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Chapter 4
Towards Autonomous Scalable Integrated
Systems

Pascal Benoit, Gilles Sassatelli, Philippe Maurine, Lionel Torres,
Nadine Azemard, Michel Robert, Fabien Clermidy, Marc Belleville,
Diego Puschini, Bettina Rebaud, Olivier Brousse,
and Gabriel Marchesan Almeida

1 Entering the Nano-Tera Era: Technology Devices Get Smaller
(NANO), Gizmos Become Numerous (TERA) and Get
Pervasive

Throughout the past four decades, silicon semiconductor technology has advanced
at exponential rates in performance, density and integration. This progress has paved
the way for application areas ranging from personal computers to mobile systems.
As scaling and therefore complexity remains the main driver, scalability in the broad
sense appears to be the main limiting factor that challenges complex system design
methodologies. Therefore, not only technology (fabricability), but also structure
(designability) and function (usability) are increasingly questioned on scalability
aspects, and research is required on novel approaches to the design, use, manage-
ment and programming of terascale systems.

1.1 The Function: Scalability in Ambient Intelligence Systems

Pervasive computing is a novel application area that has been gaining attention due
to the emergence of a number of ubiquitous applications where context awareness
is important. Examples of such applications range from ad-hoc networks of mo-
bile terminals such mobile phones to sensor network systems aimed at monitoring
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geographical or seismic activity. This new approach to computing considerably en-
hances knowledge necessary for devising solutions capable of meeting application
requirements. This is due to the emergence of uncertainty in such systems where en-
vironmental interactions and real-time conditions may change rapidly. Further, even
though the problem may remain tractable for the small-scale systems used, solutions
are not adapted, do not scale well and therefore face the curse of dimensionality.

A number of scientific contributions aimed at facilitating specification of appli-
cations [1] and formalizing the problem have emerged over the past decade, such
as agent orientation, which promotes a social view of computing in which agents
exchange messages, exhibit behaviors such as commitment, etc. The underlying
challenge to the efficient design of such systems concerns the concepts behind au-
tonomous systems able to monitor, analyze and make decisions. Machine learn-
ing/artificial intelligence techniques and bio-inspiration are among possible solu-
tions that have been investigated for tackling such problems.

1.2 The Technology: Scalability in Semiconductor Technologies

Similarly, with the continued downscaling of CMOS feature size approaching the
nanometer scale, the recurrent methods and paradigms that have been used for
decades are increasingly questioned. The assumption of the intrinsic reliability of
technology no longer holds [2] with increasing electric and lithographic dispersions,
failure rates and parametric drifts. Beyond technological solutions, there is growing
interest in the definition of self-adaptive autonomous tiles capable of monitoring
circuit operation (delays, leakage current, etc.) and taking preventive decisions with
respect to parameters such as voltage and frequency.

1.3 The Structure: Scalability in On-chip Architectures

Even though the abstraction of such technological issues may prove tractable, ef-
ficiently utilizing the ever-increasing number of transistors proves difficult. To this
end, one popular design style relies on devising multicore/multiprocessor architec-
tures [3]. Although such solutions have penetrated several market segments such as
desktop computers and mobile terminals, traditional architectural design styles are
challenged in terms of scalability, notably because of shared-memory oriented de-
sign, centralized control, etc. In this area again, there is growing interest for systems
endowed with decisional capabilities. It is often believed that autonomous systems
are a viable alternative that could provide adaptability at the chip level for coping
with various run-time issues such as communication bottlenecks, fault tolerance,
load balancing, etc.
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Fig. 4.1 Autonomous system infrastructure

1.4 Towards Multi-scale Autonomous Systems: A General Scheme

Autonomy is the faculty attributed to an entity that can be self-sufficient and act
within its environment to optimize its functions. Autonomy also describes a system
that can manage itself using its own rules. Autonomy is practiced by living organ-
isms, people, and institutions but not yet by machines. However, the role of the mind
in the architecture of autonomic systems is questioned.

In order to apply this concept to the reality of technological systems, this study
will start with the abstract view of a system architecture while applying the notion
of autonomy.

Figure 4.1 gives a synthetic view of autonomy: the activator creates the physical
state of the system and the diagnosis motivates it. In microelectronics, and therefore
for an SoC (System On a Chip), autonomy is represented by the fact that a calcu-
lation is distributed. In robotics, autonomy is the way to differ, deport or perform
sequences of actions without risking damaging to the machine. In both cases, the
command language must be able to schedule actions in parallel or in sequence. Au-
tonomy can be used to lower energy consumption in microelectronics. In robotics,
the challenge is to increase performance in different environments. In the artificial
intelligence domain, autonomy is the consequence of a life cycle where the sen-
sors observe, the diagnosis gives direction, the language of command orders and
activators act.

