementation of this API was focused on three categories: 
thread creation, mutexes and barriers for thread mutual exclusions 
and synchronizations. The memory consistency model relies only 
on the memory coherence guaranteed at each API function call: 
which corresponds to a relaxed memory consistency model, i.e. 
having a coherent memory whenever synchronization is made. 
The protocol operates as follows: 

• During a thread creation, data caches are flushed on the 
caller side and invalidated on the executer side. 

• During a mutex lock, cache lines that possibly contain 
shared data that can be accessed between the locking and 
unlocking are invalidated. 

• During a mutex unlock, those same lines are flushed. 

• During the barrier calls, the shared memory is also flushed 
and invalidated. 

Table 1 - Implemented Pthread primitives. 

Pthread primitives Description 
pthread_create() Creates a new thread in the calling process 
pthread_exit() Terminates the calling thread 
pthread_join() Waits for the specified thread to terminate 
pthread_mutex_init() Initializes the specified mutex 
pthread_mutex_destroy() Destroys the specified mutex 
pthread_mutex_lock() Locks the mutex object 
pthread_mutex_unlock() Unlocks the mutex object 
pthread_barrier_init() Initialize a barrier object 

pthread_barrier_wait() Synchronizes participating threads at the 
barrier pointed to by the barrier argument 

 
This is the smallest protocol that ensures cache coherency 
hardware and software support: the invalidation and flush 
operations of any cache line are performed only if the cache line 
tag corresponds to the address specified by the instruction. This 
condition avoids unnecessary cache flushes / invalidations of 
cache lines containing unrelated data. 

4. EXPERIMENTAL SETUP 
4.1 Application kernels 
Three application kernels often employed in multithreaded 
architectures benchmarking were selected: Smith Waterman 
(DNA sequence-alignment matching application), MJPEG 
encoder and FFT (Fast Fourier Transform). A pthread 
implementation was developed for each, in which threads 
granularity is sound. MJPEG threads process entire images, 
whereas Smith-Waterman implementation relies on worker 
threads that run sequence alignment algorithm on different data 
sets. FFT is made of a number of threads, each of which performs 
a number of butterfly operations for minimizing data transfers. 
Table 2 gives benchmark-specific figures expressed in terms of 
single-thread processing time (using 16kB of cache), computation 
to data ratio and code size. Due to the different natures of those 
applications, execution time varies greatly and ranges from less 
than 2 million clock cycles (4ms at 500MHz) to more than 13 
million clock cycles (26ms at 500MHz). 

Table 2 - Performance information of adopted applications. 

Application 
name 

Single thread 
execution time 

Computation 
to Data Ratio 

Instruction size 
of a thread 

MJPEG 5.3 Mega cycles 5.34 52kB 
Smith Waterman 13.2 Mega cycles 7.08 3.8kB 

FFT 1.9 Mega cycles 4.18 5kB 
 

The second important factor provided by this table is the 
computation to data ratio. This number is the ratio between the 
number of actual compute instructions (e.g. add, mul, jump, etc.) 
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over the number of memory instruction (load / store) executed by 
a thread, which gives an overview of the importance of instruction 
loading in regards of data loading. Hence, an application having a 
high computation to data loading ratio would be instruction 
accesses dominated, with therefore proportionally less data 
accesses. Note that Smith Waterman has the highest computation 
data, when compared to the others. Fourth column in Table 2 
shows the thread code size of each application. A thread with large 
code size would potentially lead to more instruction cache misses, 
because a smaller fraction of it would fit in the cache. 

4.2 Reference Platforms 
GEM5 Simulator [8] was used to produce the reference platforms. 
It was chosen because its good tradeoff between simulation speed 
and accuracy, besides modeling a real Realview Platform 
Baseboard Explore for Cortex-A9 (ARMv7 A-profile ISA) [9]. 

