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Abstract. Circumscription is a paradigm of non-monotonic logic meant
to formalize the common-sense understanding that, among competing
theories that represent phenomena equally well, the one with the fewest
“abnormal” assumptions should be selected. Several papers have con-
sidered ways of adding circumscription to Description Logics. One of
the proposals with good computational properties is Grounded Circum-
scription, introduced by Sengupta, Krishnadi and Hitzler in 2011. Our
paper builds on their general idea, but identifies some problems with the
original semantics definition, which gives rise to counter-intuitive conse-
quences and renders the proposed tableau algorithm incorrect. We give
an example that makes the problem explicit and propose a modifica-
tion of the semantics that remedies this issue. On the algorithmic side,
we show that a big part of the reasoning can actually be transferred to
standard Description Logics, for which tools and results already exist.

1 Introduction

Circumscription is a paradigm of non-monotonic logic introduced by John Mc-
Carthy in 1980 [5]. The main idea is to formalize the common sense under-
standing that among competing theories that predict equally well, the one with
the fewest assumptions should be selected. This is basically an application of
the principle known as “Occam’s razor” to logic. It is also similar to the closed
world assumption, where what is not known to be true is taken to be false. In its
original first-order logic formulation, circumscription minimizes the extension of
some predicates, where the extension of a predicate is the set of tuples of values
the predicate is true on.

Description Logics (DLs) are knowledge representation formalisms designed
to describe and reason about qualitative properties and conceptual aspects of
a system [1,6]. Ontology languages based on DLs have been widely adopted
in a large class of application areas. One of the most prominent applications
of DLs is to provide the underlying logical basis of the web ontology language
OWL 2, which is the current recommendation of the World Wide Web Consor-
tium (W3C) [8,4]. Therein DLs are used to represent the intended meaning of



Web resources and establish powerful reasoning tools, so as to facilitate machine
understandability of Web pages. From a more scholarly perspective, DLs are
decidable fragments of first order logic.

Description Logics traditionally operate within the monotonic realm, namely
the addition of more assertions to a knowledge base does not negate previously
inferred information. But in many prevalent application domains, such as com-
mon sense reasoning, this property does not hold. Conclusions might need to
be revised in the light of new information. Hence it is quite intriguing to try to
develop a DL framework where reasoning would be non-monotonic. There have
been notable efforts to define circumscription for DLs, albeit with rather high
complexity or even undecidable if roles are circumscribed [2].

In this essay we aim to fuse Description Logics, with a restricted version of
Circumscription, called Grounded Circumscription. The work is based on a 2011
publication by K. Sengupta, A.A. Krisnadhi and P. Hitzler, which throughout
this work we will refer to as “the original paper” [7]. In ground circumscription,
some of the predicates in our language (which in DL can only be unary or binary)
are chosen to be grounded and minimized. Grounded means that their interpre-
tations must include only named individuals, i.e. elements of the domain that
correspond to one of the constants that appear in our knowledge base. Moreover,
those predicates are minimized in the sense that we accept only models which
assign as few individuals as possible to them, so that there cannot be a model
whose extensions of these predicates are subsets of the respective extensions in
the minimal model.

In the original paper, the main idea of grounded circumscription is given
along with algorithms for certain decision problems. We have optimized and
modified these ideas. The optimization was our initial aim, in particular we
wanted (and largely achieved) to transfer a big part of the reasoning to standard
DLs, for which there already exist tools and available results. But in the process
we uncovered some insufficiencies in the notion of minimality as introduced in
the original paper, to the discussion of which subsection 3.1 is devoted. Hence
we have modified the main definition to one that is more effective and more
intuitive.

After introducing the particular DL formalism and terminology that we work
on (Section 2), we specify the basic notions and proceed to present an algorithm
for satisfiability (Section 3) which is predominantly in the monotonic sphere.
We then introduce important notions which are put to use in the algorithm for
entailment of facts (Section 4). Following are supplementary results that further
develop the theory of grounded circumscription in DLs (Section 5) and finally
we give an overview of the contribution of this endeavor and discuss prospects
of further research (Section 6).

All proofs can be found in the original master thesis [3].

https://www.semanticscholar.org/paper/Grounded-Circumscription-in-Description-Logics-Delivorias-Rudolph/bc9b2f134c7cfdecdd7bae041ba0cae5ecfbc6fa/pdf


2 Preliminaries

In this section, we give a brief introduction to our formalism and the main
terminology and ideas around it.