Our objective is to design a fully scalable system and apply autonomy principles
to MPSoC (Multiprocessor System-on-Chip). In this chapter, we will first discuss
our vision of the infrastructure required for scalable heterogeneous integrated sys-
tems. Then we will provide a general model for self-adaptability, exemplified with
respect to variability compensation, dynamic voltage and frequency scaling and task
migration. Finally, an example of an autonomous distributed system that has been
developed in the Perplexus European project will be provided.
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Fig. 4.2 Generic MPSOC architecture

2 Distributed MPSoC Systems

In this section, we discuss our vision of a generic MPSoC architecture supported
by two examples. We analyze and suggest the features of a possible scalable and
self-adaptive model suitable for future autonomous systems.

2.1 Generic MPSoC Architecture

This section describes a generic MPSoC by only introducing the key elements al-
lowing formulating valid hypotheses on the architecture. The considered MPSoC is
composed of several Processing Elements (PE) linked by an interconnection struc-
ture as described in Fig. 4.2.

2.1.1 Processing Elements

PEs of an MPSoC depend on the application context and requirements. There are
two architecture families. The first includes heterogeneous MPSoCs composed of
different PEs (processors, memories, accelerators and peripherals). These platforms
were pioneered by the C-5 Network Processor [4], Nexperia [5] and OMAP [6]. The
second family represents homogeneous MPSoCs, e.g. as proposed by the Lucent
Daytona architecture [3], where the same tile is instantiated several times. This work
targets both topologies. Thus, Fig. 4.2 represents a homogeneous or heterogeneous
design.
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2.1.2 Interconnection

The PEs previously described are interconnected by a Network-on-Chip (NoC)
[7–10]. A NoC is composed of Network Interfaces (NI), routing nodes and links.
NI implements the interface between the interconnection environment and the PE
domain. It decouples computation from communication functions. Routing Nodes
are in charge of routing the data between the source and destination PEs through
links. Several network topologies have been studied [11, 12]. Figure 4.2 represents
a 2D mesh interconnect. We consider that the offered communication throughput
is enough for the targeted application set. NoC fulfills the “Globally Asynchronous
Locally Synchronous” (GALS) concept by implementing asynchronous nodes and
asynchronous-synchronous interfaces in NIs [13, 14]. As in [15], GALS properties
allow MPSoC partitioning into several Voltage Frequency Islands (VFI). Each VFI
contains a PE clocked at a given frequency and voltage. This approach allows real
fine-grain power management.

2.1.3 Power Management

Dividing the circuit into different power domains using GALS has facilitated the
emergence of more efficient designs that take advantage of fine-grain power man-
agement [16]. As in [17, 18], the considered MPSoC incorporates distributed Dy-
namic Voltage and Frequency Scaling (DVFS): each PE represents a VFI and in-
cludes a DVFS device. It consists of adapting the voltage and frequency of each PE
in order to manage power consumption and performance. A set of sensors integrated
within each PE provides information about consumption, temperature, performance
or any other metric needed to manage the DVFS.

2.2 Examples: Heterogeneous and Homogeneous MPSoC

Nowadays, there are several industrial and experimental MPSoC designs targeting
different application domains that fulfill part or all of the characteristics enumerated
in the previous section. We briefly describe two examples: ALPIN from CEA-LETI
and HS-Scale from LIRMM.

2.2.1 Alpin

Asynchronous Low Power Innovative Network-on-Chip (ALPIN) is a heteroge-
neous demonstrator [17, 18] developed by CEA-LETI. The ALPIN circuit is a
GALS NoC system implementing adaptive design techniques to control both dy-
namic and static power consumption in CMOS 65 nm technology. It integrates 6 IP
(Intellectual Property) units: a TRX-OFDM unit, 2 FHT units, a MEMORY unit,
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Fig. 4.3 ALPIN architecture

a NoC performance analysis unit and a 80c51 for power mode programming, as
shown in Fig. 4.3. The interconnection is provided by 9 NoC asynchronous nodes
and one NOC synchronous external interface. The asynchronous Network-On-chip
provides 17 GBit/s throughput and automatically reduces its power consumption by
activity detection.

Both dynamic and static power are reduced using adaptive design techniques.
ALPIN IP units handle 5 distinct power modes. Using VDD-Hopping, dynamic
power consumption can be reduced by 8-fold. By using Ultra-Cut-Off, static power
consumption can be reduced by 20-fold.

2.2.2 HS-Scale: A Homogeneous MPSoC from LIRMM

Hardware-Software Scalable (HS-Scale) is a regular array of building blocks
(Fig. 4.4) [19, 20]. Each tile is able to process data and to forward information
to other tiles. It is named NPU (Network Processing Unit) and is characterized by
its compactness and simplicity.

