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This article presents the cross-motion invariant group—CMI(3)—whose group operation is defined over
unit dual quaternions such that rigid motions are cross-motion invariant; that is, the resultant translation
does not depend on rotation and vice-versa. We present the main properties of CMI(3) and the differences
between this group and the standard group Spin(3)�R

3 of unit dual quaternions, as well as the kinematic
equations under a sequence of CMI(3) operations. Two numerical examples are presented in order to
illustrate the main characteristics of CMI(3).
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1. Introduction

The study of rigid motions is a classic topic in robot kinematics and is covered by virtually all modern
robotics textbooks (for example, see Murray et al., 1994; Craig, 2005; Spong et al., 2006; Siciliano
& Khatib, 2008; Siciliano et al., 2009). Its importance relies on the fact that rigid motions (or rigid
transformations) play an important role in robot modelling and control (Spong et al., 2006), as well as
in motion planning and high-level task definitions (Lana et al., 2015), as most robots are composed of
rigid components serially or parallelly attached to each other, resulting in complex kinematic chains.
The group that represents rigid motions in three dimensions is the Special Euclidean Group SE(3) and
it is well known that this group is basically the semi-direct product of SO(3) and R

3 (Selig, 2005); that
is, given R ∈ SO(3) and p ∈ R

3 such that X = (R, p) ∈ SE(3), then

X1X2 = (
R1, p1

) (
R2, p2

) = (
R1R2, p1 + R1p2

)
. (1)

Elements of SE(3) are usually written in the form of homogeneous transformation matrices (HTM);
that is,

X =
[

R p
01×3 1

]
,

where 0m×n is the zero matrix with m rows and n columns, such that[
R1 p1

01×3 1

] [
R2 p2

01×3 1

]
=
[

R1R2 p1 + R1p2

01×3 1

]
.

© The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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2 B. V. ADORNO AND P. FRAISSE

An alternative to the group SE(3) in the representation of rigid transformations is the group Spin(3)�

R
3 of unit dual quaternions, which double covers SE(3) (McCarthy, 1990; Selig, 2005). The advantage

of using unit dual quaternions is that they are more compact than HTM, as the former has eight elements,
whereas the latter has sixteen. In addition, dual quaternions have strong algebraic properties and can be
used to represent rigid motions, twists, wrenches and several geometrical primitives—e.g. Plücker lines
and planes—in a very straightforward way (Daniilidis, 1999; Radavelli et al., 2014). Moreover, it is easy
to extract geometric parameters from a given unit dual quaternion (translation, axis of rotation and angle
of rotation) and dual quaternions multiplications are less expensive than HTM multiplications (Adorno,
2011, p. 42). Also, unit dual quaternions do not have representational singularities (although this feature is
also present in HTM) and are easily mapped into a vector structure, which can be particularly convenient
when controlling a robot, as there is no need to extract parameters from the dual quaternion to perform
such task (Adorno et al., 2010). Thanks to the aforementioned advantages, unit dual quaternions will be
used throughout the article in order to represent rigid motions.

Let us introduce some facts about quaternions and dual quaternions. Let ı̂, ĵ , k̂ be the three imaginary
units such that ı̂2 = ĵ 2 = k̂2 = ı̂ ĵ k̂ = −1. The set of quaternions naturally extends the set of complex
numbers and is defined as

H �
{

a + bı̂ + cĵ + dk̂ : a, b, c, d ∈ R

}
,

whereas the set of pure quaternions is composed of all quaternions with real component equal to zero,

Hp �
{

aı̂ + bĵ + ck̂ : a, b, c ∈ R

}
.

It is important to note that Hp is isomorphic to R
3 under the addition operation; that is,

(
R

3, +) ∼= (
Hp, +).

The conjugate of a quaternion is analogous to the complex conjugate: given h = a + bı̂ + cĵ + dk̂, its

conjugate is h∗ � a −
(

bı̂ + cĵ + dk̂
)

. In addition, the quaternion norm is defined as ‖h‖ �
√

hh∗.

A unit quaternion (i.e. a quaternion with unit norm) r = cos(φ/2)+sin(φ/2)n represents the rotation
angle φ around the rotation axis n = nx ı̂ + nyĵ + nzk̂ and form the group Spin(3) (Kuipers, 2002; Selig,
2005). The identity element of Spin(3) is the real number 1, since 1r = r1 = r and the group inverse is
the conjugate r∗ � cos(φ/2)− sin(φ/2)n, such that rr∗ = r∗r = 1. Thanks to the isomorphism between
R

3 and Hp, pure quaternions represent translations and points in three dimensions, hence p = xı̂+yĵ+zk̂
represents the point with coordinates (x, y, z).

Elements of the group Spin(3) � R
3 behave analogously to elements of SE(3), that is, given

x = (r, p) ∈ Spin(3) � R
3, then

x1x2 = (
r1, p1

) (
r2, p2

) = (
r1r2, p1 + Ad (r1) p2

)
, (2)

where Ad (r) p � rpr∗ represents the point p rotated by r (it is important to recall that (2) is equivalent
to (1)). However, instead of being represented by the pair (r, p), elements of Spin(3) � R

3 are usually
represented in a compact way by unit dual quaternions, which provides convenient ways of exploiting
algebraic properties.

The set of dual quaternions is defined as

H �
{
g + εh : g, h ∈ H, ε2 = 0, ε �= 0

}
,
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CROSS-MOTION INVARIANT GROUP 3

where ε is the nilpotent Clifford unit, also known as dual unit (Selig, 2005). The dual quaternion conjugate
of h = g + εh is h∗ � g∗ + εh∗ and the dual quaternion norm is defined as

∥∥h
∥∥ �

√
hh∗. Usually g and

h are called primary part and dual part of h, respectively, and we define the operators

P
(
h
)

� g,

D
(
h
)

� h
(3)

to retrieve those components from a dual quaternion.
Dual quaternions with unit norm are called unit dual quaternions and belong to the set

S �
{
h ∈ H :

∥∥h
∥∥ = 1

}
.

