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ABSTRACT. Many real world datasets can be represented by graphs with a set of nodes intercon-
nected with each other by multiple relations (e.g., social network, RDF graph, biological data).
Such a rich graph, called multigraph, is well suited to represent real world scenarios with com-
plex interactions. However, performing subgraph query on multigraphs is still an open issue
since, unfortunately, all the existing algorithms for subgraph query matching are not able to ad-
equately leverage the multiple relationships that exist between the nodes. Motivated by the lack
of approaches for sub-multigraph query and stimulated by the increasing number of datasets
that can be modelled as multigraphs, in this paper we propose IMQA (Index based Multigraph
Query Answering), a novel algorithm to extract all the embeddings of a sub-multigraph query
from a single large multigraph. IMQA is composed of two main phases: Firstly, it implements
a novel indexing schema for multiple edges, which will help to efficiently retrieve the vertices of
the multigraph that match the query vertices. Secondly, it performs an efficient subgraph search
to output the entire set of embeddings for the given query. Extensive experiments conducted on
real datasets prove the time efficiency as well as the scalability of IMQA.

RÉSUMÉ. De nombreuses données réelles peuvent être représentées par un réseau avec un en-
semble de nœuds interconnectés via différentes relations (i.e. les réseaux sociaux, les données
biologiques, les graphes RDF). Ce type de graphe, appelé multigraphe, est tout à fait adapté à la
représentation de scénarios réels contenant des interactions complexes. La recherche de sous-
multigraphe dans des multigraphes est un domaine de recherche ouvert et malheureusement les
algorithmes existants pour faire de la recherche de sous-graphe ne sont pas adaptés et ne peu-
vent pas prendre en compte les différentes relations qui peuvent exister entre les nœuds. Motivés
par le manque d’approches existantes et par le nombre croissant d’applications qui peuvent être
modélisées via des multigraphes, nous proposons dans cet article IMQA un nouvel algorithme
pour extraire tous les sous-multigraphes inclus dans un grand multigraphe. IMQA comporte
deux étapes principales. Tout d’abord il implémente une nouvelle structure d’indexation pour
les relations multiples qui est utilisée pour rechercher efficacement les sommets du multigraphe
qui correspondent aux sommets de la requête. Ensuite, il réalise une recherche efficace de
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l’ensemble des sous-multigraphes correspondant à une requête donnée. Les nombreuses ex-
périmentations menées sur des jeux de données réelles ont montré l’efficacité et le passage à
l’échelle de IMQA.

KEYWORDS: multigraph query, indexing, subgraph query matching.

MOTS-CLÉS : requête multigraphes, index, recherche de sous-multigraphes.
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1. Introduction

Much of the real world data can be represented by a graph with a set of nodes in-
terconnected with each other by multiple relations. Such a rich graph is called multi-
graph which allows different types of edges in order to represent different types of
relations between vertices (Boden et al., 2012; Bonchi et al., 2014). Examples of
multigraphs are: social networks spanning over the same set of people, but with dif-
ferent life aspects (e.g. social relationships such as Facebook, Twitter, LinkedIn, etc.);
protein-protein interaction multigraphs created considering the pairs of proteins that
have direct interaction/physical association or they are co-localised (Zhang, 2009);
gene multigraphs, where genes are connected by considering the different pathway
interactions belonging to different pathways; RDF knowledge graph where the same
subject/object node pair is connected by different predicates (Libkin et al., 2013).

One of the most crucial and difficult operation in graph data management is sub-
graph querying (Han et al., 2013). The subgraph query problem belongs to NP-
complete class (Han et al., 2013) but, practically, we can find embeddings in real
graph data by exploiting better matching order and intelligent pruning rules. In liter-
ature, different families of subgraph matching algorithms exist. A first group of tech-
niques employ feature based indexing followed by a filtering and verification frame-
work (Yan et al., 2004; Cheng et al., 2007; X. Zhao et al., 2013; Lin, Bei, 2014). All
these methods are developed for transactional graphs, i.e. the database is composed
of a collection of graphs and each graph can be seen as a transaction of such database,
and they cannot be trivially extended to the single multigraph scenario. A second
family of approaches avoid indexing and it uses backtracking algorithms to find em-
beddings by growing the partial solutions. In the beginning, they obtain a potential set
of candidate vertices for every vertex in the query graph. Then a recursive subroutine
called SUBGRAPHSEARCH is invoked to find all the possible embeddings of the query
graph in the data graph (Cordella et al., 2004; Shang et al., 2008; He, Singh, 2008).
All these approaches are able to manage only graph with a single label on the vertex.
Although index based approaches focus on transactional database graphs, some back-
tracking algorithms address the large single graph setting (Lee et al., 2012). All these
methods are not conceived to manage and query multigraphs and their extension to
manage multiple relations between nodes cannot be trivial. A third and more recent
family of techniques defines Equivalent Classes at query and/or database level, by
exploiting vertex relationships. Once the data vertices are grouped into equivalence
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Figure 1. A sample query and data multigraph

classes the search space is reduced and the whole process is speeded up (Han et al.,
2013; Ren, Wang, 2015). Adapting these methods to multigraph is not straightforward
since, the different types of relationships between vertices can exponentially increase
the number of equivalent classes (for both query and data graph) thereby drastically
reducing the efficiency of these strategies. Among the vast literature on subgraph iso-
morphism, (Bonnici et al., 2013) is the unique approach that is able to directly manage
graph with (multiple) labels on the edges. It proposes an approach called RI that uses
light pruning rules in order to avoid visiting useless candidates.

