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Abstract

Rogue behaviors refer to behavioral anomalies that can occur in human activi-

ties and that can thus be retrieved from human generated data. In this paper,

we aim at showing that NoSQL graph databases are a useful tool for this pur-

pose. Indeed these database engines exploit property graphs that can easily

represent human and object interactions whatever the volume and complexity

of the data. These interactions lead to fraud rings in the graphs in the form of

sophisticated chains of indirect links between fraudsters representing successive

transactions (money, communications, etc.) from which rogue behaviours are

detected. Our work is based on two extensions of such NoSQL graph databases.

The first extension allows the handling of time-variant data while the second

one is devoted to the management of imprecise queries with a DSL (to define

flexible operators and operations with Scala) and the Cypherf declarative flex-

ible query language over NoSQL graph databases. These extensions allow to

better address and describe sophisticated frauds. Feasibility have been studied

to assess our proposition.

Keywords: Rogue Behavior, Fraud Rings, NoSQL Graph Databases, Fuzzy

DSL, Approximate Cypher Queries.
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1. Introduction

Rogue behaviors are known to lead to important economic and political

concerns. Frauds in banks and insurance companies represent billions of dollars

lost every year. For instance, more than £52 billion was lost in the UK in 2013[1].

Fraud can be detected by considering abnormal patterns in the interactions.5

However, these anomalies are hidden and often difficult to retrieve because of

their complexity. Fraud can be committed by one or more persons. It can

impact on individuals or organizations (e.g., banks).

As rogue behaviors are characterized by the interactions, graphs can thus

help for retrieving frauds. Graphs are indeed recognized to play an important10

role within the pattern recognition field [2], thus being a key technology for

retrieving relevant information. Graphs efficiently represent the relationships

between objects, should they refer to persons, organizations, or scientific data

(e.g., chemistry). Techniques and algorithms can be distinguished in considering

the fact that they are meant to mine relevant patterns or to retrieve them.15

Detection is achieved through the modelization of fraud rings which are

hidden within the graph of interactions. A fraud ring is a set of connections

between actors. It can be found in many fraud frameworks [1].

Although graphs have been studied since the very beginning of computer

science in the so-called graph theory field [3], their integration within database20

management systems is more recent. Some of the first systems have been

proposed with the emergence of ontologies and RDF triplets queried through

SPARQL [4]. More recently, NoSQL databases have proposed efficient engines

devoted to graph databases: GraphDB, Neo4J, etc. [5] compares some of these

engines and points the advantages of the Neo4J system, which is the one we25

consider.

In this paper, we propose a framework for defining fuzzy temporal pattern

matching from NoSQL graph databases. For this purpose, we first recall the

basic concepts of NoSQL graph databases, temporal queries and graph pattern

matching in Section 2. We then detail the problem we address in Section 3,30
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before presenting a first attempt for addressing the problem using the NoSQL

Neo4j graph database in Section 4. The proposition has been implemented. The

main contribution of this paper is presented in Section 5. This contribution is

mainly based on the use of generalized fuzzy queries. These queries can be user-

defined and rely on a a Domain Specific Language (DSL) and on an extension35

of the declarative query language to better address and describe sophisticated

frauds. Section 6 reviews the main contributions from the literature related to

rogue detection. Section 7 sums up this paper and presents the future work we

would like to address.

2. Preliminary Statements40

2.1. Graphs

Graphs have been studied for a long time by mathematicians and computer

scientists. A graph can be directed or not. It is defined as follows.

Definition 1 (Graph). A graph G is given by a pair (V,E) where V stands

for a set of vertices and E stands for a set of edges with E ⊆ (V × V ).45

Definition 2 (Directed Graph). A directed graph G is given by a pair (V,E)

where V stands for a set of vertices and E stands for a set of edges with E ⊆
{V × V }. That is E is a subset of all ordered permutations of V element pairs.

When used in real world applications, graphs need to be provided with

the capacity to label nodes and relations, thus leading to the so-called labeled50

graphs, or property graphs as shown in Fig. 1 and defined bellow:

Definition 3 (Labeled Oriented Graph). A labeled oriented graph G, also

known as oriented property graph, is given by a quadruplet (V,E, α, β) where V

stands for a set of vertices and E stands for a set of edges with E ⊆ {V ×V }, α
stands for the set of attributes defined over the nodes, and β the set of attributes55

defined over the relations.