Elements of S equipped with the multiplication operation represent elements of Spin(3)�R
3, the group

of rigid motions that double covers SE(3). Let r ∈ Spin(3) and p ∈ Hp, the unit dual quaternion
corresponding to the translation p followed by the rotation r is given by x = r+ε(1/2)pr and the inverse
motion is given by the dual quaternion conjugate x∗, which corresponds to the group inverse such that
x∗x = xx∗ = 1 (Selig, 2005). (Consequently, 1 is the group identity of Spin(3)�R

3.) Remarkably, the
composition of rigid transformations is given by a sequence of dual quaternion multiplications. More
specifically,

x3 �
[

r1 + ε
1

2
p1r1

] [
r2 + ε

1

2
p2r2

]
= r1r2 + ε

1

2

(
r1p2r2 + p1r1r2

)
. (4)

In order to see the equivalence between (4) and (2) first we start with the rotation, which is given by
the primary part of the unit dual quaternion, P

(
x3

) = r1r2 (here we see that the P (·) operator, when
applied to a unit dual quaternion, return elements of the subgroup of pure rotations). This is the same
rotation of (2). To see that the translation of both equations is the same, we define the operator T (x) for
x ∈ Spin(3)�R

3:

T (x) � x P
(
x
)∗

. (5)

The T operator, when applied to the unit dual quaternion x, returns its translation in dual quaternion
form. Thus, this operator returns elements of the subgroup of pure translations. For example, given
x = r + ε(1/2)pr,

T (x) = x P
(
x
)∗ =

(
r + ε

1

2
pr
)

r∗

= 1 + ε
1

2
p.

This way, applying the T operator to (4) we obtain

T
(
x3

) =
[

r1r2 + ε
1

2

(
r1p2r2 + p1r1r2

)]
(r1r2)

∗

= 1 + ε
1

2

(
Ad (r1) p2 + p1

)
,

which corresponds to the translation of (2).
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4 B. V. ADORNO AND P. FRAISSE

Fig. 1. The unit dual quaternion x = T
(
x
)P (

x
)

represents the rigid transformation from the inertial frame F to Fb.

From (5) we see that x = T
(
x
)
P
(
x
)
, which means that if x represents the rigid transformation

from a inertial frame F to frame Fb then x can be interpreted as a sequence of two transformations: first
a transformation T

(
x
)

that translates the origin of F to the origin of frame Fb and then a transformation
P
(
x
)

that rotates the translated frame in order to align it with Fb, as shown in Fig. 1. Any subsequent
rigid transformation, when performed by a right multiplication, uses Fb as the reference frame for the
transformation. However, in case a subsequent rigid transformation is performed by a left multiplication,
the inertial frame F is used as reference frame for the transformation.

1.1. Motivation

Because of the construction of Spin(3)�R
3, the final translation after a sequence of rigid motions

always depends on the intermediate rotations (note that this is true also for SE(3)). This dependence,
which is intrinsic to Spin(3)�R

3, can be called cross-motion variance, and has important consequences
when describing rigid motions. For instance, some specific motions cannot be directly specified, without
intermediate transformations, with respect to arbitrary frames when only Spin(3)�R

3 operations are
used.

In order to see this fact, consider a manipulator robot and let x0 ∈ Spin(3)�R
3 be the initial pose

of the frame FE attached to the end effector with respect to the base frame Fb (Fig. 2). A rigid motion
mE ∈ Spin(3)�R

3 can be specified with respect to the end-effector frame FE by performing a right
multiplication on x0, that is x1 = x0mE , where x1 is the pose of the end effector after the motion mE .
Alternatively, an equivalent motion mB can be specified with respect to the base frame FB to generate
the same final end-effector pose; that is,

x1 = mBx0. (6)

Since x0mE = x1 = mBx0, then

mB = x0mEx∗
0. (7)

Let us consider a motion mE � rE that consists of just a rotation of the end effector using FE as the
reference frame. The final end-effector pose is

x1 = x0rE (8)

and T
(
x1

) = T
(
x0

)
, which implies that the end-effector position does not change. However, if the

motion is to be described with respect to the base frame but resulting in the same final end-effector pose,
the solution given by (7) is
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CROSS-MOTION INVARIANT GROUP 5

Fig. 2. Common frames in manipulator robots: FB is the base frame and FE is the end-effector frame. The unit dual quaternion
x0 corresponds to the initial pose of the robot end effector with respect to the base frame.

x1 = (
x0rEx∗

0

)
x0, (9)

which yields exactly (8); that is, using the group operation of Spin(3)�R
3, a movement of rotation

without translation must be essentially specified with respect to the end-effector frame. Otherwise, if
the movement is specified directly with respect to the base frame, one must also take into account the
coupling between rotations and translations and then specify a suitable translation in order to maintain
the end-effector position constant, which can be quite counterintuitive.

To better clarify this point, consider that the desired motion is a pure rotation mB = rB of the end
effector but defined with respect to FB. The result of mBx0 is not the desired one, since T

(
mBx0

) =
1 + ε (1/2) Ad (rB) p0, which is different from T

(
x0

) = 1 + ε (1/2) p0 (although at least the final
orientation is the desired one). Actually, the desired value for mB such that T

(
mBx0

) = T
(
x0

)
is

mB = rB + ε (1/2)
[
p0 − Ad (rB) p0

]
rB. Not only this transformation is counterintuitive but it also has

a fundamental problem since it depends on the initial position of the end effector and this position may
be uncertain. This way, because of the uncertainty of p0 the desired value of mB is also uncertain, which
does not happen when the task is defined at the end-effector frame.