The NPU architecture is represented in Fig. 4.4. This architecture contains: a pro-
cessor, labeled PE in Fig. 4.4; memory to store an Operating System (OS), a given
application and data; a routing engine which transfers messages from one port to
another without interrupting processor execution; a network interface between the
router and the processor based on two hardware FIFOs; an UART that allows up-
loading of the operating system and applications; an interrupt controller to manage
interrupt levels; a timer to control the sequence of an event; and a decoder to address
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Fig. 4.4 HS-Scale architecture (from [19])

these different hardware entities. An asynchronous wrapper interfaces the proces-
sor with the routing engine, allowing several frequency domains and guaranteeing
GALS behavior. The system is controlled by a distributed OS specifically designed
for this platform, which provides self-adaptive features. It ensures load balancing
by implementing task migration techniques.

2.3 Conclusion

Most industrial approaches for embedded systems are heterogeneous. Performance,
power efficiency and design methods have been the biggest drivers of such technolo-
gies, but the lack of scalability is becoming a major issue with respect to tackling
the inherent complexity [21]. Regular designs based on homogeneous architectures
such as HS-Scale provide potential scalability benefits in terms of design, verifica-
tion, program, manufacturing, debug and test. Compared to heterogeneous architec-
tures, the major drawback could be the performance and power efficiency, but our
goal is homogeneity in terms of regularity: each processing element could be “het-
erogeneous”, i.e. composed of several processing engines (general purpose proces-
sor, DSP, reconfigurable logic, etc.) and instantiated many times in a regular design:
we talk about globally homogeneous and locally heterogeneous architectures.

With a homogeneous system, each task of a given application can potentially be
handled by any processing element of the system. Assuming that we can design a
self-adaptive system with many possible usages, as illustrated in Fig. 4.5: task mi-
gration to balance workload and reduce hot spots, task remapping after a processing
element failure, frequency and voltage scaling to reduce the power consumption,
etc. But to benefit such a potential, we need to define a complete infrastructure, as
outlined in the next section.
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Fig. 4.5 Potential usage of a self-adaptive homogeneous system

3 Self-adaptive and Scalable Systems

In our approach, the infrastructure of a self-adaptive system should enable monitor-
ing of the system, diagnosis, and the optimization process for making the decisions
to modify a set of parameters or actuators. Applied to a homogeneous MPSOC sys-
tem, this infrastructure is presented in Fig. 4.6 and should be completely embedded
into the system itself.

In the following sections, we present three contributions to this infrastructure at
three levels:

– the design of sensors for process monitoring allowing PVT (Process Voltage Tem-
perature) compensation

– the implementation of a distributed and dynamic optimization inspired by Game-
Theory for power optimization

– the implementation of task migration based on software monitors to balance the
workload

3.1 Dynamic and Distributed Monitoring for Variability
Compensation

To move from fixed integrated circuits to self-adaptive systems, designers must de-
velop reliable integrated structures providing, at runtime, the system (or any PVT
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Fig. 4.6 Infrastructure of a self-adaptive system

hardware manager) with trustable and valuable information about the state of the
hardware.

Monitoring Clocked System on Chips made of a billion transistors at a reason-
able hardware and performance cost is an extremely difficult task for many reasons.
Among them one may found, the increasing random nature of some process param-
eters, the spatial dependence of process (including aging), voltage and temperature
variations, but also the broad range of time constants characterizing variations in
these physical quantities.

Two different approaches to the monitoring problem can be found in the litera-
ture. The first one consists of integrating specific structures or sensors to monitor,
at runtime, the physical and electrical parameters required to dynamically adapt the
operating frequency and/or the supply voltage and/or the substrate biasing. Several
PVT sensors commonly used for post fabrication binning have been proposed in
the literature [22–26] for global variability compensation. However, there are some
limitations to the use of such PVT sensors.

First, their area and power consumption may be high, so their number has to be
limited. Second, their use requires: (a) integration of complex control functions in
LUT, and (b) intensive characterization of the chip behavior w.r.t. the considered
PVT variables.

Finally, another limitation of this approach concerns the use of Ring Oscillator
(RO) structures [22–24] to monitor the circuit speed since RO may be sensitive
to PVT variables which are quite different from those of data paths. However, this
second limitation can be overcome by adopting a replica path approach, as proposed
in [25]. It involves monitoring the speed of some critical paths which are duplicated
in the sensors to replace the traditional RO.
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The second approach, to compensate for PVT variations and aging effects, is
to directly monitor sampling elements of the chip (Latches or D-type Flip Flop)
to detect delay faults. This can be achieved by inserting specific structures or us-
ing ad-hoc sampling elements [26, 27] to detect a timing violation by performing
a delayed comparison or by detecting a signal transition within a given time win-
dow.

This approach has several advantages, with the main one being its ability to detect
the effects of local and dynamic variations (such local hot spots, localized and brief
voltage drops) on timings. A second and significant advantage is the interpretation
of the data provided by the sensors, which is simple and binary.

However, this second approach has some disadvantages. One of them is that a
high number of sensors might be required to obtain full coverage of the circuit.
Therefore, these structures must be as small as possible and consume a small amount
of energy when the circuit operates correctly. A second and main disadvantage of
such kind of sensors [26, 27] is that error detection requires full replay of the pro-
cessor instruction at a lower speed. However, this replay is not necessarily possible
if the ‘wrong’ data has been broadcasted to the rest of the chip.