Given such graphs, it is possible to retrieve subgraphs, as described below.
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Figure 1: Labeled Graph

2.2. Graph Pattern Matching and Querying

Graph pattern matching is a very difficult algorithmic problem that has lead

to the production of many works. We focus here on the definition and usage of60

pattern matching queries. Some related works are presented in Section 6.

Figure 2: Pattern Matching

The goal of pattern matching is to retrieve a pattern from data. In graph

pattern matching, the pattern and the source data are both organized as graphs,

as illustrated in Fig. 2.
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More formally, graph pattern matching amounts to retrieve all occurrences65

of a graph pattern Q from a source graph G. The problem of deciding whether

a subgraph is included within another one is known as subgraph isomorphism,

which is known to be NP-complete.

Definition 4 (Subgraph Isomorphism). Let Q = (VQ, EQ) and G = (V,E)

be graphs. A subgraph isomorphism from Q to G is a function f : VQ → V70

such that if (u, v) ∈ EQ, then (f(u), f(v)) ∈ E. f is an induced subgraph

isomorphism if in addition if (u, v) /∈ EQ, then (f(u), f(v)) /∈ E.

Subgraph matching aims at retrieving the occurrences and does not only

focus on the decision problem, as defined above from [6].

Definition 5 (Subgraph Matching). For a graph G and a subgraph query75

Q, the goal of subgraph matching is to find every subgraph S = (VS , ES) in G

such that there exists a bijection f : VQ → VS that satisfies ∀V ∈ VQ, TQ(v) =

TS(f(v)) and ∀e = (u, v) ∈ EQ, (f(u), f(v)) ∈ ES, where TS(f(v)) represents

the label of the vertex f(v) in S.

Such pattern matching techniques are implemented in the so-called NoSQL80

graph databases together with many other features, thus allowing these frame-

works to efficiently address rogue behavior detection.

2.3. NoSQL Graph Databases

NoSQL graph databases [7] are based on these concepts, attributes and

values over the attributes being stored thanks to the (key, value) paradigm85

which is very common in NoSQL databases.

Fig. 3 shows a graph and its structure in (key, value) pairs.

Studies have shown that these technologies present good performances, far

better than classical relational databases, for representing and querying such

large graph databases. There exist several NoSQL graph database engines (Ori-90

entDB, Neo4J,HyperGraphDB, etc.) [8]. Neo4J is recognized as being among

the top engines in terms of performance [5]. It has been recently extended

5



Figure 3: Properties of Nodes and Relations

for managing the successive versions of the graph database in the Mnemosyne

system described below.

2.4. Mnemosyne: an Innovative Temporal Data Management System95

[9] aims at proposing an innovative model of history management in NoSQL

graph databases. There have been several proposals in the literature for man-

aging evolving graphs [10]. [9] focuses on property graphs and is based on

three key concepts: (i) Using the graph to manage time-variant data; (ii) To-

tally decoupling data historization from the representation of the data in the100

graph datasource; (iii) Using generic graph traversals regardless of the graph

datasource.

One of the main specificity of the Mnemosyne system is that it uses two

graphs (i) a DataGraph that is the graph currently in use; (ii) a VersionGraph

that stores the history of different versions of a data graph. The VersionGraph105

model does not depend on the DataGraph.

Fig. 4 shows an example of a DataGraph and a VersionGraph.

In this system, every node and relation in the graph database is tracked in

the VersionGraph with a node called TraceElement. From this node, all the

modifications (insert, update, create) are kept in a list of RevisionElements110

that can be queried generically for elements (nodes or relations) of the graph
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Figure 4: DataGraph (left) and VersionGraph (right)

source.

Fig. 5 illustrates this proposal. In this example, three nodes (a,b,c) and

three relations (r1,r2,r3) from Fig. 6 are traced. a (res. b, c) is the node related

to node A (B, C) from Fig. 6, while r1 (resp. r2, r3) is the node from the115

Version graph tracing the versions of relation R1 (resp. R2, R3).

Rev.0 stands for the initial version of all the elements, should they be nodes

or relations.

When several modifications have occurred, the VersionGraph becomes more

complex and several revisions appear. These revisions can be traversed with120

different points of view, depending on the user needs to trace nodes or elements,

as illustrated by Fig. 7.

3. Problem Statement

In this paper, we focus on malicious human actions in the form of rogue

behaviors. Such activities are known to lead to significant financial losses.125

These behaviors can be detected as they differ from regular honest ones.
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Figure 5: Version Graph Model

Figure 6: Data Graph Model

Figure 7: Points of view in VersionGraph

Fraud detection is thus often considered as a subtopic of anomaly detection to

detect irregular activities. Anomaly detection has been widely studied [11].
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In this work, we claim that fraud data are often fundamentally graphs.