To create the desired ARM system, the CPU model and Linux 
bootloader have been modified to enable configurations with more 
than 4 cores and different interconnection network topologies 
were evaluated: (a) bus-based and (b) mesh. The reference 
platforms are configured as follows: (i) up to 8 ARM Cortex-A9, 
(ii) CPU running at 500MHz, (iii) Linux Kernel 2.6.38, (iv) 16kB 
private L1 data and instruction caches, (v) 32bits channel width, 
(vi) DDR physical memory running at 400MHz and (vii) 256MB 
unified L2 cache (only for mesh network) where the MOESI 
Hammer [10] is the cache coherence protocol used in these 
topologies. It is noteworthy that to avoid any traffic with DDR 
physical memory during benchmark execution was selected this 
huge L2 cache size. 

4.3 Platform Setup 
The platform is configured as follows: (i) 3x3 processor array, 
NoC with 4 position input buffers and 32 bits channel width, (ii) 
processor cache size was set to 4kB, 8kB and 16kB, 8 words per 
lines, direct mapped caches, (iii) 500MHz frequency for both 
processor nodes and NoC routers and (iv) CPU with hardware 
multiplier, divider and barrel shifter. Figure 5 shows the thread 
mapping used for the experiments. In those, shared data reside in 
the top-left processor node, and are accessed by the threads 
running in other nodes (one per node). 

 
Figure 5 - Adopted scenario. 

These mappings incur higher cache miss latencies as all traffic 
converges and flows through south and east ports of the top-left 
processor node. Results have however shown that mapping 
influence on performance remains below 5% in our setup, because 
of the NoC link bandwidth (1GB/s) corresponding to less than 
20% bandwidth usage in all used configurations. All results were 
gathered on a synthesizable RTL VHDL description of the 
architecture. Note that all features inherent to prototype (e.g. run-
time vSMP cluster definition) were also evaluated in FPGA (i.e. 
simplistic scenarios due to the memory limitation). 

5. RESULTS 
5.1 Speedup 
The first experiment evaluates the platform scalability considering 
all applications as shown in Figure 7. Architecture scalability was 
evaluated and compared to different interconnection network 
topologies made from 1 to 8 ARMv7 CPU cores with cache sizes 
matching those of our vSMP MPSoC. In order to maximize 
speedup, one thread per node was used in all experiments, thereby 
avoiding performance penalties resulting from context switching. 
Figure 7a shows near-perfect linear speedup for the Smith-
Waterman application, for all platforms. As being very compute 
oriented (as shown in the third column of Table 2), few data 
communication occur and thread code fit in the local caches for all 
tested configurations (as shown in the fourth column of Table 2), 
resulting in limited cache miss rate, but even under these 
conditions, our proposed MPSoC has a better performance 
compared to the mesh reference platform in which reached his 
maximum speed up of 6.3. In turn, b shows a similar speedup for 
cache sizes of 8kB and 16kB in the MJPEG, this can be easily 
explained by observing the behavior of the application shown in 
Figure 6, where it looks totally scalable, since the barriers would 
be found only at the end of each processing frame. But even 
though a scalable application, the shared-bus platform reaches a 
plateau from 5 cores, while the mesh platform reaches a plateau 
from 6 cores, they are due to the bus saturation. The same 
behavior is also observed with the proposed accelerator when 
using cache sizes of 4kB, but this will be explained in details in 
Section 5.2. 

 
Figure 6 - Behavior of MJPEG Pthread implementation. 

Figure 7c shows the performance scalability of FFT, regarding the 
adopted scenario (Figure 5). Due to the sequential 
synchronizations, the parallelization capability of FFT is low. 
Thus, with a 16kB cache configuration, the application can only 
achieve a speedup of 4.6. However, such results show a better 
performance when compared to other systems, which no one 
overcomes a speed up of 2.8. Different from the previous 
benchmarks, the FFT application was employed to explore 
synchronization primitives (e.g. Mutexes and Barrier) when 
multiple threads issue concurrent accesses to same data/variables 
(e.g. during a read/write operation). In this situation, Mutexes are 
used to allow exclusive Pthread data access and Barrier are used to 
coordinate the parallel execution of threads during their 
synchronization.
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Figure 7 - Architecture scalability, considering different applications and varying the cache memory size in 4kB, 8kB and 16 kB. 
 