It is important to highlight that those issues arise not only in the context of manipulator robots
but in any type of kinematic chain. It suffices to have different coordinate systems in which some
of them are inertial and others are moving and motions must be specified in different frames, which
is very typical in cooperative robot systems. In this context, it would be much more convenient if
there existed a more intuitive operation, for example ⊗, acting on Spin(3)�R

3 operands such that
rigid motions could be defined more intuitively, independently of the choice of coordinate system; for
instance, it would be convenient to describe the motion of rotation without translation, defined at the
base frame, as x1 = rB ⊗ x0 = [

1 + ε (1/2) p0

]
rBr0. More generally, given x1 = r1 + ε (1/2) p1r1 and

x2 = r2 + ε (1/2) p2r2, we seek an operation ⊗ such that

x1 ⊗ x2 = r1r2 + ε
1

2

(
p1 + p2

)
r1r2.
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6 B. V. ADORNO AND P. FRAISSE

In terms of groups, this is achievable simply by taking the direct product of Spin(3) and R
3, that is

Spin(3) × R
3. However, more than just a convenient notation such operation should provide useful

features to describe motions that cannot be easily described using Spin(3)�R
3 operations. Moreover,

this new operation should be complementary to the standard one in order to enrich the algebra of rigid
motions.

In this article, we propose a new group, the Cross Motion Invariant group CMI(3), which has the
following characteristics: (i) rotation operations do not affect translations and vice-versa (cross-motion
invariance), (ii) motions are invariant with respect to the position of the reference frame, (iii) translations
under CMI(3) operations commute with arbitrary rigid motions and (iv) the direction of trajectories
is preserved under CMI(3) operations. Furthermore CMI(3) operations can be naturally mixed with
Spin(3)�R

3 operations, leading to a richer algebra and an abstraction level that can be quite useful
when describing rigid motions. Also, we derive the kinematic equation of a sequence of rigid motions
under the CMI(3) group operation.

This article is organized as follows: the next section presents the group CMI(3) and its underlying
operation, the decompositional multiplication, along with the corresponding geometrical interpretation.
Section 3 presents the kinematic equation of a sequence of rigid motions under CMI(3) operations,
whereas Section 4 presents two numerical examples to illustrate the behaviour of rigid motions under
CMI(3) operations. Lastly, Section 5 concludes the article.

2. The group CMI(3) and decompositional multiplications

Before formally introducing the group CMI(3), let us first recall that a group is a manifold G equipped
with an identity element e and two operations

mult : G × G → G, inv : G → G,

such that mult, also known as the group operation, must be associative and obey the closure property
and inv must be a bijection (Selig, 2005). So, in order to define the group CMI(3) first we must establish
the underlying manifold of unit dual quaternions and then we must define the group operation, the group
identity and the group inverse.

The underlying manifold of unit dual quaternions is S
3 × R

3, where S
3 is the unit 3-sphere in four-

dimensional space and thus the set S of unit dual quaternions ‘is a six-dimensional algebraic submanifold
of R

8’ (McCarthy, 1990). Since CMI(3) is a group acting on unit dual quaternions, thus G � S
3 × R

3.
The group operation of CMI(3) is denoted by ⊗ to distinguish it from the standard multiplication of
Spin(3)�R

3 and is defined in the following.

Definition 1 Given xa, xt ∈ S, the decompositional multiplication, represented by ⊗, is defined as

xa ⊗ xt � T
(
xa

)
T
(
xt

)
P
(
xa

)
P
(
xt

)
. (10)

Lemma 1 (Closure) The set S is closed under the decompositional multiplication.

Proof. Let xa, xt ∈ S and consider xf � xa ⊗ xt = T
(
xa

)
T
(
xt

)
P
(
xa

)
P
(
xt

)
, then

xf x
∗
f = T

(
xa

)
T
(
xt

)
P
(
xa

)
P
(
xt

)
P
(
xt

)∗ P
(
xa

)∗ T
(
xt

)∗ T
(
xa

)∗
.
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CROSS-MOTION INVARIANT GROUP 7

If x ∈ S then P
(
x
)
P
(
x
)∗ = 1 and T

(
x
)
T
(
x
)∗ = 1, hence xf x

∗
f = 1, which implies

∥∥xf

∥∥ = 1. Thus
xf ∈ S. �

Lemma 2 Let x1, x2 ∈ S, then T
(
x1 ⊗ x2

) = T
(
x1

)
T
(
x2

)
and P

(
x1 ⊗ x2

) = P
(
x1

)
P
(
x2

)
.

Proof. Considering that a unit dual quaternion xi can always be written as xi = ri + ε (1/2) piri, then

x1 ⊗ x2 =
(

1 + ε
1

2
p1

)(
1 + ε

1

2
p2

)
r1r2

= r1r2 + ε
1

2

(
p1 + p2

)
r1r2.

Thus,

T
(
x1 ⊗ x2

) = 1 + ε
1

2

(
p1 + p2

) = T
(
x1

)
T
(
x2

)
and

P
(
x1 ⊗ x2

) = r1r2 = P
(
x1

)
P
(
x2

)
. �

Lemma 3 (Associativity) The decompositional multiplication is associative.

Proof. Considering x1, x2, x3 ∈ S and using Lemma 2,

(
x1 ⊗ x2

)⊗ x3 = T
(
x1 ⊗ x2

)
T
(
x3

)
P
(
x1 ⊗ x2

)
P
(
x3

)
= T

(
x1

)
T
(
x2

)
T
(
x3

)
P
(
x1

)
P
(
x2

)
P
(
x3

)
= T

(
x1

)
T
(
x2 ⊗ x3

)
P
(
x1

)
P
(
x2 ⊗ x3

)
= x1 ⊗ (

x2 ⊗ x3

)
. �

Lemma 4 (Group identity) The identity element under the decompositional multiplication is the real
number 1.