Fraudsters act in an indirect manner in order to remain hidden as long as130

possible. Some of them may rely on vehicles or fake corporations. Most of them

operate in groups so as to introduce a complexity and a volume of interactions

that prevent the fraud from being visible.

However, when focusing on graphs, few works have been produced [12]. In

such problems, fraudsters try to remain hidden by acting in groups so that no135

action is then a direct one. Intermediate layers are meant to hide the association

of fraudsters. It should be noted that, if the size of the group is too small, then

the fraud can more easily be detected, but if the size is too big, there is a higher

probability of an error occurring, whether it be caused by coincidence or caused

by a weak link in the circle of members. The size of the group being organized140

for the fraud ranges from two to several.

In our work, we focus on fraud rings [13] defined as follows.

Definition 6 (Fraud Ring). Given a graph G, a fraud ring (also known as

fraud cycle) can be defined as a subgraph F ⊆ G where there exist at least two

nodes n1, n2 ∈ F that are indirectly connected in both directions in a period of145

time, with n1 − [∗]− > n2 and n2 − [∗]− > n1.

A fraud ring betrays illegal links between the nodes n1 and n2.

Many problems are based on fraud rings, from corruption, insurance and

bank fraud, to shell companies, etc. Even in human resources management,

some people can take advantage of friendships or close relationships to unfairly150

attain positions of power. Many works and methods have addressed this problem

but fraudsters have built innovative practices that are not easily discovered by

existing tools.

For instance, for insurance fraud, some people claim millions of dollars after

declaring fake accidents, fake passengers and fake witnesses. Fig. 8 shows how155

this appears on a graph.

Fraud rings can be retrieved by connected analysis when for instance one

person acts once as a driver and then twice as a witness or passenger in another
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Figure 8: Fraud Ring - fake car accidents, passengers and witnesses

car accident, as shown by SJ Moody and illustrated by Fig. 9.

Figure 9: A Fraud Ring Example

3.1. Use Case160

We focus on the bank fraud detection as discussed in [14]. In such frauds,

a circle of individuals share some legal documents and create accounts. The

credit lines and accounts are used, and gradually merged with unsecured lines.

As depicted in [14]: “One day the ring busts out, coordinating their activity,

maxing out all of their credit lines, and disappearing. Sometimes fraudsters165

will go a step further and bring all of their balances to zero using fake checks
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immediately before the prior step, doubling the damage”.

For this purpose, link analysis and discrete data analysis have been proposed

and applied, for instance using the Neo4j tools or in [15, 16]. For instance it

can help to retrieve the “account holders who share more than one piece of170

legitimate contact information” which is very easy when data are represented

using graph structures.

3.2. Problem

In this paper, we focus on the exploitation of the relations, of the history

and of the labels contained in the graph for retrieving fraud rings. We claim175

that:

• history is a key feature for discovering such rings. Time is indeed impor-

tant and fraudsters are playing with delays in order to gradually root their

actions. However, time is not always represented in the systems used to

store the information, which prevents organizations from efficiently wiping180

out fraud and corruption.

• fuzziness is required as such patterns are approximate.

• many algorithms have been designed, but their implementation on real

world problems and engines is not always tractable. We thus consider

the use of adapted tools with the capabilities to express such queries in185

declarative languages.

The next section introduces various means to address these points.

4. First Attempt

As shown above, fraud detection relies on the discovery of graph patterns

in the successive states of the data. This section relies on a classic example of190

bank fraud as depicted in [14].

Banks and Insurance companies lose billions of dollars every year to fraud.

Traditional methods of fraud detection play an important role in minimizing
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these losses. However increasingly sophisticated fraudsters have developed a

variety of ways to elude discovery, both by working together, and by leveraging195

various other means of constructing false identities.

Figure 10: Fraud dataset

The dataset used in this section is defined in Fig. 10. Green circled nodes

represent fraudsters and red circled nodes represent the connection points be-

tween these people.

In this section, we first introduce a standard pattern matching resolution200

to detect fraud rings in a graph. This kind of resolution works well when all

the data are available (which means that no valuable information for resolution

has been erased or replaced). To handle this problem, there are two main

ways: (i) by embedding the history within the operational model. This creates

difficulties as the patterns for fraud detection must then be written in an adhoc205

manner, depending on the specific model; (ii) by considering a generic model

for describing the history that is compatible with pattern matching. This allows

the user to write generic pattern matching queries for retrieving the fraud rings.