Due to the abundance of multigraph data and the importance of querying the multi-
graph data, in this paper, we propose a novel method IMQA that supports subgraph
matching in a Multigraph via efficient indexing. Unlike the previous proposed ap-
proaches, we conceive an indexing schema to summarize information contained in a
single large multigraph. IMQA involves two main phases: (i) an off-line phase that
builds efficient indexes for the information contained in the multigraph; (ii) an on-line
phase, where a sub-multigraph search procedure exploits the indexing schema previ-
ously built. The rest of the paper is organized as follows. Background and problem
definition are provided in Section 2. An overview of the proposed approach is pre-
sented in Section 3, while Section 4 and Section 5 describe the indexing schema and
the query subgraph search algorithm, respectively. Section 6 presents experimental
results. Conclusions are drawn in Section 7.

2. Background

Formally, we define a multigraph G as a tuple of four elements (V,E,LE , D)
where V is the set of vertices and D is the set of dimensions , E ⊆ V ×V is the set of
undirected edges and LE : V ×V → 2D is a labelling function that assigns the subset
of dimensions to each edge it belongs to. In this paper, we address the sub-multigraph
problem for undirected and unattributed multigraphs.

DEFINITION 1. — Subgraph isomorphism for a multigraph. Given a sub multigraph
S = (V s, Es, Ls

E , D
s) and a multigraph G = (V,E,LE , D), the subgraph isomor-

phism from S to G is an injective function ψ : V s → V such that:
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∀(um, un) ∈ Es, ∃ (ψ(um), ψ(un)) ∈ E and Ls
E(um, un) ⊆ LE(ψ(um), ψ(un)).

Problem Definition. Given a query multigraph S and a data multigraph G, the
subgraph query problem is to enumerate the distinct embeddings of S in G.

For the ease of representation, in the rest of the paper, we simply refer to a data
multigraph G as a graph, and a query multigraph S as a subgraph. We also enumerate
(for unique identification) the set of query vertices by U and the set of data vertices
by V . In Figure 1, we introduce a query multigraph S and a data multigraph G.
The two valid embeddings for the subgraph S are marked by the thick lines in the
graph G and are enumerated as follows: R1 := {[u1, v4], [u2, v5], [u3, v3], [u4, v1]};
R2 := {[u1, v4], [u2, v3], [u3, v5], [u4, v6]}, where, each query vertex ui is matched to
a distinct data vertex vj , written as [ui, vj].

3. An Overview of IMQA

In this section, we sketch the main idea of IMQA to address the subgraph query
problem for multigraphs. The entire procedure can be divided into two parts: (i)
an indexing schema for the graph G that exploits edge dimensions and the vertex
neighbourhood structure (Section 4) (ii) a subgraph search algorithm that involves
several steps to enumerate the embeddings of the subgraph (Section 5).

The overall idea of IMQA is depicted in Algorithm 1. Initially, we order the set
of query vertices U using a heuristic proposed in Section 5.1. With an ordered set
of query vertices Uo, we use the indexing schema to find a list of possible candi-
date matches C(uinit) only for the initial query vertex uinit by calling SELECTCAND
(Line 4), as described in Section 5.2. Then, SUBGRAPHSEARCH is recursively called
for each candidate solution v ∈ C(uinit), to find the matchings in a depth first manner
until an embedding is found. The partial embedding is stored in M = [MS ,MG] - a
pair that contains the already matched query verticesMS and the already matched data
vertices MG. Once the partial embedding grows to become a complete embedding,
the repository of embeddings R is updated.

4. Indexing

In this section, we propose the indexing structures that are built on the graphG that
are used during the subgraph querying procedure. The primary goal of indexing is to
make the query processing time efficient. For a lucid understanding of our indexing
schema, we introduce a few definitions.

DEFINITION 2. — Vertex signature. For a vertex v, the vertex signature σ(v) is multi-
set containing all the multiedges that are incident on v, where any multiedge between
v and a neighbouring vertex v′ is represented by a set that corresponds to edge dimen-
sions. Formally, σ(v) =

⋃
v′∈N(v) LE(v, v

′) where N(v) is the set of neighbourhood
vertices of v, and ∪ is the union operator for multiset.
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Algorithm 1: IMQA

1 INPUT: subgraph S, graph G, indexes T , N of G
2 OUTPUT: R: all the embeddings of S in G
3 Uo = ORDERQUERYVERTICES(S)
4 C(uinit) = SELECTCAND(uinit, T ) /* Ordered cand. vertices */
5 R = ∅ /* Embeddings of S in G */
6 for each vinit ∈ C(uinit) do
7 MS = uinit; /* Matched initial query vertex */
8 MG = vinit; /* Matched possible data vertex */
9 M = [MS ,MG] /* Partial matching of S in G */

10 UPDATE: R := SUBGRAPHSSEARCH(R,M,N , S,G, Uo)

11 return R

For instance, in Figure 1, σ(v6) = {{E1, E3}, {E1}}. The vertex signature is an
intermediary representation that is exploited by our indexing schema. All the vertex
signatures of the vertices of the graph in Figure 1 are depicted in Table 1.

Table 1. Vertex signatures for the graph in Figure 1b

vi σ(v)
v1 {{E1, E3}}
v2 {{E2, E3, E1}, {E1}}
v3 {{E2, E3, E1}, {E1, E3}, {E1, E2}, {E1}}
v4 {{E1, E2}, {E1, E2}}
v5 {{E1, E3}, {E1, E3}, {E1, E2}, {E1}}
v6 {{E1, E3}, {E1}}
v7 {{E1, E3}}

The goal of constructing indexing structures is to find the possible candidate set
for the set of query vertices u, thereby reducing the search space for the SUBGRAPH-
SEARCH procedure, making IMQA time efficient.