In this setting, a solution is to monitor the timing slack pattern with PVT vari-
ations of the critical sampling elements of circuits rather than detecting errors. We
thus developed a new monitoring structure, in line with [26–29] concepts, aimed
at anticipating timing violations over a wide range of operating conditions. This
timing slack monitor, which is compact and has little impact on the overall power
consumption, may allow application of dynamic voltage and/or frequency scaling
as well as body bias strategies.

Figure 4.7 shows the proposed monitoring system and its two blocks detailed in
[30]: the sensor and the specific programmable Clock-tree Cell (CC). The sensor,
acting as a stability checker, is intended to be inserted close to the D-type Flip-Flops
(DFF) located at the endpoints of the critical timing paths of the design while the
CC are inserted at the associated clock leaves. Note that critical data paths to be
monitored can be chosen by different means such through the selection of some
critical paths provided either by a usual STA (Static Timing Analysis) or a SSTA
(Statistical STA).

To validate the monitoring system and its associated design flow, the monitor-
ing system has been integrated, according to [31], in an arithmetic and reconfig-
urable block of a 45 nm telecom SoC. This block contains about 13400 flip-flops,
which leads to a 600 × 550 µm2 core floorplan implementation. Intensive simu-
lations of certain part of the arithmetic block demonstrated the efficiency of the
monitoring system which allows anticipating timing violations (a) over the full
range of process and temperature conditions considered to validate actual designs,
and (b) for supply voltage values ranging from 1.2 V to 0.8 V thanks to the pro-
grammable CC.
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Fig. 4.7 Monitoring system implemented on a single path and the sensor layout in 45 nm technol-
ogy
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Fig. 4.8 Distributed dynamic optimization of MPSoC

3.2 Dynamic and Distributed Optimization Inspired by Game
Theory

3.2.1 Distributed and Dynamic Optimization

Existing methods [32–40], even if they operate at run time, are not based on dis-
tributed models. An alternative solution to centralized approaches is to consider
distributed algorithms. Our proposal is to design an architecture, as illustrated in
Fig. 4.8, where each processing element of an MPSoC embeds an optimization sub-
system based on a distributed algorithm. This subsystem manages the local actuators
(DVFS in Fig. 4.8) that take the operating conditions into account. In other words,
our goal is to design a distributed and dynamic optimization algorithm.

3.2.2 Game Theory as a Model for MPSoC Optimization

Game theory involves a set of mathematical tools that describe interaction among
rational agents. The basic hypothesis is that agents pursue well-defined objectives
and take their knowledge and behaviors of other agents in the system into account to
make their choices. In other words, it describes interactions of players in competitive
games. Players are said to be rational since they always try to improve their score
or advance in the game by making the best move or action. Game theory is based
on a distributed model: players are considered as individual decision makers. For
these reasons, game theory provides a promising set of tools to model distributed
optimization on MPSOC and, moreover, this is an original approach in this context.



4 Towards Autonomous Scalable Integrated Systems 75

Fig. 4.9 A non-cooperative simultaneous game

As illustrated in [41], a non-cooperative strategic game � is composed of a set
N of n players, a set of actions per player Si and the outcomes ui , ∀i ∈ N . In
such a game, players N interact and play through their set of actions Si in a non-
cooperative way, in order to maximize ui . Consider the non-cooperative game of
Fig. 4.9 consisting of 4 players. In Fig. 4.9(a), players analyze the scenario. Each
one incorporates all possible information by communicating or estimating it. The
information serves to build a picture of the game scenario, to analyze the impact
of each possible action on the final personal outcome. Finally, each player chooses
the best action that maximizes his/her own outcome. Then, as shown in Fig. 4.9(b),
players play their chosen actions and recalculate the outcome. Note that due to a
set of interactions and choices of other players, the results are not always the esti-
mated or desired ones. If this sequence is repeated, players have a second chance
to improve their outcomes, but then they know the last movements of the others.
Thus, players improve their chances of increasing their outcomes when the game
is repeated several times. In other words, they play a repetitive game. After a given
number of repetitions, players find a Nash equilibrium solution if it exists. At this
time, players no longer change their chosen action between two cycles, indicating
that they can no longer improve their outcomes.

Consider now that the game objective is to set the frequency/voltage couple of
each processing element of the system represented in Fig. 4.10 through the dis-
tributed fine-grain DVFS. The figures represent a MPSoC integrating four process-
ing elements interconnected by an NoC. The aim of the frequency selection is to op-
timize some given metrics, e.g. power consumption and system performance. These
two metrics usually depend not only on the local configuration but also on the whole
system due to the applicative and physical interactions.