This latter case is explored by presenting how the Mnemosyne model can

help.210
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4.1. Pattern Matching Resolution

4.1.1. Classic Resolution

The challenge is to determine if there is a ring in the dataset, and if so,

what is its size and what is the finacial risk it represents. A classical solving

resolution algorithm looks like the following Listing 1.215

Listing 1: Classical pattern resolution

1 MATCH ( accountHolder : AccountHolder ) -[ ] -> ( contactInformation )

2 WITH contactInformation ,

3 count ( accountHolder ) AS RingSize

4 MATCH ( contactInformation )< -[ ]−(accountHolder ) ,220

5 ( accountHolder ) -[ r : HAS_CREDITCARD | HAS_UNSECUREDLOAN ] -> (←↩
unsecuredAccount )

6 WITH collect ( DISTINCT accountHolder . UniqueId ) AS AccountHolders←↩
,

7 contactInformation , RingSize ,225

8 SUM (CASE type ( r )

9 WHEN ’ HAS_CREDITCARD ’ THEN unsecuredAccount . Limit

10 WHEN ’ HAS_UNSECUREDLOAN ’ THEN unsecuredAccount . Balance

11 ELSE 0

12 END ) as FinancialRisk230

13 WHERE RingSize > 1

14 RETURN AccountHolders AS FraudRing ,

15 labels ( contactInformation ) AS ContactType ,

16 RingSize ,

17 round ( FinancialRisk ) as FinancialRisk235

18 ORDER BY FinancialRisk DESC

First, it finds all the account holders that have at least one piece of infor-

mation in common (line 1 to 5) and then it calculates the ring size (line 3) and

the induced financial risk (lines 8 to 12).240

The result of the execution of Listing 1 is shown in Fig. 11.

Such queries rely on the so called Cypher language which runs as a declara-

tive language over NoSQL graph databases. These queries include the following

clauses1:

1See https://neo4j.com/docs/cypher-refcard/current/ for a complete reference card
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Figure 11: Classical pattern resolution results

• START: Starting points in the graph, obtained via index lookups or by245

element IDs;

• MATCH: The graph pattern to match, bound to the starting points in

START;

• WHERE: Filtering criteria;

• RETURN: What to return;250

• CREATE: Creates nodes and relationships;

• DELETE: Removes nodes, relationships and properties;

• SET: Set values to properties;

• FOREACH: Performs updating actions once per element in a list;

• WITH: Divides a query into multiple, distinct parts.255

For instance, the following query returns all the nodes of type accountholder:

1 MATCH ( A : ACCOUNTHOLDER )

2 RETURN A
260

The following query returns all the relations between two accountholders,

whatever the type of their relation:

1 MATCH ( A : ACCOUNTHOLDER ) -[ ∗ ] -> ( B : ACCOUNTHOLDER )

2 RETURN A , B265
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4.1.2. Resolution Generalization

In fact, resolution of these kind of problems can be as generalized as answer-

ing this question: “Do some people share some information?”. Expressing the

query for responding to such a question can be more generically answered with270

queries like:

1 MATCH ( A : ACCOUNTHOLDER ) -[ ∗ ] -> ( B : ACCOUNTHOLDER ) -[ ∗ ] -> ( C : ACCOUNTHOLDER )

2 WITH count ( accountHolder ) AS RingSize

3 RETURN A , B , C , RingSize275

We can then apply this algorithm in the same manner to other graphs that

are not in the same business area.

4.2. Temporal Pattern Matching Resolution

In this section, temporal queries rely on the Mnemosyne model presented in280

Section 2.

4.2.1. Fraud Ring: Temporal Cheating

It should be noted that expressing pattern matching defined in Section 4.1

can be done on existing insurance/bank data as such applications are meant to

store and trace the history. However, this is not always the case. Fig. 12 shows285

how, if history was not managed in such systems, fraudsters can cheat to stay

hidden by creating, updating, and deleting information over time.

In this case, the above algorithms will not detect any fraud ring as they

cannot manage history. To help organizations to find frauds, it is thus necessary

to record historical tracks.290

4.2.2. Mnemosyne Extension

The Mnemosyne system presented above offers an efficient manner to trace

the history within graph data. If a node or a relationship is impacted by an op-

eration, should it be an update, delete, or insert operation, then this is recorded

in another graph called VersionGraph which handles the history of each node295

or relation.
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Figure 12: Example of temporal cheating applied to current dataset

It should be noted that the VersionGraph manages the history in the same

manner no matter what the business area may be. The Mnemosyne system rep-

resents the history in the same way despite the heterogeneity of the DataGraph

(in terms of types as well as structures of data). This is due to the generic nature300

offered by the system which does not focus on the semantics of data and which

provides a strong dissociation between the data (in the sense of information)

and the data structure.