DEFINITION 3. — Candidate set. For a query vertex u, the candidate set C(u) is
defined as C(u) = {v ∈ G|σ(u) ⊆ σ(v)}.

In this light, we propose two indexing structures that are built offline: (i) given
the vertex signature of all the vertices of graph G, we construct a vertex signature
index T by exploring a set of features f of the signature σ(v) (ii) we build a vertex
neighbourhood indexN for every vertex in the graphG. The index T is used to select
possible candidates for the initial query vertex in the SELECTCAND procedure while
the indexN is used to choose the possible candidates for the rest of the query vertices
during the SUBGRAPHSEARCH procedure.
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4.1. Vertex Signature Index T

This index is constructed to enumerate the possible candidate set only for the initial
query vertex. Since we cannot exploit any structural information for the initial query
vertex, T captures the edge dimension information from the data vertices, so that the
non suitable candidates can be pruned away.

We construct the index T by organizing the information supplied by the vertex
signature of the graph; i.e., observing the vertex signature of data vertices, we intend
to extract some interesting features. For example, the vertex signature of v6, σ(v6) =
{{E1, E3}, {E1}} has two sets of dimensions in it and hence v6 is eligible to be
matched with query vertices that have at most two sets of items in their signature.
Also, σ(v2) = {{E2, E3, E1}, {E1}} has the edge dimension set of maximum size 3
and hence a query vertex must have the edge dimension set size of at most 3. More
such features (e.g., the number of unique dimensions, the total number of occurrences
of dimensions, etc.) can be proposed to filter out irrelevant candidate vertices. In
particular, for each vertex v, we propose to extract a set of characteristics summarizing
useful features of the neighbourhood of a vertex. Those features constitute a synopses
representation (surrogate) of the original vertex signature.

In this light, we propose six |f |= 6 useful features that will be illustrated with the
help of the vertex signature σ(v3) = {{E1, E2, E3}, {E1, E3}, {E1, E2}, {E1}}:

f1 Cardinality of vertex signature, (f1(v3) = 4)
f2 The number of unique dimensions in the vertex signature, (f2(v3) = 3)
f3 The number of all occurrences of the dimensions (with repetition), (f3(v3) = 8)
f4 Minimum index of lexicographically ordered edge dimensions, (f4(v3) = 1)
f5 Maximum index of lexicographically ordered edge dimensions, (f5(v3) = 3)
f6 Maximum cardinality of the vertex sub-signature, (f6(v3) = 3)

Table 2. Synopses for all the data vertices in Figure1b

Data vertex Synopses
v f1 f2 f3 f4 f5 f6
v1 1 2 2 1 3 2
v2 2 3 4 1 3 3
v3 4 3 8 1 3 3
v4 2 2 4 1 2 2
v5 4 3 7 1 3 2
v6 2 2 3 1 3 2
v7 1 2 2 1 3 2

In Table 2 we list the synopses for each data vertex shown in Figure 1b, for clear
understanding.
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By exploiting the aforementioned features, we build the synopses to represent the
vertices in an efficient manner that will help us to select the eligible candidates during
query processing.

Once the synopsis representation for each data vertex is computed, we store the
synopses in an efficient data structure. Since each vertex is represented by a synopsis
of several fields, a data structure that helps in efficiently performing range search
for multiple elements would be an ideal choice. For this reason, we build a |f |-
dimensional R-tree, whose nodes are the synopses having |f | fields.

The general idea of using an R-tree structure is as follows: A synopses F =
{f1, . . . , f|f |} of a data vertex spans an axes-parallel rectangle in an f -dimensional
space, where the maximum co-ordinates of the rectangle are the values of the synopses
fields (f1, . . . , f|f |), and the minimum co-ordinates are the origin of the rectangle
(filled with zero values). For example, a data vertex represented by the synopses with
two features Fv = (2, 3) spans a rectangle in a 2-dimensional space in the interval
range ([0, 2], [0, 3]). Now if we consider synopses of two query vertices, Fu1

= (1, 3)
and Fu2

= (1, 4), we observe that the rectangle spanned by Fu1
is wholly contained

in the rectangle spanned by Fv but Fu2 is not wholly contained in Fv . Formally,
the possible candidates for vertex u can be written as P(u) = {v|∀i∈[1,...,f ]Fu(i) ≤
Fv(i)}, where the constraints are met for all the |f |-dimensions. Since we apply the
same inequality constraint to all the fields, we need to pre-process few synopses fields;
i.e., the field f4 contains the minimum value of the index, and hence we negate f4 so
that the rectangular containment problem still holds good. Thus, we keep on inserting
the synopses representations of each data vertex v into the R-tree and build the index
T , where each synopses is treated as an |f |-dimensional node of the R-tree.

4.2. Vertex Neighbourhood Index N

The aim of this indexing structure is to find the possible candidates for the rest of
the query vertices.

Since the previous indexing schema enables us to select the possible candidate
set for the initial query vertex, we propose an index structure to obtain the possible
candidate set for the subsequent query vertices. The index N will help us to find the
possible candidate set for a query vertex u during the SUBGRAPHSEARCH procedure
by retaining the structural connectivity with the previously matched candidate vertices,
while discovering the embeddings of the subgraph S in the graph G.