In such scenarios, each processing element is modeled as a player in a game like
the one in Fig. 4.9. In this case, the set of players N consists of n tiles of the system
(n = 4 in the figure). The set of actions Si is defined by each possible frequency set
by the actuator (DVFS). Note that now communications between players are made
through the interconnection system. In Fig. 4.10(a), tiles analyze the scenario like
in Fig. 4.9(a). They estimate the outcome of each possible action depending on the
global scenario in terms of the optimization metrics (energy consumption and per-
formance). The estimation is coded in the utility function ui . Then, in Fig. 4.10(b),
processing elements choose the actions that maximize the outcome. Finally, they
execute them, like in Fig. 4.9(b).
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Fig. 4.10 MPSoC modeled as a non-cooperative simultaneous game

MPSoC are distributed architectures. In addition, the presence of distributed ac-
tuators such as fine-grain DVFS, justifies the use of a non-cooperative models. These
models are based on the principle that decisions are made by each individual in the
system. This hypothesis matches the described MPSoC scenario. In MPSoCs, tiles
cannot be aware of the state of the whole system and decisions of others, but they
have partial information. This is the case of incomplete and imperfect information
games. If players do not have a correct picture of the whole scenario, the NE can be
hardly reached in the first turn of the game. An iterative algorithm providing several
chances to improve the choices will also provide more chances to reach the NE. The
distributed nature of MPSoCs also make it hard to synchronize the decision time of
all players. In other words, no playing order is set in order to avoid increasing the
system complexity. Players are allowed to play simultaneously. For these reasons,
our proposal is based on a non-cooperative simultaneous repetitive game.

3.2.3 Scalability Results

The evaluation scenario proposed in [41] illustrates the effectiveness of such tech-
niques. The objective of this proof of concept is to provide a first approach and to
characterize its advantages and problems. The metric models used in this formu-
lation are very simple, offering a highly abstracted view of the problem. However,
they provide a strong basis for presenting our approach. The statistical study proved
the scalability of our method (Fig. 4.11). An implementation based on a well-known
microcontroller has highlighted its low complexity. This conclusion comes from an
abstracted analysis. In addition, the statistical study showed some deficiencies in
terms of convergence percentage, leading to the development of a refined version of
the algorithm.
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Fig. 4.11 Convergence speed from 4 to 100 PEs

3.2.4 Energy and Latency Optimization Results

In [42] and [43], a new algorithm has been proposed. The number of comparisons
per iteration cycle has been markedly reduced, thus simplifying the implementation.
The new procedure was examined using four TX 4G telecommunication applica-
tions. The results (Fig. 4.12) show that the system adapts the performances when
the application changes during execution time. The proposed procedure adapts, in a
few cycles, the frequency of each PE. Moreover, when the external constraints (en-
ergy and latency bounds) change, the system also reacts by adapting the frequencies.
For the tested applications, we have observed improvements of up to 38% in energy
consumption and 20% in calculation latency. Compared to an exhaustive optimal
search, our solution is less than 5% of the Pareto optimal solution.

3.3 Workload Balancing with Self-adaptive Task Migration

As the key motivations of HS-Scale [19, 20] are scalability and self-adaptability, the
system is built around a distributed memory/message passing system that provides
efficient support for task migration. The decision-making policy that controls migra-
tion processes is also fully distributed for scalability reasons. This system therefore
aims at achieving continuous, transparent and decentralized run-time task placement
on an array of processors for optimizing application mapping according to various
potentially time-changing criteria.

Each NPU has multitasking capabilities, which enable time-sliced execution of
multiple tasks. This is implemented thanks to a tiny preemptive multitasking Oper-
ating System, which runs on each NPU. Structural (a) and functional (b) views of
the NPU are depicted in Fig. 4.13. The NPU is built around two main layers, the
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Fig. 4.12 Energy consumption minimization under latency constraints

Fig. 4.13 HS-scale principles

network layer and the processing layer. The Network layer is essentially a compact
routing engine (XY routing). Packets are read from incoming physical ports, and
then forwarded to either outgoing ports or the processing layer. Whenever a packet
header specifies the current NPU address, the packet is forwarded to the network
interface (NI). The NI buffers incoming data in a small hardware FIFO (HW FIFO)
and simultaneously triggers an interrupt to the processing layer. The interrupt then
activates data de-multiplexing from the single hardware FIFO to the appropriate
software FIFO (SW FIFO), as illustrated. The processing layer is based on a simple
and compact RISC microprocessor, its static memory, and a few peripherals (one
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Fig. 4.14 Dynamic task-graph mapping

timer, one interrupt controller, one UART). A multitasking microkernel (μKernel)
implements the support for time-multiplexed execution of multiple tasks.

The platform is entitled to make decisions that relate to application implemen-
tation through task placement. These decisions are taken in a fully decentralized
fashion as each NPU is endowed with equivalent decisional capabilities. Each NPU
monitors a number of metrics that drive an application-specific mapping policy.
Based on this information, an NPU may decide to push or attract tasks, which re-
sults in respectively parallelizing or serializing the corresponding task executions,
as several tasks running on the same NPU are executed in a time-sliced manner.