In the original paper, decidability of ground circumscription is proven using
rather complex and non-standard languages which feature concept products, role
hierarchies and role disjunctions. Then, independently, algorithms which apply
only to ALC are given. Our work is entirely based on the standard DL ALCO
but it can trivially be extended to any more complex formalism that subsumes
ALCO.

ALCO Syntax. Let NC , Nr and NI be mutually disjoint sets of concept-,
role- and individual names, respectively. Concepts C in ALCO are built using
the grammar rule:

C ::= > | A | {a} | ¬C | C u C | ∃r.C

where A ∈ NC , r ∈ Nr, and a ∈ NI . We employ the usual abbreviations:
⊥ = ¬>, C tD = ¬(¬C u ¬D), and ∀r.C = ¬∃r.¬C.

An expression of the form C v D, where C and D are concepts, is called a
general concept inclusion (GCI). A finite set of GCIs is a TBox. An expression
of the form C(a), where C is a concept and a ∈ NI , is called a concept assertion.
For r ∈ NR and a, b ∈ NI , an expression of the form r(a, b) is called a role
assertion. A finite set of concept and role assertions is called an ABox.

A pair K = (T ,A) consisting of a TBox T and an ABox A is called a
knowledge base (abbreviated frequently as KB). For ease of presentation, in this
study we will usually understand a knowledge base as a single set of axioms,
which would formally be expressed as K = T ∪ A. We will not refer to Aboxes
and Tboxes individually, rather we will handle the knowledge base as a whole.

ALCO Semantics. An interpretation is a pair I = (∆, ·I), where ∆ is a non-
empty domain and ·I is a function that maps every a ∈ NI to aI ∈ ∆, every
A ∈ NC to AI ⊆ ∆, and every r ∈ Nr to rI ⊆ ∆ × ∆. The mapping ·I is
naturally extended to all concepts by setting

>I = ∆,

(¬C)I = ∆ \ CI ,
(C uD)I = CI ∩DI ,

{a}I = {aI},
(∃r.C)I = {x ∈ ∆ | ∃y ∈ ∆. (x, y) ∈ rI ∧ y ∈ CI}.

An interpretation I satisfies

– a concept inclusion C v D if CI ⊆ DI ,
– a concept assertion C(a) if aI ∈ CI and
– a role assertion r(a, b) if (aI , bI) ∈ rI .



We say that I is a model of a TBox T or an ABox A if it satisfies every concept
inclusion in T or every assertion in A, respectively. I is a model of a knowledge
base K = (T ,A) if I is a model of both T and A. If there exists a model of a
knowledge base K, then K is a satisfiable KB. If every model of K satisfies C(a)
(or r(a, b), respectively), we say that C(a) (or r(a, b), respectively) is entailed by
K. If every model of K satisfies C v D, then C is subsumed by D with respect
to K.

3 Grounded Circumscription

In this section we formally define the basic notions of ground circumscription.
The definition of minimality is reestablished in solid grounds, which can prove
a useful framework for further development of this theory.

Ground Extension. A central notion in this study is that of ground extension
of a predicate with respect to a certain interpretation, which is the set of indi-
vidual names or pairs of individual names (depending on whether the predicate
is a concept or a role), whose interpretations belong to the interpretation of this
predicate. Given a knowledge base K, the set of individual names that appear
in K are symbolized Ind(K).

Definition 1. Let K be an ALCO knowledge base and I an interpretation. The
ground extension wrt I of a predicate W ∈ NC ∪Nr, is the following set:

ExtI(W ) :=

{
{a ∈ Ind(K)|aI ∈W I} if W ∈ NC ,
{(a, b) ∈ Ind(K)× Ind(K)|(aI , bI) ∈W I} if W ∈ Nr. a

The key role that ground extension plays, is evident by its frequent presence
throughout the rest of this work. ExtI(·) can be naturally extended to be ap-
plicable to any concept description: if C is a concept, then ExtI(C) := {a ∈
Ind(K)|aI ∈ CI}. Since nominals are valid concept constructors in our lan-
guage, we can ultimately view ExtI(C) as a concept description, provided that
C is a concept as well. One more important property of ground extension, which
is easy to verify, is that it is monotonic with respect to set inclusion, i.e if
AI ⊆ BI then ExtI(A) ⊆ ExtI(B).

Groundedness and Minimality. The main idea in grounded circumscription
is to select some predicates (concept and role names), and demand that for every
model their interpretation is grounded, i.e. it includes only named individuals,
and that it is minimized, in the sense that there cannot be an interpretation
that assigns fewer individuals to those predicates and still is a model of our
given knowledge base.