The indexN comprises of neighbourhood trees built for each of the data vertex v.
To understand the index structure, let us consider the data vertex v3 from Figure 1b,
shown separately in Figure 2a. For this vertex v3, we collect all the neighbourhood
information (vertices and multiedges), and represent this information by a tree struc-
ture. Thus, the tree representation of a vertex v contains the neighbourhood vertices
and their corresponding multiedges, as shown in Figure 2b, where the nodes of the
tree structure are represented by the edge dimensions.
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In order to construct an efficient tree structure, we take inspiration from (Terrovitis
et al., 2006) to propose the structure - Ordered Trie with Inverted List (OTIL). Con-
sider a data vertex vi, with a set of n neighbourhood vertices N(vi). Now, for every
pair (vi, N j(vi)), where j ∈ {1, . . . , n}, there exists a multiedge (set of edge dimen-
sions) {E1, . . . , Ed}, which is inserted into the OTIL structure. Each multiedge is
ordered (with the increasing edge dimensions), before inserting into OTIL structure,
and the order is universally maintained for both query and data vertices. Further, for
every edge dimension Ei that is inserted into the OTIL, we maintain an inverted list
that contains all the neighbourhood vertices N(vi), that have the edge dimension Ei

incident on them. For example, as shown in Figure 2b, the edge E2 will contain the
list {v2, v4}, since E2 forms an edge between v3 and both v2 and v4.

To construct the OTIL index as shown in Figure 2b, we insert each ordered mul-
tiedge that is incident on v at the root of the trie structure. To make index querying
more time efficient, the OTIL nodes with identical edge dimension (e.g., E3) are in-
ternally connected and thus form a linked list of data vertices. For example, if we
want to query the index in Figure 2b with a vertex having edges {E1, E3}, we do not
need to traverse the entire OTIL. Instead, we perform a pre-ordered search, and as
soon as we find the first set of matches, which is {V2}, we will be redirected to the
OTIL node, where we can fetch the matched vertices much faster (in this case {V1}),
thereby outputting the set of matches as {V2, V1}.
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Figure 2. Building Neighbourhood Index for data vertex v3

5. Subgraph Query Processing

We now proceed with the subgraph query processing. In order to find the em-
beddings of a subgraph, we not only need to find the valid candidates for each query
vertex, but also retain the structure of the subgraph to be matched. In this section, we
discuss in detail about the various procedures involved in Algorithm 1.

5.1. Query Vertex Ordering

Before performing query processing, we order the set of query vertices U into an
ordered set of query vertices Uo. It is argued that an effective ordering of the query
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vertices improves the efficiency of subgraph querying (Lee et al., 2012). In order to
achieve this, we propose a heuristic that employs two scoring functions.

The first scoring function relies on the number of multiedges of a query vertex. For
each query vertex ui, the number of multiedges incident on it is assigned as a score;
i.e., r1(ui) =

∑m
j=1 |σ(u

j
i )|, where ui hasmmultiedges, |σ(uji )| captures the number

of edge dimensions in the jth multiedge. Query vertices are ordered in ascending order
considering the scoring function r1, and thus uinit = argmax(r1(ui)). For example,
in Figure 1a, vertex u3 has the maximum number of edges incident on it, which is 4,
and hence is chosen as an initial vertex.

The second scoring function depends on the structure of the subgraph. We main-
tain an ordered set of query vertices Uo and keep adding the next eligible query vertex.
In the beginning, only the initial query vertex uinit is in Uo. The set of next eligible
query vertices Uo

nbr are the vertices that are in the 1-neighbourhood of Uo. For each
of the next eligible query vertex un ∈ Uo

nbr, we assign a score depending on a second
scoring function defined as r2(un) = |{Uo ∩ adj(un)}|. It considers the number of
the adjacent vertices of un that are present in the already ordered query vertices Uo.

Then, among the set of next eligible query vertices Uo
nbr for the already ordered

Uo, we give first priority to function r2 and the second priority to function r1. Thus,
in case of any tie ups, w.r.t. r2, the score of r1 will be considered. When both r2 and
r1 leave us in a tie up situation, we break such tie at random.

5.2. Select Candidates for Initial Query Vertex

For the initial query vertex uinit, we exploit the index structure T to retrieve the
set of possible candidate data vertices, thereby pruning the unwanted candidates for
the reduction of search space.

THEOREM. — 1. Querying the vertex signature index T constructed with synopses,
guarantees to output at least the entire set of valid candidate vertices.

PROOF. — Consider the field f1 in the synopses that represents the cardinality
of the vertex signature. Let σ(u) be the signature of the query vertex u and
{σ(v1), . . . , σ(vn)} be the set of signatures on the data vertices. By using f1 we
need to show that C(u) has at least all the valid candidates. Since we are looking for a
superset of query vertex signature, and we are checking the condition f1(u) ≤ f1(vi),
where vi ∈ {v1, . . . , vn}, vi is pruned if it does not match the inequality criterion,
since it can never be an eligible candidate. We can extend this analogy to all the
synopses fields, since they all can be applied disjunctively. �

During the SELECTCAND procedure (Algorithm 1, Line 4), we retrieve the possi-
ble candidate vertices from the data graph by exploiting the vertex signature index T .
However, since querying T would not prune away all the unwanted vertices for uinit,
the corresponding partial embeddings would be discarded during the SUBGRAPH-
SEARCH procedure. For instance, to find candidate vertices for uinit = u3, we build
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the synopses for u3 and find the matchable vertices in G using the index T . As we re-
call, synopses representation of each data vertex spans a rectangle in the d-dimensional
space. Thus, it remains to check, if the rectangle spanned by u3 is contained in any of
rectangles spanned by the synopses of the data vertices, with the help of R-tree built
on data vertices, which results in the candidate set {v3, v5}.