However, in this model, the representation does not materialize the links

between the impacted neighborhoods. For instance, if a relation is added, then305

the incoming and outgoing nodes are changed in the graph. All these operations

will thus be traced in the Mnemosyne VersionGraph, but no link is traced

between the elements (to manage performance optimization).

We thus propose to materialize these links in order to speed up the process.

If a relation is updated, then the Mnemosyne will materialize (by a relationship310

in the VersionGraph) the impacted nodes and relations.
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In our system, this materialization is triggered by any change on the data,

following algorithm 1.

Algorithm 1: Materializing Change Impacts
Data: V Gi: Input Version Graph for Graph G, R ∈ G revised relation

Result: V Gr : Resulting VersionGraph

V Gr ← V Gi ;

foreach Input Node Ni ∈ G such that Ni −R− > ∗ do
CREATE materialized relation ni− > r in V Gr

foreach Output Node NO ∈ G such that ∗ −R− > NO do
CREATE materialized relation r− > no in V Gr

Fig. 13 presents an example of such a situation, with the blue relationships315

representing the materialized relationships which are added.

Figure 13: Materializing Elements impacted by an operation in the VersionGraph

4.2.3. Resolution

Resolving such patterns in NoSQL graph databases requires the definition of

original queries. Such queries are built to navigate in the graph and historical

graph (Mnemosyne VersionGraph) in order to retrieve the fraud rings. The320

efficiency of the system relies on the NoSQL engine.
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Figure 14: Mnemosing Ring: Exploiting Historical Revisions

Listing 2 shows how to query all the links from the history in order to retrieve

the potential fraud ring.

Listing 2: Exploiting Historical Revisions

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )325

2 with TEAH 1 , TEAH 2

3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )

4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )

5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) )
330

As shown in this Cypher query, all the elements impacted on the graph can

easily be retrieved by exploiting the materialized links of the history from the

extension we propose. The result of this query is displayed in figure 14.

However, we claim that the patterns to be found cannot be defined in a crisp

manner and propose below an extension to fuzzy historical patterns.335

5. Fuzzy Historical Pattern Matching Resolution

In many cases, the parameters of the patterns cannot be defined in a strict

manner. For instance, the minimum and maximum size of the fraud ring are

18



Number of Weeks0

1

2 5 8µ

Figure 15: Trapezoidal Membership Function of the Fuzzy Set SeveralWeeks

fuzzy parameters. In the same manner, the time delays between the fraudsters’

actions are fuzzy.340

We thus propose using fuzzy clauses in the pattern matching queries.

5.1. Defining fuzzy clauses

Fuzzy queries have been extensively studied in the literature, mainly on rela-

tional databases and more recently on NoSQL gaph databases. The propositions

can either address classical crisp databases ([17]) or fuzzy graphs [18, 19].345

Temporal fuzzy clauses can be defined either by considering the fuzzy Allen

intervals or by considering user defined clauses. User can define temporal grad-

uation such as “some days” and “several weeks”. Fig. 15 draws a membership

function defining “several weeks”. This membership function defines a degree of

membership of a number of weeks to the term ”several weeks”. For instance, 3350

weeks has a degree of membership of 1 but more than 5 weeks as a lower degree

of membership (may be months could be a better term?).

An implementation of the membership function of Figure 15 has been made

and named ”fuzzyWeeks”. This membership function is used in the query of

Listing 3.355

Listing 3: Fuzzy Pattern Matching on Fuzzy Weeks

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )

2 with TEAH 1 , TEAH 2

3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )

4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ ) and ←↩360

severalWeeks ( p ) > 0 . 7

5 return TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) )

19



Figure 16: Mnemosing Ring : Exploiting the Length

Fuzzy pattern matching can also be applied on relationships. Rings can be

characterized in the same way as the length of the paths forming the relations.365

Finding the size of a path can be accomplished as shown is Listing 4; the ring

ranges within fuzzy bounds, as shown on Listing 5; the result is displayed in

Figure 16.