Proof. First, it is clear that 1 ∈ S, since R ⊂ C ⊂ H ⊂ H and ‖1‖ = 1. Also, P (1) = 1 hence
T (1) = 1. Thus, considering any x ∈ S we have that x ⊗ 1 = 1 ⊗ x = T

(
x
)
P
(
x
) = x. �

Lemma 5 (Group inverse) Given x ∈ S, the inverse operation under decompositional multiplication
is a bijective mapping given by

x† = T
(
x
)∗ P

(
x
)∗

. (11)

Proof. Since T
(
x†
) = T

(
x
)∗

and P
(
x†
) = P

(
x
)∗

, then we verify by direct calculation that

x† ⊗ x = x ⊗ x† = 1.

 by guest on July 18, 2016
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/


8 B. V. ADORNO AND P. FRAISSE

In addition, we see that

(
x†
)† = T

(
x†
)∗ P

(
x†
)∗ = T

(
x
)
P
(
x
) = x. (12)

In order to show that the inverse operation is injective, consider x1, x2 ∈ S such that x1 �= x2 but x†
1 = x†

2.

Inverting both sides of the equality gives
(
x†

1

)† = (x†
2

)†
, which implies from (12) that x1 = x2, which is

a contradiction. Hence the inverse operation under decompositional multiplication is injective.
In order to show that the inverse operation is surjective, let us assume that there exists a unit dual

quaternion a in the codomain of the inverse operation but not in its image. Because (11) is defined for
all unit dual quaternions, there is a unit dual quaternion a in the domain such that a† = b. Since the
domain also contains b, then b† = (

a†
)† = a; that is, a must be in the image of the inverse operation,

contradicting the initial claim that a is in the codomain of the inverse operation, but not in its image,
thus implying surjectivity. �

Theorem 1 The set S of unit dual quaternions under the decompositional multiplication form a group.

Proof. First, S is a manifold (S3 × R
3, see McCarthy, 1990) and the decompositional multiplication is

closed and associative (Lemmas 1 and 3). In addition, there is an identity element under the decomposi-
tional multiplication (Lemma 4) and the inverse operation is a bijection (Lemma 5), consequently unit
dual quaternions under decompositional multiplication form a group, which is named CMI(3). �

2.1. Geometrical interpretation of CMI(3) operations

Note that both operators T (·) and P (·) return unit dual quaternions, the former corresponding to a pure
translation and the latter corresponding to a pure rotation. This way, the decompositional multiplication
corresponds to a rigid motion that behaves differently from the rigid motion performed by the standard
multiplication of Spin(3)�R

3, which is given by

xaxt = T (xa) P
(
xa

)
T (xt) P

(
xt

)
. (13)

In order to illustrate this difference, let xt and xa be unit dual quaternions such that xt represents a target
frame Ft (which could be attached to any relevant rigid body, for example an object to be manipulated
or the robot end effector) with respect to the inertial frame F and xa represents a transformation that
will be applied on xt . In addition, let T (xt) = 1 + ε

(
ĵd
)
/2 and P

(
xt

) = cos (π/4) + k̂ sin (π/4); that
is, considering the reference frame F , xt is the pose of the target frame obtained after a translation d
along the y axis followed by a rotation of π/2 around the z axis. Also, consider T (xa) = 1 + ε

(
ĵd
)
/2

and P
(
xa

) = cos (π/4)+ ı̂ sin (π/4); that is, the transformation xa corresponds to a translation d along
the y axis and a rotation of π/2 around the x axis.

The reference frame for the transformation xa defines if it corresponds to a left multiplication or a
right multiplication: if the target frame is used as reference, right multiplication is used (i.e. xtxa in case
of the standard multiplication and xt ⊗ xa in case of the decompositional multiplication); conversely, if
the inertial frame is the reference for the transformation, left multiplication is used (i.e. xaxt in case of
the standard multiplication and xa ⊗ xt in case of the decompositional multiplication).

Assuming that the desired transformation is given with respect to the inertial frame F, the resulting
pose under the standard Spin(3)�R

3 multiplication, given by (13), can be interpreted as follows. Given

 by guest on July 18, 2016
http://im

am
ci.oxfordjournals.org/

D
ow

nloaded from
 

http://imamci.oxfordjournals.org/


CROSS-MOTION INVARIANT GROUP 9

(a)

(b)

Fig. 3. F is the inertial frame, Fi is an intermediate frame and Ft is the target frame. The transformation T
(
xa

)
corresponds to a

translation d along the y axis and P (
xa

)
corresponds to a rotation of π/2 around the x axis. The contour arrows are the ones used

to perform the translation and rotation. Each numbered circle corresponds to one intermediate step of the complete transformation.

xt (see step 1 in Fig. 3a), first we rotate it by applying P
(
xa

)
T
(
xt

)
P
(
xt

)
resulting in the intermediate

frame Fi (step 2 in Fig. 3a). Since this is a left multiplication, the x-axis of the inertial frame F is used
for the transformation (see bent contour arrow in Fig. 3a). Then we translate Fi by applying the last
transformation, T

(
xa

)
P
(
xa

)
T (xt) P

(
xt

)
, which results in the final frame Ff (step 3 in Fig. 3a). Again,

since this is a left multiplication, the y axis of the inertial frame F is used for the transformation.
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10 B. V. ADORNO AND P. FRAISSE

On the other hand, the resulting pose under the CMI(3) multiplication given by (10) can be inter-
preted as follows. Given xt = T

(
xt

)
P
(
xt

)
(see step 1 in Fig. 3b), first we rotate it by applying

T
(
xt

)
P
(
xa

)
P
(
xt

)
resulting in the intermediate frame Fi (see step 2 in Fig. 3b). Differently from the

standard multiplication, the transformation P
(
xa

)
acts locally, as the reference for this transformation

is a frame aligned with F but with the same origin of Ft . (Note that T
(
xt

)
‘brings’ the origin of the

reference frame to the origin of Ft without changing the alignment, as T (·) corresponds to a pure
translation.) The result is that the orientation of the resulting frame Fi is different from the orienta-
tion of Ft but the position is the same. Finally, Fi is translated by applying the last transformation
T
(
xa

)
T
(
xt

)
P
(
xa

)
P
(
xt

)
resulting in the final frame Ff (see step 3 in Fig. 3b). Again, since this is a

left multiplication, the y axis of the inertial frame F is used for the transformation.

