G. Bordogna and D. Ienco, Fuzzy Core DBScan Clustering Algorithm, pp.100-109, 2014.
DOI : 10.1007/978-3-319-08852-5_11

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, KDD, vol.160, pp.226-231, 1996.

A. Guillén, J. González, I. Rojas, H. Pomares, L. J. Herrera et al., Using fuzzy logic to improve a clustering technique for function approximation, Neurocomputing, vol.70, issue.16-18, pp.16-18, 2007.
DOI : 10.1016/j.neucom.2006.06.017

Z. Ji, Y. Xia, Q. Sun, and G. Cao, Interval-valued possibilistic fuzzy c-means clustering algorithm. Fuzzy Sets and Systems 253, pp.138-156, 2014.
DOI : 10.1016/j.fss.2013.12.011

H. Kriegel and M. Pfeifle, Density-based clustering of uncertain data, Proceeding of the eleventh ACM SIGKDD international conference on Knowledge discovery in data mining , KDD '05, pp.672-677, 2005.
DOI : 10.1145/1081870.1081955

E. N. Nasibov and G. Ulutagay, Robustness of density-based clustering methods with various neighborhood relations, Fuzzy Sets and Systems, vol.160, issue.24, pp.3601-3615, 2009.
DOI : 10.1016/j.fss.2009.06.012

N. R. Pal, K. Pal, J. M. Keller, and J. C. Bezdek, A possibilistic fuzzy c-means clustering algorithm, IEEE Transactions on Fuzzy Systems, vol.13, issue.4, pp.517-530, 2005.
DOI : 10.1109/TFUZZ.2004.840099

J. Parker and J. Downs, Footprint generation using fuzzy-neighborhood clustering, GeoInformatica, vol.8, issue.2, pp.283-299, 2013.
DOI : 10.1007/s10707-012-0152-0

J. Parker, L. Hall, and A. Kandel, Scalable fuzzy neighborhood DBSCAN, International Conference on Fuzzy Systems, pp.1-8, 2010.
DOI : 10.1109/FUZZY.2010.5584527

M. Popescu and J. M. Keller, Summarization of Patient Groups Using the Fuzzy C-Means and Ontology Similarity Measures, 2006 IEEE International Conference on Fuzzy Systems, pp.534-539, 2006.
DOI : 10.1109/FUZZY.2006.1681763

J. Sander, M. Ester, H. Kriegel, and X. Xu, Density-based clustering in spatial databases: The algorithm GDBSCAN and its applications, Data Mining and Knowledge Discovery, vol.2, issue.2, pp.169-194, 1998.
DOI : 10.1023/A:1009745219419

S. Shamshirband, A. Amini, N. B. Anuar, L. M. Kiah, T. Y. Wah et al., D-FICCA: A density-based fuzzy imperialist competitive clustering algorithm for intrusion detection in wireless sensor networks, Measurement, vol.55, pp.212-226, 2014.
DOI : 10.1016/j.measurement.2014.04.034

A. Smiti and Z. Eloudi, Soft DBSCAN: Improving DBSCAN clustering method using fuzzy set theory, 2013 6th International Conference on Human System Interactions (HSI), pp.380-385, 2013.
DOI : 10.1109/HSI.2013.6577851

L. Suanmali, N. Salim, and M. S. Binwahlan, Fuzzy logic based method for improving text summarization, p.4690, 2009.

G. Ulutagaya and E. Nasibov, Fuzzy and crisp clustering methods based on the neighborhood concept: A comprehensive review, Journal of Intelligent and Fuzzy Systems, vol.23, pp.1-11, 2012.

R. Yager and D. Filev, Approximate clustering via the mountain method, IEEE Transactions on Systems, Man, and Cybernetics, vol.24, issue.8, pp.1279-1284, 1994.
DOI : 10.1109/21.299710