Listing 4: Exploiting the Length

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )370

2 with TEAH 1 , TEAH 2

3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )

4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )

5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) ,←↩
length ( p )375

Listing 5: Fuzzy Pattern Matching on Fuzzy Lengths

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )

2 with TEAH 1 , TEAH 2

3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )380

20



4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )

5 re turn TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) ,←↩
fuzzyDist ( p )

5.2. Generalizing Fuzzy Clause to Handle any Rogue Behavior385

The main drawback of the solution presented above is that for each spe-

cific need a new function has to be developed (e.g. fuzzyWeek, fuzzyDistance).

This means that for each fuzzy clause, it is necessary to define a hard coded

membership function.

This lack of genericity has highlighted the need for improvements that can390

adapt the detection to each rogue behavior.

To do so, it is necessary to offer the user the ability (i) to propose high level

definition of fuzzy terms (ii) to use this definitions inside a declarative graph

pattern matching query language.

5.2.1. Fuzzy Linguistic Terms Definition in Behavioral Anomalies Detection395

Searching for anomalies detection means searching for links between some

data. There are different kinds of links such as relational links (is there some

relation, may it be direct or indirect, that can rely this person A with person

B?), temporal links (have event e1 and event e2 happened in the same temporal

frame?), geographical links, etc. Each of this dimension has its own vocabulary400

and its own graduation.

What has been previously proposed in this article is a high level pattern

matching system that uses the genericity of the underlying versioning system

to detect anomalies in suspicious patterns. This approach has been enriched in

the beginning of this section with the use of fuzzy functions that account for405

the fact that parameters cannot always be defined in a strict manner, especially

when searching for behavioral anomalies.

In the remainder of this section, the goal is to define and provide a system

that offers to the user the ability to define his/her own terms definition according

to his/her functional specific domain.410
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We propose the use of linguistic terms and more generally linguistic variables

to express domain concerns. Every term will be associated to a membership

function offering the ability to define fuzzy linguistic terms and variables.

Definition 7 (Fuzzy linguistic variables). Fuzzy linguistic variables can be

defined using fuzzy sets. A fuzzy linguistic variable V is defined as a quadruple415

of the form V=(X, U, T, MF), where X is the name of V, U is the domain

(universe) of V, T represents the set of fuzzy subsets defined in U, and MF

represents the membership functions that characterize each fuzzy subset defined

in T.

5.2.2. Fuzzy linguistic terms grammar420

To express linguistic terms, we rely on our previous defined work on fuzzy

logic and our previous implementations based on functional programming.

In functional programming, a common approach is to model parsers as func-

tions and to define higher-order functions (also called combinators) that im-

plement grammar constructions such as sequencing, choice, and repetition. As425

explained in [20], the basic idea dates back to 1970s [21] and has become popular

since the 1980s in a variety of functional programming languages [22, 23, 24].

The parsing expression grammar we chose to express fuzzy linguistic variale

is defined in Listing 6.

Listing 6: Fuzzy DSL syntax PEG
430

1

2 de f number : Parser [ Double ] = ”””−?\d+(\ .\d∗) ?”””

3 de f point : Parser [ Point ] = ” ( ” ˜> number ˜ ” , ” ˜ number <˜ ” ) ”

4 de f functionName : Parser [ String ] = ””” t r i an | t rape | gauss | gb e l l | sigm←↩
”””435

5 de f parameters = rep1 ( point ) | rep1 ( number )

6 de f memberfunction = functionName . ? ˜ parameters

7 de f termName = ””” [ a−zA−Z]\w∗”””

8 de f term = ”TERM” ˜> termName ˜ ” :=” ˜ memberfunction <˜ ” ; ”

9 de f variableName = ””” [ a−zA−Z]\w∗”””440

10 de f fuzzyVariable = ”FUZZIFY” ˜> variableName ˜ rep1 ( term ) <˜ ”←↩
END FUZZIFY”
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Figure 17: Representation of Listing7

Listing 7 and 8 gives the definition of two linguistic terms ”temporal” and

”distance” that will be used in the next section.445

Listing 7: Fuzzy linguistic definition of week

1

2 FUZZIFY week

3 TERM one := trian 0 1 2 ;

4 TERM several := trape 0 2 5 8 ;450

5 TERM many := (5 , 0 ) (8 , 1 ) ;

6 END_FUZZIFY

Listing 8: Fuzzy linguistic definition of depth

1 FUZZIFY depth455

2 TERM low := trian 0 1 2 ;

3 TERM middle := trian 1 3 5 ;

4 TERM high := (3 , 0 ) (5 , 1 ) ;

5 END_FUZZIFY
460

5.2.3. Using a Rogue Definition

The Cypher language does not allow the use of fuzzy definitions. To do

so, it is necessary to extend the language. Discussion about extending a graph

pattern matching declarative language has been done in [17]. Cypherf, standing

for Cypher fuzzy, is an extension of the cypher language that allows the user465

to use fuzzy linguistic terms such as those defined in the previous section. The

available functions are listed bellow:
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• Fuzzy(µf , value): returns the degree of membership to µf function