Once we obtain the candidate vertices for Uinit, we order the candidate data ver-
tices in the decreasing order of the synopses fields, with decreasing priorities from f1
to f6. Thus, if v1, . . . , vc compose the ordered set of candidate vertices, the rectangles
spanned by the synopses F (v1), will be of maximum size and that of F (vc) will be of
minimum size.

Algorithm 2: SUBGRAPHSEARCH(R,M,N , S,G, Uo)

1 FETCH unxt ∈ Uo /* Fetch query vertex to be matched */
2 MC = FINDJOINABLE(MS ,MG,N , unxt) /* Matchable candidate
vertices */

3 if |MC |6= ∅ then
4 for each vnxt ∈MC do
5 MS =MS ∪ unxt;
6 MG =MG ∪ vnxt;
7 M = [MS ,MG] /* Partial matching grows */
8 SUBGRAPHSEARCH(R,M,N , S,G, Uo)
9 if (|M | == |Uo|) then

10 R = R ∪M /* Embedding found */

11 return R

5.3. Subgraph Searching

The SUBGRAPHSEARCH recursive procedure is described in Algorithm 2. Once
an initial query vertex uinit and its possible data vertex vinit ∈ Cuinit

, that could
be a potential match, is chosen from the set of select candidates, we have the partial
solution pair M = [MS ,MG] of the subgraph query pattern we want to grow. If vinit
is a right match for uinit, and we succeed in finding the subsequent valid matches for
Uo, we will obtain an embedding; else, the recursion would revert back and move on
to next possible data vertex to look for the embeddings.

In the beginning of SUBGRAPHSEARCH procedure, we fetch the next query vertex
unxt from the set of ordered query vertices Uo, that is to be matched (Line 1). Then
FINDJOINABLE procedure finds all the valid data vertices that can be matched with
the next query vertex unxt (Line 2). The main task of subgraph matching is done by
the FINDJOINABLE procedure, depicted in Algorithm 3. Once all the valid matches
for unxt are obtained, we update the solution pair M = [MS ,MG] (Line 5-7). Then
we recursively call SUBGRAPHSEARCH procedure until all the vertices in Uo have
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been matched (Line 8). If we succeed in finding matches for the entire set of query
vertices Uo, then we update the repository of embeddings (Line 9-10); else, we keep
on looking for matches recursively in the search space, until there are no possible
candidates to be matched for unxt (Line 3).

Algorithm 3: FINDJOINABLE(MS ,MG,N , unxt)
1 AS :=MS ∩ adj(unxt) /* Matched query neighbours */
2 AG := {v|v ∈MG} /* Corresponding matched data neighbours

*/
3 INTIALIZE: M temp

C = 0,MC = 0

4 M temp
C = ∩|AS |

i=1 NEIGHINDEXQUERY(N , Ai
G, (A

i
S , unxt))

5 for each vc ∈M temp
C do

6 if σ(unxt) ⊆ σ(vc) then
7 add vc to MC /* A valid matchable vertex */

8 return MC

The FINDJOINABLE procedure guarantees the structural connectivity of the em-
beddings that are outputted. Referring to Figure 1, let us assume that the already
matched query vertices MS = {u2, u3} and the corresponding matched data vertices
MG = {v3, v5}, and the next query vertex to be matched unxt = u1. Initially, in the
FINDJOINABLE procedure, for the next query vertex unxt, we collect all the neigh-
bourhood vertices that have been already matched, and store them in AS ; formally,
AS :=MS ∩ adj(unxt) and also collect the corresponding matched data vertices AG

(Line 1-2). For instance, for the next query vertex u1,AS = {u2, u3} and correspond-
ingly, AG = {v3, v5}.

THEOREM. — 2. The algorithm FINDJOINABLE guarantees to retain the structure of
the embeddings.

PROOF. — Consider a query S of size |U |. For n = 1, let as assume the first matching
M1

d corresponds to the initial query vertex M1
q . Now, AS and AG contain all the

adjacent vertices of the previously matched vertices M1
q and M1

d respectively, thus
maintaining the connectivity with the partially matched solutionM . Hence for n > 1,
by induction, the structure of entire embedding (that corresponds to the subgraph) is
retained. �

Now we exploit the neighbourhood index N in order to find the valid matches for
the next query vertex unxt. With the help of vertex N , we find the possible candidate
vertices M temp

C for each of the matched query neighbours Ai
S and the corresponding

matched data neighbour Ai
G.

To perform querying on the index structure N , we fetch the multiedge that con-
nects the next matchable query vertex unxt and the ith previously matched query
vertex Ai

S . We now take the multiedge (Ai
S , unxt) and query the index structureN of

the correspondingly matched data vertex Ai
G (Line 4). For instance, with Ai

S = u2,
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and unxt = u1 we have a multiedge {E1, E2}. As we can recall, each data vertex vj
has its neighbourhood index structure N (vj), represented by an OTIL structure. The
elements that are added to OTIL are nothing but the multiedges that are incident on
the vertex vj , and hence the nodes in the tree are nothing but the edge dimensions.
Further, each of these edge dimensions (nodes) maintain a list of neighbourhood (ad-
jacent) data vertices of vj that contain the particular edge dimension as depicted in
Figure 2b. Now, when we look up for the multiedge (Ai

S , unxt), which is nothing but
a set of edge dimensions, in the OTIL structure N (Ai

G), two possibilities exist. (1)
The multiedge (Ai

S , unxt) has no matches in N (Ai
G) and hence, there are no match-

able data vertices for the next query vertex unxt. (2) The multiedge (Ai
S , unxt) has

matches in N (Ai
G) and hence, NEIGHINDEXQUERY returns a set of possible candi-

date vertices M temp
C . The set of vertices M temp

C , present in the OTIL structure as a
linked list, are the possible data vertices since, these are the neighbourhood vertices
of the already matched data vertex Ai

G, and hence the structure is maintained. For in-
stance, multiedge {E1, E2} has a set of matched vertices {v2, v4} as we can observe
in Figure 2.