Remark 1 Note that in Fig 3a the position of the final frame clearly depends on the rotation P
(
xa

)
.

Even if the action of xa on xt were applied by the right side (i.e. xf = xtxa), the final position of Ff

would depend on the initial orientation of Ft . The influence of rotation on translation can be called
cross-motion variance. This is a property intrinsic to the group Spin(3)�R

3 (and also of SE(3)). On
the other hand, decompositional multiplication is cross motion invariant, meaning that the translation
will never be affected by the rotation part of the operation and vice versa, as shown in Fig. 3b. If the
action were applied by the right (i.e. xf = xt ⊗ xa), the initial orientation of Ft would not affect the
final position of Ff . This is a property that cannot be achieved by using the standard group operation of
Spin(3)�R

3 (and also of SE(3)).

Remark 2 For any transformation under the CMI(3) multiplication, there is a corresponding sequence
of transformations given by standard Spin(3)�R

3 multiplications. For instance, consider a target frame
Ft with the corresponding unit dual quaternion xt and a transformation y ∈ CMI(3), such that the final
transformation is given by xf = y⊗xt . Now, consider that we want to find a corresponding transformation
z ∈ Spin(3)�R

3 that results in the same final modified frame, that is, xf = zxt . Consequently,

zxt = y ⊗ xt

=⇒ z =
(

y ⊗ xt

)
x∗

t

= T
(

y
)

T
(
xt

)
P
(

y
)

P
(
xt

)
P
(
xt

)∗ T
(
xt

)∗
= T

(
y
)

T
(
xt

)
P
(

y
)

T
(
xt

)∗
. (14)

This way, both operations can be used together because the result is always a unit dual quaternion.
The choice of a particular operation depends mostly on the desired final transformation and which one
provides a more convenient geometrical interpretation for a specific application. This will be better
illustrated in Section 4.

Example 1 In Section 1, we showed that a motion of rotation without translation can be defined directly
with respect to the end-effector frame (that is, x1 = x0rE), but when this motion is specified with respect to
the base frame and Spin(3)�R

3 operations are used, then a transformation must be performed involving
terms of the target frame (i.e. x1 = (

x0rEx∗
0

)
x0). On the other hand, if CMI(3) operations are used, the

specification of this motion is much more straightforward. For instance, let us define a pure rotation with
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CROSS-MOTION INVARIANT GROUP 11

respect to the base frame as rB. When using Spin(3)�R
3 operations the final position will be different

from the initial position, because for x0 = r0 + ε(1/2)p0r0 the new position will be

T
(
rBx0

) = 1 + ε
1

2
rBp0r∗

B,

which is clearly different from the initial position given by T
(
x0

) = 1 + ε(1/2)p0. On the other hand,
if the group operation of CMI(3) is used, the motion of rotation without translation can be easily defined
directly with respect to the base frame (left action):

x1 = rB ⊗ x0 = T (rB) T
(
x0

)
P (rB) P

(
x0

)
= T

(
x0

)
rBr0.

In this case, the rotation rB is specified with respect to the base frame but applied locally, thus the position
does not change; that is, T

(
x1

) = T
(
x0

)
.

3. Kinematic equation and additional properties of CMI(3)

Given x ∈ Spin(3)�R
3, the kinematic equation is given by

ẋ = 1

2
ξx, (15)

where ẋ is the time derivative of x = r + ε (1/2) pr (recall that r ∈ Spin(3) and p ∈ Hp) and ξ =
ω + ε (v + p × ω) is the twist expressed in the inertial frame (Wu et al., 2005). In addition, ω, v ∈ Hp

are pure quaternions that represent the angular and linear velocity, respectively, and p × ω is the cross
product defined in quaternion form as

p × ω � pω − ωp
2

. (16)

Thanks to the isomorphism
(
R

3, +) ∼= (
Hp, +), the cross-product (16) between pure quaternions yields

the same result of the cross product between the corresponding vectors in R
3.

If x is the result of the composition of several rigid motions (e.g. the combination of several interme-
diate rigid motions of a serial kinematic chain), that is x = x1 · · · xn, then the resultant twist is the sum
of all individual twists expressed in the inertial frame (Adorno, 2011). It is important to recall that, due
to the coupling between rotation and translation of Spin(3)�R

3, the resultant linear velocity is strongly
influenced by the angular velocities of intermediate elements of the kinematic chain.

Hence, we seek the twist associated to a composition of rigid motions under the CMI(3) operation,
which tends to be much simpler as motions are decoupled. More specifically, we want to find the twist
ξ

d
that satisfies

ẋ = 1

2
ξ

d
x, (17)

where x = x1 ⊗ · · · ⊗ xn. Before deriving the final result, first we introduce some auxiliary lemmas.
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12 B. V. ADORNO AND P. FRAISSE

Lemma 6 A sequence of decompositional multiplications always result in a decomposed movement,
that is

x1 ⊗ x2 ⊗ . . . ⊗ xn =
(

n∏
l=1

T
(
xl

))( n∏
l=1

P
(
xl

))
.

Proof. From Lemmas 2 and 3 we obtain

x1 ⊗ x2 ⊗ x3 ⊗ . . . ⊗ xn

= {[(
x1 ⊗ x2

)⊗ x3

]⊗ . . .
}⊗ xn

= {[
T (x1 ⊗ x2)T (x3) P

(
x1 ⊗ x2

)
P
(
x3

)]⊗ . . .
}⊗ xn

...

