Fuzzy extensions of the DBScan clustering algorithm

Abstract : The DBSCAN algorithm is a well-known density-based clustering approach particularly useful in spatial data mining for its ability to find objects’ groups with heterogeneous shapes and homogeneous local density distributions in the feature space. Furthermore, it can be suitable as scaling down approach to deal with big data for its ability to remove noise. Nevertheless, it suffers for some limitations, mainly the inability to identify clusters with variable density distributions and partially overlapping borders, which is often a characteristics of both scientific data and real-world data. To this end, in this work, we propose three fuzzy extensions of the DBSCANDBSCAN algorithm to generate clusters with distinct fuzzy density characteristics. The original version of DBSCANDBSCAN requires two precise parameters (minPts and ϵϵ ) to define locally dense areas which serve as seeds of the clusters. Nevertheless, precise values of both parameters may be not appropriate in all regions of the dataset. In the proposed extensions of DBSCANDBSCAN , we define soft constraints to model approximate values of the input parameters. The first extension, named Fuzzy Core DBSCANFuzzy Core DBSCAN , relaxes the constraint on the neighbourhood’s density to generate clusters with fuzzy core points, i.e. cores with distinct density; the second extension, named Fuzzy Border DBSCANFuzzy Border DBSCAN , relaxes ϵϵ to allow the generation of clusters with overlapping borders. Finally, the third extension, named Fuzzy DBSCANFuzzy DBSCAN subsumes the previous ones, thus allowing to generate clusters with both fuzzy cores and fuzzy overlapping borders. Our proposals are compared w.r.t. state of the art fuzzy clustering methods over real-world datasets.
Type de document :
Article dans une revue
Soft Computing, Springer Verlag, 2016, Methodologies and Application, 〈10.1007/s00500-016-2435-0〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01399605
Contributeur : Dino Ienco <>
Soumis le : samedi 19 novembre 2016 - 19:04:56
Dernière modification le : jeudi 11 janvier 2018 - 06:27:21
Document(s) archivé(s) le : mardi 21 mars 2017 - 09:43:39

Fichier

FuzzyDBScan.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Dino Ienco, Gloria Bordogna. Fuzzy extensions of the DBScan clustering algorithm. Soft Computing, Springer Verlag, 2016, Methodologies and Application, 〈10.1007/s00500-016-2435-0〉. 〈lirmm-01399605〉

Partager

Métriques

Consultations de la notice

169

Téléchargements de fichiers

278