Figure 4.14 shows an abstract example showing that upon application loading
the entire task graph runs on a single NPU, subsequent remapping decisions then
tend to parallelize application implementation as the final step exhibits one task per
NPU. Similarly, whenever a set of tasks become subcritical the remapping could
revert to situation (c), where T1, T2 and T3 are hosted on a single NPU while the
other supposedly more demanding tasks do not share NPU processing resources
with other tasks. These mechanisms help in achieving continuous load-balancing in
the architecture but can, depending on the chosen mapping policy, help in refining
placement for lowering contentions, latency or power consumption.

3.3.1 Task Migration Policies

Mapping decisions are specified on an application-specific basis in a dedicated op-
erating system service. Although the policy may be focused on a single metric,
composite policies are possible. Three metrics are available to the remapping policy
for making mapping decisions:

• NPU load: The NPU operating system has the capability of evaluating the pro-
cessing workload resulting from task execution.
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• FIFO queue filling level: As depicted in Fig. 4.13, every task has software input
FIFO queues. Similarly to NPU load, the operating system can monitor the filling
of each FIFO.

• Task distance: The distance that separates tasks is also a factor that impacts
performance, contentions in the network and power consumption. Each NPU mi-
crokernel knows the placement of other tasks of the platform and can calculate
the Manhattan distance with the other tasks it communicates with.

The code below shows an implementation of the microkernel service responsible
for triggering task migration. The presented policy simply triggers task migration in
case one of the FIFO queues of a task is used over 80%.

void improvement_service_routine(){
int i, j;
//Cycles through all NPU tasks
for(i=0; i < MAX_TASK; i++){
//Deactivates policy for dead/newly instantiated tasks

if(tcb[i].status != NEW && tcb[i].status != DEAD){
//Cycles through all FIFOs
for(j=0; j < tcb[i].nb_socket; j++){

//Verifies if FIFO usage > MAX_THRESHOLD
if(tcb[i].fifo_in[j].average > MAX_THRESHOLD){

//Triggers migration procedure if task
//is not already alone on the NPU
if(num_task > 1)

request_task_migration(tcb[i].task_ID);
}

}
}

}
}

The request task migration() call then sequentially emits requests to NPUs in
proximity order. The migration function will migrate the task to the first NPU which
has accepted the request, the migration process is started according to the protocol
described previously in Sect. 4.2. This function can naturally be tuned on an applica-
tion/task specific basis and select the target NPU while taking not only the distance
but also other parameters such as available memory, current load, etc., into account.

We also implemented a migration policy based on the CPU load. The idea is
very similar to the first one and it consists of triggering a migration of a given task
when the CPU load is lower or greater than a given threshold. This approach may
be subdivided in two subsets:

(1) Whenever the tasks time ≥ MAX THRESHOLD, this means that tasks are con-
suming more than or equal to the maximum acceptable usage of the CPU time;

(2) Whenever the tasks time < MIN THRESHOLD, this means the tasks are con-
suming less than the minimum acceptable usage of the CPU time.

For both subsets, the number of tasks inside one NPU must be verified. For the
first subset, it is necessary to have at least two tasks running in the same NPU. For
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Fig. 4.15 MJPEG throughput with the diagnosis and decision based on CPU workload

the second subset, the migration process may occur whenever there are one or more
tasks in the same NPU.

In the same way, the migration process occurs whenever the CPU load is less
than MIN_ THRESHOLD (20%). When this occurs, the migration function must
look for an NPU that is being used at given CPU usage threshold, i.e. 60% usage
in this case. To keep tasks with less than MIN_THRESHOLD from migrating every
time, we inserted a delay to reduce the number of migrations.

3.3.2 Results: Task Migration Based on CPU Workload

The example on Fig. 4.15 shows the results of applying this migration policy based
on the CPU workload. The experimental protocol used for these results involves
varying the input data rate to observe how the system adapts.

At the beginning, all tasks (IVLC, IQ and IDCT) are running on the same
NPU(1,1) but the input throughput on the MJPEG application is lower, so the CPU
time consumed is around 47%. The input throughput is increased at each step (t1, t2
and t3) so we can see an increase in the CPU time consumed step by step. When the
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CPU time used exceeds the threshold (i.e. 80%), the operating system detects that
the NPU(1,1) is overloaded (at 45 s), so it decides to migrate the task which uses
the most CPU time on a neighboring NPU. In this example, IVLC tasks migrate on
NPU(1,2), which decreases the CPU time used by NPU(1,1) by around 35% and
increases the CPU used by NPU(1,2) by around 80%. At t4, the input throughput
increases more, which leads to an MJPEG throughput increase of around 35 KB/s
and overloads the NPU(1,2) at 100% but no migration is triggered because just one
task is computed. From t5 to t12, the input throughput of the MJPEG application is
decreased step by step and, when the CPU time of NPU(1,2) is less than 20% (at
72 s), the operating system decides to move task on the same NPU (the NPU(1,1)).
After this migration, we can see a decrease in CPU time used by the NPU(1,2) and
an increase in CPU time used by NPU(1,1) but without saturating it. We can observe
that the MJPEG application performance is lower than in the static mode because
the operating system uses more CPU time (around 10%) to monitor CPU time.