– µf is expressed as a String that describes the membership function

with the Fuzzy DSL470

– value is expressed as a Double

• FuzzyLT(fuzzyVariable, value): returns a collection that contains for ev-

ery fuzzy term of the fuzzy linguistic variable two properties: the name

of the term and the degree of membership of ”value” to the term. For

instance, for a value X and a fuzzy linguistic variable serveralWeeks =475

(Week, [0,∞], {one, several,many}, {µone, µseveral, µmany}) the result will

be:

1 {
2 { name : ” one ” , degree :µone(x)} ,480

3 { name : ” several ” , degree :µseveral(x)} ,

4 { name : ” many ” , degree :µmany(x)}
5 }

– fuzzyVariable: is expressed as a String that defines the fuzzy variable.485

This definition is composed of the name of the fuzzy variable and a

set of fuzzy terms. Every fuzzy term is defined by its name and its

membership function

– value is expressed as a Double

• TNorms(tnormName, expression1, expression2): applies a TNorms of name490

”tnormName” on expression1 and expression2

• TCoNorms(type, expression1, expression2): same as TNorms but this

time for t-conorms.

Two examples are provided in Listings 9 and 10. Listing 9 returns the couples

of nodes (TEAH1 and TEAH2) and the relation characterizing with the highest495

score (HEAD) their link. TEAH1 and TEAH2 are linked with p (line 3). For

24



this purpose, it computes the membership degree for every term of the fuzzy

variable depth using the fuzzyLT function.

Listing 10 returns the same type of result but only if the membership degree

is greater than 0.7 (line 6) which prevents unrelevant results to be displayed.500

Listing 9: Fuzzy Pattern Matching on Fuzzy Lengths with fuzzy linguistic terms

1 match ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )

2 with TEAH 1 , TEAH 2

3 match p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )

4 where all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )505

5

6 return TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) , ←↩
head ( fuzzyLT (”/ tmp / depth . fl” , size ( p ) ) )

Listing 10: Fuzzy Pattern Matching on Fuzzy Lengths with selection on fuzzy linguistic

terms degree
510

1 MATCH ( TEAH 1 : TraceElement ) , ( TEAH 2 : TraceElement )

2 WITH TEAH 1 , TEAH 2

3 MATCH p=(TEAH 1 ) -[ ∗1 . . 7 ]−(TEAH 2 )

4 WITH p , head ( fuzzyLT (”/ tmp / distance . fl” , size ( p ) ) ) as dist

5 WHERE all ( rel IN relationships ( p ) where type ( rel ) <> ’ REVISION ’ )515

6 AND dist . degree > 0 . 7

7 return TEAH 1 , TEAH 2 , extract ( rel IN relationships ( p ) | type ( rel ) ) ,

In this section fuzzy historical pattern matching has been introduced. Both

a first implementation and a generalization have been done with some running520

examples. A grammar has been presented and the relevance of the use of fuzzy

historical pattern matching in fraud ring detection has been addressed.

The next section presents the related work on frauds, fuzzy and temporal

graph data.

6. Related Work525

Fraud detection has been a hot topic for many years as its impact is extensive

in many fields and sectors such as industry, finance, bank, insurance, organized
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and corporate crime, health care, etc.

Rogue behaviors can be detected using several methods. The most common

ones from the literature are based on statistical methods, pattern recognition,530

expert systems and machine learning [25]. These techniques can be applied on

several kinds of data such as time series or transactional data, depending on

the type of context being considered: computer intrusion, credit card fraud,

telecommunication fraud, etc. However there are only few works on graph data.

6.1. Frauds and Detection535

Rogue behaviors and frauds are defined in the literature in various ways.

The main characteristics are related to the fact that such behaviors refer to

criminal deceptions through intentional human practices and interactions aiming

at dishonest advantages.

Fraud detection relies on methods for anomaly detection. Such anomalies540

can be seen as outliers and are thus retrieved by comparing regular and fraud-

ulent situations.

This comparison can be achieved using supervised learning [26] or cases can

be separated using statistical and clustering methods [27].

Algorithms have been defined for several types of data sources. Transactional545

and stream data have been extensively addressed, especially for dealing with

bank and finance frauds and can be regarded as outlier detection in stream

data [28].