Further, we check if the next possible data vertices are maintaining the structural
connectivity with all the matched data neighbours AG, that correspond to matched
query verticesAS , and hence we collect only those possible candidate verticesM temp

C ,
that are common to all the matched data neighbours with the help of intersection
operation ∩. Thus we repeat the process for all the matched query vertices AS and
the corresponding matched data vertices AG to ensure structural connectivity (Line
4). For instance, with A1

S = u2 and corresponding A1
G = v3, we have M temp1

C =

{v2, v4}; with A2
S = u3 and corresponding A2

G = v5, we have M temp2

C = {v4}, since
the multiedge between (Ai

S , unxt) is {E2}. Thus, the common vertex v4 is the one
that maintains the structural connectivity, and hence belongs to the set of matchable
candidate vertices M temp

C = v4.

The set of matchable candidates M temp
C contains the valid candidates for unxt

both in terms of edge dimension matching and the structural connectivity with the
already matched partial solution. However, at this point, we propose a strategy that
predicts whether the further growth of the partial matching is possible, w.r.t. to the
neighbourhood of already matched data vertices, thereby pruning the search space.
We can do this by checking the condition whether the vertex signature σ(unxt) is
contained in the vertex signature of v ∈ M temp

C (Line 11-13). This is possible since
the vertex signature σ contains the multiedge information about the unmatched query
vertices that are in the neighbourhood of already matched data vertices. For instance,
v4 can be qualified as MC since σ(u1) ⊆ σ(v4). That is, considering the fact that
we have found a match for u1, which is v4, and that the next possible query vertex is
u4, the superset containment check will assure us the connectivity (in terms of edge
dimensions) with the next possible query vertex u4. Suppose a possible candidate
data vertex fails this superset containment test, it means that, the data vertex will be
discarded by FINDJOINABLE procedure in the next iteration, and we are avoiding this
useless step in advance, thereby making the search more time efficient.
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In order to efficiently address the superset containment problem between the vertex
signatures σ(vc) and σ(unxt), we model this task as a maximum matching problem on
a bipartite graph (Hopcroft, Karp, 1973). Basically, we build a bipartite graph whose
nodes are the sub-signatures of σ(vc) and σ(unxt); and an edge exists between a pair
of nodes only if the corresponding sub-signatures do not belong to the same signature,
and the ith sub-signature of vc is a superset of jth sub-signature of unxt. This con-
struction ensures to obtain at the end a bipartite graph. Once the bipartite graph is built
we run a maximum matching algorithm to find a maximum match between the two
signatures. If the size of the maximum match found is equal to the size of σ(unxt),
the superset operation returns true otherwise σ(unxt) is not contained in the signature
σ(vc). To solve the maximum matching problem on the bipartite graph, we employ
the Hopcroft-Karp (Hopcroft, Karp, 1973) algorithm.

6. Experimental Evaluation

In this section, we evaluate the performance of IMQA on real multigraphs and
compare it with a state of the art method that is able to manage edge labels. We
consider five real world multigraphs that have very different characteristics in terms
of size (nodes, edges, dimensions) and density. All the experiments were run on a
server, with 64-bit Intel 6 processors @ 2.60GHz, and 250GB RAM, running on a
Linux OS - Ubuntu. Our methods have been implemented using C++.

6.1. Description of Datasets

To validate the correctness, efficiency and versatility of IMQA, we consider five
real world datasets that span over biological and social network data. All the multi-
graphs considered in this work are undirected and they do not contain any attribute
on the vertices. Table 3 offers a quick description of all the characteristics of the
benchmarks.

For our analysis, we consider five real world data sets: DBLP data set is built by
following the procedure adopted in (Boden et al., 2012). Vertices correspond to dif-
ferent authors and the dimensions represent the top 50 Computer Science conferences.
Two authors are connected over a dimension if they co-authored at least two paper to-
gether in that conference. BIOGRID dataset (Bonchi et al., 2014) is a protein-protein
interactions network, where nodes represent proteins and the edges represent interac-
tions between the proteins. FLICKR 1 dataset has been crawled from Flickr website.
Nodes represent users, and the blogger’s friends are represented using edges (since
edge network is the friendship network among the bloggers). Edge dimensions repre-
sents friendship network in the online social media. YOUTUBE dataset (Tang et al.,
2012) treats users as the nodes and the various connections among them as multiedges.
The edge information includes the contacts, mutual-contact, co-subscription network,

1. http://socialcomputing.asu.edu/pages/datasets
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Figure 3. # vertices against size of vertex neighbourhood

co-subscribed network. DBPEDIA 2 is a well-known knowledge base, in RDF format,
built by the Semantic Web Community. The RDF format can naturally be modeled
as a multigraph where vertices are subjects and objects of the RDF triplets and edges
represent the predicate between them.