4 Towards Autonomous Systems

The growing interest in pervasive systems that seamlessly interact with their envi-
ronment motivates research in the area of self-adaptability. Bio-inspiration is often
regarded as an attractive alternative to the usual optimization techniques since it
provides capability to handle scenarios beyond the initial set of specifications. Such
a feature is crucial in multiple domains such as pervasive sensor networks where
nodes are distributed across a broad geographical area, thus making on-site inter-
vention difficult. In such highly distributed systems, the various nodes are loosely
coupled and can only communicate by means of messages. Further, their architec-
ture may differ significantly as they may be assigned tasks of different natures. One
interesting opportunity is to use agent-orientation combined with bio-inspiration to
explore the resulting adaptive characteristics.

4.1 Bio-inspiration & Agent-Orientation: at the Crossroads

Programming distributed/pervasive applications is often regarded as a challenging
task that requires a proper programming model capable of adequately capturing the
specifications. Agent-oriented programming (AOP) derives from the initial theory of
agent orientation, which was first proposed by Yoav Shoham [44]. Agent-orientation
was initially defined for promoting a social view of computing and finds natural ap-
plications in areas such as artificial intelligence or social behavior modeling. An
AOP computation consists of making agents interact with each other through typed
messages of different natures: agents may be informing, requesting, offering, ac-
cepting, and rejecting requests, services or any other type of information. AOP also
sets constraints on the parameters defining the state of the agent (beliefs, commit-
ments and choices).
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For exploring online adaptability, bio-inspiration appears to be an attractive al-
ternative that has been used for decades in many areas. Optimization techniques
such as genetic programming, artificial neural networks are prominent examples of
such algorithms. There are several theories that relate to life, its origins and all of its
associated characteristics. It is, however, usually considered that life relies on three
essential mechanisms, i.e. phylogenesis, ontogenesis and epigenesis [45] (referred
to as P, O and E, respectively, throughout this chapter):

– Phylogenesis is the origin and evolution of a set of species. Evolution gears
species towards a better adaptation of individuals to their environment; genetic
algorithms are inspired from this principle of life.

– Ontogenesis describes the origin and the development of an organism from the
fertilized egg to its mature form. Biological processes like healing and fault tol-
erance are ontogenetic processes.

– Epigenesis refers to features that are not related to the underlying DNA sequence
of an organism. Learning as performed by Artificial Neural Networks (ANN) is
a process whose scope is limited to an individual lifetime and therefore is epige-
netic.

4.2 The Perplexus European Project

The PERPLEXUS European project aims at developing a platform of ubiquitous
computing elements that communicate wirelessly and rely on the three above-
mentioned principles of life. Intended objectives range from the simulation of com-
plex phenomena such as culture dissemination to the exploration of bio-inspiration
driven system adaptation in ubiquitous platforms.

Each ubiquitous computing module (named Ubidules for Ubiquitous Modules)
is made of an XScale microprocessor that runs a Linux operating system and a
bio-inspired reconfigurable device that essentially runs Artificial Neural Networks
(ANN). The resulting platform is schematically described in Fig. 4.16, which shows
the network of mobile nodes (MANET) that utilize moving vehicles, and the Ubid-
ules that control them.

4.3 Bio-mimetic Agent Framework

The proposed framework is based on the JADE (Java Agent DEvelopment kit) open-
source project. The lower-level mechanisms such as the MANET dynamic routing
engine are not detailed here, refer to [46] for a complete description. This section
focuses on two fundamental aspects of the proposed BAF: on one hand a description
of the BAF and overview of the provided functionality, on the other a description of
POE specific agents. Further information on BAF can be found in [47].
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Fig. 4.16 Overview of the Perplexus platform

As bio-inspiration and the three fundamentals of life are at the core of the project,
the proposed framework extends JADE default agents by defining agents whose
purpose is related to both interfacing and bio-inspired (POE) mechanism support as
well as pervasive computing platform management agents.

The BAF specifies 7 agents belonging to 2 families:

– Application agents: Phylogenetic agent(s), Ontogenetic agent(s) and Epigenetic
agent(s).

– Infrastructure agents: UbiCom agent(s), Interface agent(s), Network agent(s) and
Spy agent(s).

Figure 4.17 shows both the infrastructure and application agents and their inter-
actions (for clarity, JADE-specific agents are omitted):

– P agent: The Phylogenetic agent is responsible for execution of the distributed
Genetic Algorithms: it calculates the local fitness of the individual (the actual
Ubidule) and synchronizes this information with all other Ubidules. It is respon-
sible for triggering the death (end of a generation) and birth of the embodied
individual hosted on the Ubidule.