Definition 2. Let K be a knowledge base and M ⊆ NC ∪Nr. A model I of K
is called grounded wrt M if



i) CI ⊆ {bI |b ∈ Ind(K)} for every C ∈M ∩NC .
ii) rI ⊆ {(aI , bI)|a, b ∈ Ind(K)} for every r ∈M ∩Nr. a

Definition 3. A GC-ALCO-KB is a pair (K,M) where K is an ALCO knowl-
edge base and M ⊆ NC ∪ Nr. Every W ∈ M is said to be closed wrt K. Let
≺M denote a “smaller than” relation which is a partial order on the set of all
interpretations for K. An interpretation I is a GC-model of (K,M) if it is a
grounded model of K wrt M and I is minimal wrt ≺M , i.e. there is no grounded
model J of K such that J ≺M I. (K,M) is satisfiable if it has a GC-model.
A statement φ is a logical consequence of (K,M) if every GC-model of (K,M)
satisfies φ. We then say that (K,M) entails φ. a

Note that φ in the above definition could be a GCI, a concept assertion or a
role assertion. Obviously, the precise semantics depends on the concrete choice
of the “smaller than” relation ≺M , which will be discussed in the next para-
graph. Henceforth we will frequently substitute the term GC-model, with mini-
mal grounded model or simply minimal model.

3.1 Discussion on the modification of the GC-definition

The original paper employed the following definition for the “smaller-than” re-
lation.

Definition 4. Let (K,M) be a GC-ALCO-KB. If I and J are interpretations
of K then the “smaller than” relation is defined in the following way:

I ≺orig
M J if

i) ∆I = ∆J and aI = aJ for every a ∈ Ind(K),
ii) W I ⊆WJ for every W ∈M and

iii) there is a W ∈M such that W I ⊂WJ . a

The first condition for the minimality relation in the original paper requires
that two interpretations have equal domains in order for them to be comparable.
Firstly, we argue that this is counter-intuitive. When we say that a model has
fewer assumptions than another model, this does not imply any similarity of their
domains, it rather requires that those predicates which are of importance to us
are of smaller extension. Furthermore, the original definition imposes algorithmic
problems as one will have to look for a minimal model for every possible domain
cardinality. This can make devising correct procedures for expressive languages
significantly more difficult.

In particular, in the original paper the proposed algorithm for instance check-
ing in ALC does not take the definition fully into account. We present here an
example that demonstrates the potential counter-intuitive results of the above
definition, as well as its disagreement with the proposed algorithm.

Consider the following knowledge base:



GoodPerson u Murderer v Abnormal

(a good person that is a murderer is an abnormal person)

> v ∃r1.(¬GoodPerson u ¬Murderer)

(there exists someone who is not a good person nor a murderer)

> v ∃r2.GoodPerson (there exists a good person)

> v ∃r3.Murderer (there exists a murderer)

GoodPerson(Sam) (Sam is a good person)

Assume the set of closed predicates isM = {Abnormal}. Then an expected conse-
quence under the grounded circumscription semantics would be ¬Murderer(Sam).

Yet, we observe that the following interpretation I is a GC-model according
to the original definition (and hence prevents the expected consequence):

∆I = {1, 2}
SamI = 1

GoodPersonI = MurdererI = AbnormalI = {1}
r1
I = {(1, 2), (2, 2)}

r2
I = r3

I = {(1, 1), (2, 1)}

The only reason why I is a GC-model is because it is minimal among all models
of cardinality 2. For models of greater domain sizes, Sam would never be included
in Murderer, since he is in GoodPerson and we want to minimize Abnormal.
Moreover, we note that this model is not produced by the GC-model-finder
algorithm, given in the original paper, hence contradicting their definition. We
believe that this is because the notion of GC-model was not meant to include
an interpretation like I.

We propose to overcome the problems with the original definition of the
grounded circumscription semantics by modifying the notion of minimality in
the following way.

Definition 5. If I and J are models of K then the “smaller than” relation is
defined in the following way: I ≺new

M J if

i) ExtI({a}) = ExtJ ({a}) for every a ∈ Ind(K),
ii) ExtI(W ) ⊆ ExtJ (W ) for every W ∈M and

iii) there is a W ∈M such that ExtI(W ) ⊂ ExtJ (W ). a

Our definition of minimality, which subsumes the one in the original paper
(i.e. I ≺orig

M J implies I ≺new
M J ), is more intuitive in that it directly involves

the assignment of individuals to concepts and roles. This is anyway at the heart
of the tableau method used by the authors of the original paper when providing
algorithms for the reasoning tasks in ground circumscription. Apart from being



more intuitive, this is also the more realistic approach. Comparison between
two models can simply be done on the basis of the mapping of individuals to
concepts and roles. Although we acknowledge that requiring same domains in
order to allow comparison between two models has been the default approach
to circumscription in DLs so far, it seems to be an unnecessary specialization.