= T (x1) . . . T (xn) P
(
x1

)
. . . P

(
xn

)
. �

Lemma 6 is important because a sequence of transformations under the decompositional multipli-
cation preserves the cross-motion invariance, since the decomposition propagates through the whole
transformation.

Lemma 7 Given x ∈ S and h ∈ H, then T
(
x
)
(εh) = (εh) T

(
x
) = εh.

Proof. Since x has unit norm, then T
(
x
) = 1 + ε(1/2)p and the result is obtained by direct calculation

using the fact that ε2 = 0. �

Lemma 8 Given x1, . . . , xn ∈ S,

d

dt

(
n∏

l=1

P
(
xl

)) = 1

2

(
n∑

m=1

ω′
m

)(
n∏

l=1

P
(
xl

))
,

where ω′
m = Ad

(∏m−1
l=1 P

(
xl

))
ωm and ωm ∈ Hp satisfies P

(
ẋm

) = (1/2) ωm P
(
xm

)
.

Proof. From (15), we see that the kinematic equation of only the primary part is P ′ (xl

) = P
(
ẋl

) =
(1/2) ωl P

(
xl

)
, where P ′ (xl

)
� d

dt P
(
xl

)
—this is commonly known as the quaternion propagation

equation (Kuipers, 2002). Hence

d

dt

(
n∏

l=1

P
(
xl

)) =
n∑

m=1

(
m−1∏
l=1

P
(
xl

))
P ′ (xm

) ( n∏
l=m+1

P
(
xl

))

= 1

2

n∑
m=1

(
m−1∏
l=1

P
(
xl

))
ωm

(
n∏

l=m

P
(
xl

))
.
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CROSS-MOTION INVARIANT GROUP 13

Let ω′
m � Ad

(∏m−1
l=1 P

(
xl

))
ωm, then

1

2

n∑
m=1

(
m−1∏
l=1

P
(
xl

))
ωm

(
n∏

l=m

P
(
xl

)) = 1

2

n∑
m=1

ω′
m

(
m−1∏
l=1

P
(
xl

))( n∏
l=m

P
(
xl

))

= 1

2

(
n∑

m=1

ω′
m

)(
n∏

l=1

P
(
xl

))
. �

Theorem 2 Given x ∈ CMI(3) such that x = x1 ⊗ · · · ⊗ xn with xl = rl + ε (1/2) plrl, the twist that
satisfies the kinematic equation

ẋ = 1

2
ξ

d
x

is ξ
d

= ωd + ε
(
vd + pd × ωd

)
, where the total linear velocity is vd = ∑n

l=1 vl, the total translation is

pd = ∑n
l=1 pl and the total angular velocity is ωd = ∑n

m=1 ω′
m, where ω′

m = Ad
(∏m−1

l=1 P
(
xl

))
ωm.

Proof. Since x = x1 ⊗ · · · ⊗ xn, then by Lemma 6

x =
(

n∏
l=1

T
(
xl

))( n∏
l=1

P
(
xl

))
.

In addition, the time derivative of T
(
xl

)
—denoted by T ′ (xl

)
� d

dt T
(
xl

)
—is T ′ (xl

) = ε (vl/2), where
vl � ṗl so we use Lemmas 7 and 8 to obtain

ẋ =
(

n∑
l=1

T ′ (xl

))( n∏
l=1

P
(
xl

))+ 1

2

(
n∏

l=1

T
(
xl

))( n∑
m=1

ω′
m

)(
n∏

l=1

P
(
xl

))
,

where ω′
m = Ad

(∏m−1
l=1 P

(
xl

))
ωm. Since T

(
xm

)
T ′ (xl

) = T ′ (xl

)
for any xm, xl, hence

ẋ =
(

n∏
l=1

T
(
xl

))[( n∑
l=1

T ′ (xl

))+ 1

2

(
n∑

m=1

ω′
m

)](
n∏

l=1

P
(
xl

))

= 1

2

(
n∏

l=1

T
(
xl

))[ n∑
m=1

ω′
m + ε

n∑
l=1

vl

](
n∏

l=1

P
(
xl

))

= 1

2

(
n∏

l=1

T
(
xl

))
[ωd + εvd]

(
n∏

l=1

P
(
xl

))
,

where vd �
∑n

l=1 vl and ωd �
∑n

m=1 ω′
m. Let ξ ′

d
� ωd + εvd and ξ

d
= Ad

(∏n
l=1 T

(
xl

))
ξ ′

d
, thus

ẋ = 1

2
ξ

d

(
n∏

l=1

T
(
xl

))( n∏
l=1

P
(
xl

)) = 1

2
ξ

d
x.
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14 B. V. ADORNO AND P. FRAISSE

Let pd = ∑n
l=1 pl and recall (16) to obtain

ξ
d

= Ad

(
n∏

l=1

T
(
xl

))
ξ ′

d

=
(

n∏
l=1

T
(
xl

))
(ωd + εvd)

(
n∏

l=1

T
(
xl

))∗

=
(

1 + ε

n∑
l=1

pl

2

)
(ωd + εvd)

(
1 − ε

n∑
l=1

pl

2

)

= ωd + ε
(
vd + pd × ωd

)
. �

It is important to note that the twist ξ
d

given in Theorem 2 is in fact simpler than the one of (15),
since the translational components pd and vd are just the sum of the contributions of any intermediate
translations and velocities, respectively, without any influence of the intermediate rotations and angular
velocities. This is not the case for Spin(3)�R

3. The resultant angular velocity, however, is the same for
both groups.

3.1. Additional properties of CMI(3)

Lemma 9 (Commutativity with translation)

T (x1) ⊗ x2 = x2 ⊗ T (x1) = T (x1)x2.