– O agent: The Ontogenetic agent is tightly coupled to the P agent: it takes orders
from this agent and has the capability of creating other software agents (in case
of full software implementation).

– E agent: The Epigenetic agent embodies the individual and its behavior: it is a
software or hardware neural network.
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Fig. 4.17 BAF agents at the
Ubidule-level

Next to the three POE agents, there are four additional agents for interfacing and
networking purposes:

– I agent: The Interface agent provides a set of methods for issuing commands to
the actuators or retrieving data from the Ubidule sensors.

– U agent: The UbiCom agent provides software API-like access to the Ubichip
and manages hardware communications with the chip.

– S agent: The Spy agent provides information on the platform state (agent sta-
tus/results, activity traces, bug notification).

– N agent: The Network agent provides a collection of methods for network-related
aspects: time-synchronization of data among Ubidules, setting/getting clusters of
Ubidules, obtaining a list of neighbors, etc. As it requires access to low-level
network-topology information, it also implements MANET functionalities.

Finally, a Host agent (H agent) instantiated on a workstation allows remote con-
trol of the PERPLEXUS platform (Start/Stop/Schedule actions).

4.4 Application Results: Online Collaborative Learning

Figure 4.18 schematically depicts the robots used, their sensors and actuators, as
well as the framework agents presented previously. Robots use online learning (Epi-
genesis) to improve their performance. Robots are enclosed in an arena scattered
with obstacles (collision avoidance is the main objective here). As this application
only targets learning, the P and O agents are not used here.

Besides the three front sensors that return the distance to the nearest obstacle,
a bumper switch is added to inform the robot whenever a collision with an object
occurs; it is located on the front side of the robot. These robots move by sending
speed commands on each of the two motors. As depicted in Fig. 4.18 an Artificial
Neural Network (ANN) controls the robot movement: the E agent is a multi-layer
Perceptron ANN that uses a standard back-propagation learning algorithm.
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Fig. 4.18 Mapping agents onto the robots and overview of the obstacle avoidance application

Inputs of the ANN are the three values measured by the sensors, five areas have
been defined for each sensor, area 0 means that an obstacle is present within a dis-
tance of less than 200 mm, subsequent areas are 200 mm deep, therefore enabling
detection of objects at up to 800 mm distance. The ANN outputs are speed values
sent to the two motors, with each being set as an integer value from −7 to +7,
−7 being the maximum negative speed of a wheel (i.e. fast backward motion), and
+7 being with the maximum positive speed of a wheel (i.e. fast forward motion).
The robot can turn by applying two different speeds on the motors.

Robots are moving in an unknown environment. Each time they collide into an
obstacle, a random modification of the relevant learning pattern is applied and an
ANN learning phase is triggered online. The robot then notifies all its peers that this
pattern shall be modified, and the modification is registered by all robots, therefore
collectively speeding up convergence toward a satisfactory solution.

Our experiments show that this technique exhibits a speedup (versus a sin-
gle robot) that is almost linear with the number of robots used. Furthermore, it
has been observed that a convergence threshold is reached after a number of it-
erations, which is a function of the complexity of the environment. Once this
threshold is reached, adding more obstacles in the arena retriggers learning un-
til a new threshold is reached, thus demonstrating the adaptability potential of
the proposed solution. Further experiments presented in [48] utilizing evolution-
ary techniques also show promising results (demonstration videos are available at
http://www.lirmm.fr/~brousse/Ubibots).

5 Conclusion

Not only technology but also the rapidly widening spectrum of application domains
raises a number of questions that challenge design techniques and programming
methods that have been used for decades. Particularly, design-time decisions prove
inadequate in a number of scenarios because of the unpredictable dimension of the
environment, technology and applicative requirements that often give rise to major
scalability issues.

http://www.lirmm.fr/~brousse/Ubibots
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Techniques that rely on assessing the system state and adapting at run-time ap-
pear attractive as they relieve designers of the burden of devising tradeoffs that per-
form reasonably well in a chosen set of likely scenarios.

This chapter stresses two important guidelines that are believed to be the corner-
stone to the design of systems for the decade to come: self-adaptability and distribu-
tiveness. To this end, the presented work stressed the associated benefits of systems
that comply with these two rules.

In some cases in which the scope of monitored parameters is limited, the re-
sults are remarkable as they permit to achieve significant improvements with limited
overhead.

For the most ambitious techniques that rely on completely distributed decision-
making based on heuristics, experiments show promising results but also highlight
some limitations such as suboptimality and uncertainty. Such techniques will nev-
ertheless be unavoidable for very-large scale systems that currently only exist in
telecommunication networks.

We believe that there is no single technique that will answer every requirement
but it is rather important to promote a panel of tools that will be made available to
designers for devising systems tailored for a particular application area.
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