Table 3. Statistics of datasets

Dataset Nodes Edges Dim Density Adeg Adim

DBLP 83 901 141 471 50 4.0e-5 1.7 1.126
BIOGRID 38 936 310 664 7 4.1e-4 8.0 1.103
FLICKR 80 513 5 899 882 195 1.8e-3 73.3 1.046
YOUTUBE 15 088 19 923 067 5 1.8e-1 1320 1.321
DBPEDIA 4 495 642 14 721 395 676 1.4e-6 3.2 1.063

To support the analysis of the results, for all the real graphs, we provide the ver-
tex neighbourhood distribution as depicted in Figure 3, where the distribution of the
number of vertices with the increasing size of vertex neighbourhood is plotted on a
logarithmic scale.

Referring to Figure 3 and Table 3, we make few observations on the data sets. The
YOUTUBE data set has a flat spectrum of vertex distribution due to its high density of
1.8e-1, and is mostly concentrated in the region of larger neighbourhood size, given its
high average degreeAdeg = 1320. FLICKR, BIOGRID, DBLP and DBPEDIA datasets
are less dense and hence exhibit a more common power law distribution. Also, as the
Adeg values reduce from FLICKR to BIOGRID to DBPEDIA and finally to DBLP, the
distribution shifts towards the smaller neighbourhood size. The sparsest multigraph
we consider is DBPEDIA that has a density of 1.4e-6 while it exhibits a very high

2. http://dbpedia.org/
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number of dimensions and is the biggest real multigraph, in terms of vertices, with
more than 4M nodes.

6.2. Description of Query Subgraphs

To test the behavior of our approach, we generate random queries and clique
queries at random, as done by standard subgraph querying methods (He, Singh, 2008;
Shang et al., 2008). The size of the generated queries for random queries vary from 3
to 11 in steps of 2, while for clique queries, we vary the size from 3 to 9. The size of a
subgraph is the number of vertices the subgraph contains. For the DBPEDIA dataset,
we are not able to generate enough multigraph clique queries due its high sparsity.

All the generated queries contain one (or more) edge with at least two dimensions.
In order to generate queries that can have at least one embedding, we sample them
from the corresponding multigraph.

For each dataset and query size we obtain 1 000 samples. Following the method-
ology previously proposed for random query matching algorithms (Han et al., 2013;
Lin, Bei, 2014), we report the average time values considering the first 1 000 embed-
dings for each query. It should be noted that the queries returning no answers were
not counted in the statistics (the same statistical strategy has been used by (P. Zhao,
Han, 2010; He, Singh, 2008; Lin, Bei, 2014)).

6.3. Baseline Approaches

We compare the performance of IMQA w.r.t. the RI approach recently proposed
in (Bonnici et al., 2013). The RI method is a subgraph isomorphism algorithm that
employs light pruning rules in order to avoid visiting useless candidates. The goal of
this algorithm is to maintain a balance between the size of the generated search space
and the time needed to visit it. It is composed of two main steps, the first one is devoted
to find a static order of the query nodes using a set of three heuristics that consider the
structure of the subgraph. The second step is the subgraph search procedure that makes
use of pruning rules to traverse the search space and find embeddings that match the
query. The implementation is obtained from the original authors.

In order to evaluate the effectiveness of our indexing schema we introduce a variant
of our proposal, which we call IMQA-No-SC. This approach constitutes a baseline
w.r.t. our proposal. Practically, it does not consider constructing the vertex signature
index T , and hence does not select any candidates for the initial query vertex uinit.
Thus, it initializes the candidate set of the initial vertex C(uinit) with the whole set of
data nodes. This baseline can help us to have a more clear picture about the impact of
the T index over the performance of our submultigraph isomorphism algorithm.
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6.4. Performance of IMQA

In Section 4, we gave emphasis on constructing the vertex signature index T to
store vertex signatures with the help of synopses representation, and the neighbour-
hood vertex signature N to organize vertex neighbourhood by exploiting the set of
edge dimensions. We recall that IMQA constructs both T andN offline. While index
T is explored during the query processing, to retrieve valid candidates for the initial
query vertex uinit, the index N is used to retrieve neighbourhood vertices in the sub-
graph search routine. Table 4 reports the index construction time of IMQA for each
of the employed dataset.

All the benchmarks show reasonable time performance and it is strictly related to
the size and density of the considered multigraph. As we can observe, construction
of the index N takes more time when compared to the construction of T for all the
datasets except DBLP. The behaviour is evident for the bigger datasets like FLICKR,
YOUTUBE, DBPEDIA , owing to either huge number of edges, or nodes or both. Con-
sidering DBLP and BIOGRID, we can note that the difference in time construction is
strictly related to the size in terms of vertices and edges of the two benchmarks. DBLP
has a bigger number of vertices than BIOGRID, which influences the construction time
of the T index while the construction time of the N index reflects the difference in
terms of edge size between the two data sets. Among all the datasets, DBPEDIA is the
most expensive dataset to construct both T andN , since it has huge number of nodes
and relatively more edges.

In Table 4, we also give an overall picture of the memory consumption of our
proposed algorithm. We capture the memory usage during the runtime when we build
our indexing structures. As we can observe, the cost of storing the index structures
increases with increasing density of graphs, as well as with the increasing number of
nodes and edges. Among all data sets, YOUTUBE is the most expensive in terms of
space consumption.

To conclude, we highlight that the offline step is fast enough since, in the worst
case, for DBPEDIA, we need a bit more than two minutes to index 4 million nodes
and 14 million edges, with a reasonable memory consumption.