Another example to demonstrate this synchronization is shown in 
Figure 8, where the Mutex primitive is used to identify each thread 
(Thread_id) before starting their execution by using a single 
variable (shared_var) into the Host shared memory (i.e. 
instructions / data). This part of the application is inherently 
sequential due to the time of creation and identification of threads. 

 
Figure 8 - Example of Mutex variable implementation. 

5.2 RMA and NoC Throughput 
Figure 9 shows the average bandwidth during MJPEG execution 
for the two used NoC links at the host level (south and east) as 
well as the RMA, which is the aggregated bandwidth of those. 
Thread mapping plays an important role in the NoC usage, as 
explained in Section 4.3.  

 
Figure 9 - Average bandwidth for the MJPEG application. 

It can be observed that south link is unused for 1 and 2 threads, 
because of the decided mapping. But as the number of threads 
grows, the south link begins to be massively used (XY routing) 

causing most of the host data flows through this south NoC link. 
Although overall the bandwidth grows linearly versus the number 
of threads for 16kB cache sizes, which is similar to 8kB. Using 
4kB cache sizes results in a significant bump in bandwidth usage, 
mostly because of much increased instruction cache miss rate. A 
plateau is observed from 4 threads at around 200MB/s, which is 
about 80% of the maximum theoretical bandwidth of the RMA 
module (250MB/s). This explains the plateau observed in speedup 
in Figure 7b, because of the RMA saturation. 

Figure 10 shows the average bandwidth for the FFT application. 
Similar to 4kB MJPEG scenario, saturation threshold around 
200MB/s is achieved when more than 4 threads are executed 
considering 4kB cache configuration (similar to 8kB cache). This 
explains the plateau observed for speedup illustrated in Figure 7c. 
However, the average bandwidth of the 16kB scenario does not 
reach the saturation threshold, which infers that the maximum 
speed up of 4.6 (Figure 7c) is not related to the communication, 
but rather to the application behavior explained in Section 5.1 and 
shown in Figure 6. 

 
Figure 10 - Average bandwidth for the FFT application. 

5.3 Miss Rate and Cache Miss Latency 
Figure 11 shows both the average instruction and data cache miss 
latencies for MJPEG. Excellent scalability is observed for 2 cache 
configurations (8kB and 16kB), whereas 4kB configuration shows 
a steep latency increase due to the RMA saturation (Section 5.2). 
The average cache miss latencies for (a) instructions and (b) data 
for the FFT application for 4kB, 8kB and 16kB cache 
configuration is illustrated in Figure 12. 

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

S
p

e
e

d
u

p

# of CPUs and threads

XY
OpenScale 16kB
OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

S
p
e
e
d
u
p

# of CPUs and threads

XY
OpenScale 16kB

OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 1  2  3  4  5  6  7  8

S
p
e
e
d
u
p

# of CPUs and threads

XY
OpenScale 16kB
OpenScale 8kB
OpenScale 4kB

Mesh-based ARM (16kB)
Bus-based ARM (16kB)

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

M
B

/s

east 4kB
south 4kB
RMA 4kB

 0

 10

 20

 30

 40

 1  2  3  4  5  6  7  8

M
B

/s

# of Threads

east 16kB
south 16kB
RMA 16kB

 0

 50

 100

 150

 200

 250

 1  2  3  4  5  6  7  8

M
B

/s

east 4kB
south 4kB
RMA 4kB

 0

 40

 80

 120

 1  2  3  4  5  6  7  8

M
B

/s

# of Threads

east 16kB
south 16kB
RMA 16kB



  
(a) instruction cache miss (b) data cache miss 

Figure 11 – Average instructions and data cache miss latencies 
for MJPEG. 

Note that the saturation factor is related to the instruction cache 
miss latency. For instance, for the 4kB and 8kB scenarios the 
instruction cache miss latency increases almost linearly from 4 to 
8 threads. In turn, due to the small number of data cache miss the 
latency does not have the same behavior. 

  
(a) instruction cache miss (b) data cache miss 

Figure 12 – Average instructions and data cache miss latencies 
for FFT. 