Proof. Since T
(
x1

)
T
(
x2

) = T
(
x2

)
T
(
x1

)
and P

(
T
(
x1

)) = 1, the result follows from direct
calculation. �

Proposition 1 The left action xa on the target frame xt , under the decompositional multiplication, is
independent of the position of the reference frame.

Proof. Let us consider a left action xref
a , specified with respect to a reference frame Fref, which not

necessarily is the inertial frame F. This action will be applied to a target frame Ft , represented by xt ,
where xt is specified with respect to F . The final transformation, with respect to Fref, is given by

xref
f = xref

a ⊗ (
xref

t

)
, (18)

where xref
t = xrefxt and xref is the transformation from Fref to F . If the final transformation is to be

specified with respect to F , then (18) becomes

xf = xref∗ (xref
a ⊗ xref

t

)
= (

Ad
(
P
(
xref*

))
xref

a

)⊗ xt , (19)

where xref∗ is the transformation from F to Fref. Since the projection of xref
a into F , given by

Ad
(
P
(
xref*

))
xref

a , does not take into account the position information of xref, we conclude that the
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CROSS-MOTION INVARIANT GROUP 15

left action xa on the target frame xt , under the decompositional multiplication, is independent of the
position of the reference frame. �

Proposition 2 The left action xa on the target frame xt , under the standard Spin(3)�R
3 multiplication,

is dependent of the position of the reference frame.

Proof. The proof is similar to the one of Proposition 1. Since xref
f = xref

a xref
t , then

xf = xref∗xref
a xref

t = xref∗xref
a xrefxt

= (
Ad

(
xref∗) xref

a

)
xt . (20)

In this case, since the transformation Ad
(
xref∗) xref

a takes into account both position and orientation infor-
mation of xref, we conclude that the left action xa on the target frame xt , under the standard Spin(3)�R

3

multiplication, depends on the position of the reference frame. �

The last two propositions show an interesting property of the decompositional multiplication when
compared to the standard Spin(3)�R

3 multiplication. When transforming a frame Ft using Spin(3)�R
3

operations and specifying a left action xref
a with respect to a reference frame different from the inertial

frame F, uncertainties in the position of this reference frame will affect the final transformation. On
the other hand, if this left action is applied using the decompositional multiplication, uncertainties in
the position of the reference frame will not affect the final transformation; in fact, the position of the
reference frame is completely irrelevant.

3.2. Number of elementary operations involved in the computation of CMI(3) operations

In this section we present the number of elementary operations (addition and multiplication) involved in
the calculation of both the standard multiplication of Spin(3)�R

3 and the decompositional multiplication
of CMI(3).

The cost of multiplying two unit dual quaternions x1 and x2 under the standard multiplication is
equivalent to the cost of the following operation

x1x2 = P
(
x1

)
P
(
x2

)+ ε
(
P
(
x1

)
D
(
x2

)+ D
(
x1

)
P
(
x2

))
,

where P (·) and D (·) are given by (3). Hence, the resulting cost is the cost of three multiplications of
quaternions (one multiplication for the primary part and two multiplications for the dual part) and one
addition of quaternion for the dual part. According to Adorno (2011), the multiplication of quaternions
requires 16 multiplications of real numbers and twelve additions of real numbers, whereas the addition
of quaternions requires four additions of real numbers. This way, the total cost of multiplying two dual
quaternions under the standard multiplication of Spin(3)�R

3 is 48 multiplications of real numbers and
40 additions of real numbers.

On the other hand, the cost of multiplying two unit dual quaternions x1 and x2 under the
decompositional multiplication of CMI(3) corresponds to the cost of the following operation

x1 ⊗ x2 = T
(
x1

)
T
(
x2

)
P
(
x1

)
P
(
x2

)
= x1 P

(
x1

)∗
x2 P

(
x2

)∗ P
(
x1

)
P
(
x2

)
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16 B. V. ADORNO AND P. FRAISSE

Table 1 Main differences between Spin(3)�R
3 and CMI(3)

Spin(3)�R
3 CMI(3)

Cross-motion variant (rotation affects
translation)

Cross-motion invariant (rotation does not affect
translation)

Translation does not commute with arbitrary
rigid motions: T (x1)x2 �= x2T (x1)

Translation commutes with arbitrary rigid
motions: T (x1) ⊗ x2 = x2 ⊗ T (x1)

Transformation depends on the position of the
reference frame

Transformation does not depend on the position
of the reference frame

Does not preserve the direction of transformed
trajectories

Preserves the direction of transformed
trajectories

More complex kinematic equations for a
sequence of rigid motions

Less complex kinematic equations for a
sequence of rigid motions

Standard multiplication requires 48
multiplications of real numbers and 40
additions of real numbers

Decompositional multiplication requires 67
multiplications of real numbers and 52
additions of real numbers

= [
P
(
x1

)+ ε D
(
x1

)]
P
(
x1

)∗ [P (x2

)+ ε D
(
x2

)]
P
(
x2

)∗ P
(
x1

)
P
(
x2

)
= P

(
x1

)
P
(
x2

)+ ε
[
D
(
x2

)
P
(
x2

)∗ P
(
x1

)+ D
(
x1

)]
P
(
x2

)
,

which requires four multiplications of quaternions (one multiplication for the primary part and three
multiplications for the dual part), one addition of quaternion and one conjugation of quaternion. Thus,
the total cost of multiplying two unit quaternions under the decompositional multiplication of CMI(3)
is 67 multiplications of real numbers (the conjugation of a quaternion requires three multiplications of
real numbers) and 52 additions of real numbers. These results are summarized in Table 1.