Table 4. Execution time and memory usage for offline index construction

Data set Index T Index N Index T +N
Time (seconds) Time (seconds) Size (Mega bytes)

DBLP 1.15 0.37 161
BIOGRID 0.45 0.50 266
FLICKR 1.55 8.89 448
YOUTUBE 1.55 41.81 862
DBPEDIA 64.51 66.59 552

Figures 4-7 summarise the time performance of IMQA. All the times we report
are in milliseconds; the Y-axis (logarithmic in scale) represents the query matching
time, which includes query processing time, query ordering time, time required to
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select the candidate vertices for the initial query vertex and the subgraph matching
time; the X-axis represents the increasing query sizes. Except for DBPEDIA dataset
(due to unavailability of clique queries), we produce plots for both random subgraph
and clique queries.
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Figure 4. Query Time on DBLP for (a) Random subgraphs with d=2 (b) Random
subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

We also analyse the time performance of IMQA by varying the number of edge
dimensions in the subgraph. We perform experiments for query multigraphs with two
different edge dimensions: d = 2 and d = 4: a query with d = 2 has at least one edge
that exists in at least 2 dimensions. The same analogy applies to queries with d = 4.
We use both setting to generate random subgraph and clique queries.

For DBLP dataset, we observe in Figure 4 that IMQA performs the best in all
the situations, it outperforms the other approaches by a huge margin thanks to the
rigorous pruning of candidate vertices for initial query vertex. However, IMQA-No-
SC approach and RI give a tough competition to each other. Since DBLP is a relatively
small and yet sparse dataset, the only indexing N used by IMQA-No-SC seems to
cause a little bit of overhead even when compared to RI.

Figure 5 for BIOGRID and Figure 6 for FLICKR show similar behaviour for both
random subgraph and clique queries. For these two datasets, both IMQA and IMQA-
No-SC outperform RI. For many query instances, especially for FLICKR, IMQA-No-
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Figure 5. Query Time on BIOGRID for (a) Random subgraphs with d=2 (b) Random
subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

SC obtains better performance than RI while IMQA still outperforms both competi-
tors.

For YOUTUBE dataset (Figure 7), again IMQA is the clear winner. However,
in this case, RI is better than IMQA-NO-SC, for random queries, although IMQA-
NO-SC is better than RI for cliques. This could be the case because, cliques exploit
the neighbourhood structure to the maximum extent and thanks to the vertex neigh-
bourhood indexing schemeN , they both can outperform RI . Since random subgraph
queries do not exploit much of the neighbourhood information, and due to the very
high density of the data graph, IMQA-NO-SC has a poor performance.

Moving to DBPEDIA dataset in Figure 8, we observe a significant deviation be-
tween RI and IMQA, with IMQA winning by a huge margin.

To conclude, we note that IMQA outperforms the considered base line approaches,
for a variety of different real datasets. Its performance is reported as best for small
datasets (DBLP, BIOGRID), for multigraphs having many edge dimensions (FLICKR,
DBPEDIA), high density (YOUTUBE), high sparsity (DBPEDIA). Thus, we highlight
that IMQA is robust in terms of time performance considering both subgraph and
clique queries, with varying dimensions.
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Figure 6. Query Time on FLICKR for (a) Random subgraphs with d=2 (b) Random
subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4

6.5. Assessing the Set of Synopses Features

In this section we assess the quality of the features composing the synopses rep-
resentation for our indexing schema. To this end, we vary the features we consider to
build the synopsis representation to understand if some of the features can be redun-
dant and/or do not improve the final performance. Since visualizing the combination
of the whole set of features will be hard, we limit this experiment to a subset of com-
binations. Hence, we choose to vary the size of the feature set from one to six, by
considering the order defined in Section 4.1. Using all the six features results in the
proposed approach IMQA. We denote the different configuration with the number of
features it contains; for instance |f |= 3| means that it considers only three features
to build synopses and in particular it employs the feature set {f1, f2, f3}. We also
compare these six tests with the IMQA-No-SC approach, where no synopses are used
and hence no candidates are selected for the initial query vertex.

Due to space constraints, we report plots for only two datasets: DBLP for subp-
graph queries with d = 4 and YOUTUBE with subgraph queries with d = 2. We select
these datasets as they are representative cases of the behavior of our indexing schema.

Results are reported in Figure 9. We can note that, considering the entire set of
features drastically improves the time performance, when compared to a subset of
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Figure 7. Query Time on YOUTUBE for (a) Random subgraphs with d=2 (b)
Random subgraphs with d=4 (c) Cliques with d=2 (d) Cliques with d=4
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Figure 8. Query Time on DBPEDIA (a) for d=2 (b) d=4

these six features. This behaviour can be highlighted for the subgraphs of almost all
size. This experiment provides evidence about the usefulness of considering the entire
feature set to build synopsis. The different features are not redundant and they are all
helpful in pruning the useless data vertices.
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Figure 9. Query time with varying synopses fields for (a) DBLP dataset with d=4 (b)
YOUTUBE dataset with d=2

7. Conclusion

We proposed an efficient algorithm IMQA that can perform subgraph matching
on multigraphs. The main contributions included the construction of indexing for the
edge dimensions (T ) to prune the possible candidates, followed by building an ordered
tree with inverted lists (N ) to retain only the valid candidates. Then we proposed a
subgraph search procedure that efficiently works on multigraphs. The experimental
section highlights the efficiency, versatility and scalability of our approach over very
different datasets.
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