As frauds are generated by humans, their characteristics are often impossible

to define in a crisp manner. For this reason, many works have addressed the use550

of soft computing and formal representations of imprecision and uncertainty.

[29] reviews the main methods from intelligent systems that can help, from

fuzzy neural networks to genetic algorithms. [30] proposes the use of fuzzy clus-

tering in the particular context of corporate fraud. [31] focuses on auction frauds

and proposes the use of fuzzy rules that are optimized by genetic algorithms.555
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Regarding graph-based data, outlier detection has been less addressed as it

is much more complex. Recent works have addressed the detection of outliers

in graph streams [32] and temporal data and graphs [33].

However, no work has addressed fuzzy fraud ring detection from temporal

graph data.560

In order to detect frauds from such graph data, graph pattern must be

considered.

6.2. Graph Pattern Matching

Graph pattern matching is distinguished from graph mining where frequent

subgraphs are searched for [34, 35].565

[36] addresses several topics within the framework of the approximate graph

matching problem, as for instance the computation of the distance between two

graphs.

Temporal queries have been studied since the beginning of databases, in

relational databases [37], data warehouses [38] and Web data [39, 40]. However,570

very few works have been proposed to represent and query history in graph-

oriented NoSQL databases [41].

Many works on temporal queries are based on the Allen interval algebra

[42] recalled in Fig. 18. In this framework, A = [a−, a+] and B = [b−, b+]

are two intervals of dates (for instance, A1 = [January2013,March2013] and575

B1 = [February2013, June2013]) and some predicates are defined on A and B

which can hold up or not depending on tests over the boundaries a−, a+, b−, b+

(for instance before(A1, B1) does not hold as March2013 > February2013).

Temporal SQL has been extensively studied, and has been fuzzified [43] to

describe for instance that the event B occurs long before event A, or that event580

A occurs before or approximately at the same date as the event B.

For all the above-mentioned topics, graphs can be queried through languages.

Some of them have been studied in the literature. Some languages have been

proposed by scientists and some other ones have been issued by the editors.
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Figure 18: Allen’s Temporal Interval Relations Between Intervals

[44] proposes a survey of all the languages defined over the last 25 years,585

where subgraph matching appears to be one of the most powerful and necessary

query, including approximate matching.

[45] proposes a propositional dynamic logic that extends several graph database

languages.

[46] introduces GraphQL, a graph algebra capable of taking into account590

nodes, relations, and attributes on both nodes and relations. In this language,

the authors define the so-called graph pattern as a pair P = (M,F) where M
is a graph motif and F is a predicate on the attributes of the motif. The alge-

bra contains several operations, including selection, cartesian product, join and

composition. It also demonstrates that their algebra is contained into Datalog,595

thus allowing for rewriting their queries in Datalog.

7. Conclusion and Further Work

Rogue behaviors often amount to human abnormal interactions also called

fraud rings. We thus discuss in this paper how property graphs can help for

rogue behavior detection by focusing on interactions. We focus on NoSQL600

graph databases that offer a useful framework to deal with large graph-based

datasets. This paper extends [47] which has introduced a first attempt to NoSQL

graph queries for rogue detection. It puts the emphasis on the use of fuzzy
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queries in order to better address the approximate definitions inherent in such

human activities. This paper introduces the use of a Domain Specific Language605

and a declarative fuzzy query language (Cypherf) to better address and resolve

sophisticated cases.

The use of NoSQL graph databases is a key element of our work. We espe-

cially claim that representing the successive versions of the graph data allows to

better retrieve the chains of successive transactions that represent a fraud. For610

this purpose, we consider using the Mnemosyne system that has been extended

for materializing temporal relations between objects. This allows us to directly

apply pattern matching on the graph for retrieving the fraud rings.

Further works aim at integrating the contribution from this paper to alert

systems, especially on stream data. For instance, it would then be possible to615

build follow-up systems for organized crime or terrorist rings which have par-

ticular behaviors such as “gathering-dispersal-reorganization” dynamics. Such

chains appear for example when fraudsters assemble for illicit activities and then

suddenly disperse to face either an internal or external threat. Inside threats

occur in case of betrayal, the subsequent regrouping often being reorganized in620

order to destroy the betrayal (settling of scores). External threats may be due

to police investigations.

Such a system may then be used for early fraud detection in order to prevent

frauds before they occur.

For all these works, the volume and complexity of data and treatments may625

challenge the limits of the current implementation. For this reason, we aim at

investigating the use of in-memory graph processing systems.
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