4. Numerical examples

In this first example, consider a trajectory expressed in the inertial frame F, given by h(t) = r(t) +
ε(1/2)p(t)r(t), where p = ı̂ cos t + ĵ sin t + k̂t and r = cos (t/2) + ı̂ sin (t/2). The goal is to apply the
transformation href

a , where pref
a = ı̂+ ĵ and rref

a = cos (π/4)+ ĵ sin (π/4) , to the trajectory h(t) using the
frame Fref as the reference for the action, where pref = 2.5ı̂+ ĵ +3.5k̂ and rref = cos (π/2)+ k̂ sin (π/2).
In CMI(3), when the transformation is specified with respect to Fref, but the trajectory is expressed in
the inertial frame F, the transformed trajectory is given by g(t) = (

Ad
(
P
(
href

))
href

a

)⊗ h(t), where href

provides the rigid transformation from F to Fref (see (19) of Proposition 1). When the transformation
href

a belongs to Spin(3)�R
3 and is specified with respect to Fref, but the trajectory is expressed in F,

the transformed trajectory is given by f (t) = (
Ad

(
href

)
href

a

)
h(t)—see (20) of Proposition 2. Note that,

although the action href
a is specified with respect to Fref, both original and modified trajectories are

specified with respect to the fixed frame. The original trajectory h(t) is represented by a black-dotted
curve in Fig. 4, whereas g(t) is represented by a solid-green trajectory and f (t) is represented by a dashed-
red curve. Because the group operation used to generate g(t) belongs to the cross motion invariant group,
translations do not affect rotations and vice-versa. This way, both h(t) and g(t) go upward independently
of the orientation and the decompositional multiplication preserves the direction of the trajectory. On
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CROSS-MOTION INVARIANT GROUP 17

Fig. 4. Original trajectory h(t) (black dotted), modified trajectory g(t) using CMI(3) transformation (solid green) and modified

trajectory f (t) using Spin(3)�R
3 transformation (dashed red). F is the fixed frame and Fref is the reference frame for the

transformation. Observe that CMI(3) transformation preserves the direction of the trajectory whereas Spin(3)�R
3 transformation

does not preserve the direction.

the other hand, f (t) is transformed using Spin(3)�R
3 operations and thus the dashed-red curve is

rotated with respect to the original trajectory, hence the final trajectory has a different direction from the
original one.

In this second example, consider a 7-DOF robot manipulator and the associated coordinate systems
as shown in Fig. 5, where F and Fe are the inertial and end-effector frames, respectively. Consider-
ing the initial end-effector pose given by the unit dual quaternion xe, suppose that we want to define
a desired rigid motion using the inertial frame F as the reference frame. This rigid motion consists
of a displacement of 0.1 m in the positive direction of the x axis and 0.3 m in the negative direction
of the y axis—that is, p = 0.1ı̂ − 0.3ĵ . In addition, we want the end effector to be locally rotated
of −π/2 rad around the z axis—that is, r = cos (−π/4) + k̂ sin (−π/4). It means that we want
to rotate the end effector by using the z axis of a frame that is aligned with the inertial frame but
whose origin coincides with the origin of the end-effector frame. The desired rigid motion is given
by xa = r + ε (1/2) pr and, since we want the rotation to be performed locally (that is, decoupled
from the translation), the decompositional multiplication is very convenient, as the final desired pose is
given by

xd = xa ⊗ xe

and is represented as frame Fd in Fig. 5. Note that, because rotation and translation are decoupled, we
can define them separately without worrying about translations being affected by rotations.
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18 B. V. ADORNO AND P. FRAISSE

(a) (b)

(c) (d)

Fig. 5. Example of different motions when performing CMI(3) and Spin(3)�R
3 operations. F and Fe are the inertial and end-

effector frames, respectively, whereas Fd is the final frame obtained by using the CMI(3) decompositional multiplication and Fs

is the final frame obtained by using the Spin(3)�R
3 standard multiplication.

On the other hand, if we consider xa to perform the standard multiplication, the final pose is given by

xs = xaxe,
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CROSS-MOTION INVARIANT GROUP 19

and is represented as frame Fs in Fig. 5. Since the standard multiplication performs a coupled motion,
we see that the final rotation is the same, but the final translation is not the intended one. Of course, it is
possible to find an equivalent transformation y such that yxe = xa ⊗ xe as shown in Remark 2. However,
the advantage of using the decompositional multiplication is that it is usually much more intuitive to
think about a decoupled motion to define the desired pose for the end effector.

5. Conclusions

This article presented the group CMI(3) and its mathematical properties, as well as some examples
in order to show its application to kinematics and to the study of rigid motions in general. Also a
thorough and formal comparison with the group Spin(3)�R

3 has been presented, as summarized in
Table 1. Because both CMI(3) and Spin(3)�R

3 operate on the same underlying structure—the unit
dual quaternions—the idea is to use both in a complementary way, leading to a richer algebra of rigid
motions. For instance, CMI(3) operations can be, in some cases, more convenient than Spin(3)�R

3

operations. Because CMI(3) group operation guarantees cross-motion invariance such that rotations and
translations do not affect each other, these motions can be specified separately. On the other hand, in
some cases the goal is to really have the position affected by the rotation movement; in those cases,
Spin(3)�R

3 operations would be more appropriate.
The kinematic equation was derived for a sequence of rigid motions under the decompositional

multiplication. The resultant twist is in fact simpler for CMI(3) than for Spin(3)�R
3, since in CMI(3)

the translational components are just the sum of the contributions of any intermediate translations and
linear velocities, without any influence of the intermediate rotations and angular velocities, respectively.
This is not the case for Spin(3)�R

3. The resultant angular velocity, however, is the same for both groups.
Lastly, although the goal of the article was to formally present the mathematical description

of the CMI group and only few illustrative examples were shown, this group and its under-
lying group operation—the decompositional multiplication—can be quite useful in practice. For
instance, our implementation of the decompositional multiplication, both in Matlab and C/C++ (see
dqrobotics.sourceforge.net, last accessed on May 10, 2016), was already used in the context of human–
robot interaction and bimanual manipulation in order to simplify the definition of tasks (Adorno et al.,
2011).
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