5.4 Communication Overhead 
As pointed out during the introduction, the placement of the 
desired cluster may interfere in the system performance. To 
demonstrate this situation the following scenarios are proposed: (i) 
3 different clusters are defined at run-time by running the same 
FFT application without any communication between them, (ii) 
the application running in the first and third clusters has been 
modified to exchange results between them, while the second 
cluster will not run, and (iii) is a mix between the first two 
experiments, as shown in the Figure 13. 

 
Figure 13 – Scenarios used to explore communication 

interference. 

Table 3 shows that the communication overhead is 9.82%, and 
when the second cluster is running the first and third clusters are 
affected by the system and the execution time increases more 
19.32%, showing qualitatively as interference can impact on the 
system. 

 

 

Table 3 – Execution time considering scenarios with and 
without communication interference between clusters. 

Scenarios Execution Time (Clock cycles) Interference 
i 2356281 ------ 
ii 2578409 9.42 % 
iii 3076780 19.32 % 

5.5 Placement Overhead 
Another experiment which shows the placement overhead is 
demonstrated in Figure 14, where three scenarios are proposed 
varying the host position: (i) default scenario, where two threads 
will communicate through a port while all other threads will 
communicate using another, (ii) similar to previous, this scenario 
will decrease NPU-Host distance from 4 to 3 hops and (iii) the 
best scenario, where NPU-Host distance is balanced and in the 
worst case is just 2 hops away. 

 
Figure 14 – Scenarios used to explore host position. 

As displayed in Table 4, the best gain using cache size of 8kB or 
16kB is about 3% by changing only the host position, this can be 
explained by the fact that the MJPEG application is scalable and 
the NoC was not saturated in these scenarios. But when the NoC is 
saturated (4kB cache size), the placement can be very weighty, 
showing a gain of almost 10% using the best configuration. 

Table 4 – Larger differences exploring the host position. 

Cache Size Performance best case 
Host_00 Host_10 Host_11 

4 kB 100% 98.81% 90.51% 
8 kB 100% 97.10% 96.84% 

16 kB 100% 98.62% 96.90% 
 

5.6 Area Overhead 
To evaluate the area overhead of the proposed idea, two 
approaches were used: (i) ASIC and (ii) FPGA. 

In these results, the processor architecture was shifted to a 
floating-point capable low power embedded processor [11]. 
Moreover, the synthesizable version has no optional IO (e.g. no 
UART). Table 5 shows that this contribution adds an area 
overhead between 5,72% and 15,59%, using respectively 256kB 
and 64kB of RAM in a 40nm CMOS Technology. 

An additional analysis was performed using a Xilinx Spartan-3 
FPGA (XC3S1000), where system with the RMA module incurs 
an area overhead ranging from 7% to 15% also depending on the 
memory size. 
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Table 5 – PE area evaluated at 40nm CMOS Technology. 

Memory Size Low-Power core 
with FP 

Low-Power core 
with FP + RMA Area Overhead 

64 kB 0.2803 !!! 0.3240 !!! 15.59 % 
128 kB 0.4392 !!! 0.4829 !!! 9.94 % 
256 kB 0.7650 !!! 0.8088 !!! 5.72 % 

 

6. CONCLUSION 
This paper presents a multithreading approach for a distributed 
memory NoC-based MPSoC. The proposed solution was validated 
on FPGA and ASIC and incurs a limited area overhead (around 
10%), because it relies on a relaxed memory consistency model 
that permits avoiding complex cache coherence protocols. This 
combined to the intrinsically low latencies of on chip NoC 
communications results in a promising solution that shows good 
performance scalability and enables facilitated programming 
through the use of POSIX thread API. 

Future explorations will aim at investigating power efficiency and 
scalability with hundreds of processor nodes, besides also evaluate 
qualitatively our approach against NUMA systems. Some 
enhancements of this design are also envisioned, such as aliasing 
of both data and instruction spread over several processor nodes so 
as to better balance memory accesses, avoid code replication (such 
as microkernel) and achieve higher performance.  
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