Furthermore, we will present in the following how we can significantly im-
prove the inferencing algorithms in comparison to the original paper. Keeping
the old definition would have hindered this development. Hence we believe that
our reformulation of the notion of minimality is an improvement compared to
the previous work. It is more efficient in producing results by avoiding to inter-
fere as much with the actual semantics, whilst capturing the essense of the idea
of ground circumscription in more satisfactory way.

3.2 Satisfiability of a GC-knowledge base

We present now a direct and complexitywise cheap way of determining whether
a GC-ALCO knowledge base is satisfiable. To this end, we first enhance the
KB with axioms that ensure grounding of the closed predicates and then we
take advantage of the following lemma, which effectively says that if a grounded
model exists, then a minimal grounded model must exist as well.

Lemma 1 Both relations ≺orig
M and ≺new

M are well-founded on the class of groun-
ded models of a knowledge base K wrt to M . a

Definition 6. Let (K,M) be a GC-ALCO-KB, where M ∩NC = {A1, ..., An}
and M ∩Nr = {r1, ..., rm}. We define KM as the ALCO-KB which consists of
all the axioms that are included in K as well as the following ones:

– P ≡ {x|x ∈ Ind(K)} where P is a fresh concept name,
– Ai v P for every i ∈ {1, ..., n},
– ∃rj .> v P for every j ∈ {1, ...,m},
– > v ∀rj .P for every j ∈ {1, ...,m}.

KM is then called a grounded ALCO knowledge base. a

We do not give an explicit algorithm for determining satisfiability of a GC knowl-
edge base, because we will show that this decision problem can be reduced to
the satisfiability checking of a (standard) ALCO knowledge base. To solve the
reasoning tasks of ground circumscription with the use of the already developed
monotonic DL reasoning tools was our aim, and as the next proposition shows,
in this case it is proven to be achieved quite ideally.

Proposition 1 Let (K,M) be a GC-ALCO-KB. (K,M) is satisfiable (under

the grounded circumscription semantics, both w.r.t. ≺orig
M and ≺new

M ) if and only
if the ALCO knowledge base KM is (classically) satisfiable. a



One observation worth mentioning here is that grounding, although defined at
a semantic level, can be internalized in the syntax and expressed as a particular
class of knowledge bases. And through this grounding, a localization of the non-
monotonicity is achieved, such that for the principal task of deciding satisfiability,
we do not even need to expand reasoning beyond the already known algorithms
that exist for standard DLs.

4 Instance Checking

For the task of determining whether or not a concept assertion (also referred to
as ‘fact’) is entailed by a GC-ALCO knowledge base, knowing that a minimal
model exists is not enough. We have to be able to find this model or at least
to negate the possibility of a grounded model being minimal. What seems to be
more efficient is a bottom-up approach, where the grounded models found first
are definitely minimal. From now on we are working only on our definition of
minimality and we will write ≺M instead of ≺new

M . Also in the following Part(X)
will denote the set of all partitions of a set X and Z∗2 = {0, 1}∗ will denote the
set of all finite binary words.

Specification of the Configuration Space. The idea of defining indepen-
dently what is essentially the search space of our algorithm, a space of possible
choices of extensions to the closed predicates, is inspired by the original paper,
where a similar set is specified. However, and this is one more clue which points
to the divergence between the intended meaning of ground circumscription and
what was initially defined, in the original paper the domain and the possible
interpretations of the individuals over it are not taken into consideration when
defining this space. Having improved the definition, we still need to add a dimen-
sion to the search space which will correspond to the possible interpretations of
the individual names.

Given an interpretation I, the individual allocation of I is the set AL(I) ∈
Part(Ind(K)) such that every X ∈ AL(I) has the property: for every a ∈ X
and b ∈ Ind(K) holds that aI = bI if and only if b ∈ X.

Suppose that I ∈ Part(Ind(K)) and a, b ∈ Ind(K). We call a and b I-invariant
and write a 'I b if there is an X ∈ I such that a, b ∈ X. A set Z ⊆ Ind(K) is
called I-complete if a ∈ Z and a 'I b imply b ∈ Z. Similarly a set V ∈ Ind2(K)
is called I-complete if (a, b) ∈ V and a 'I a′ and b 'I b′ imply (a′, b′) ∈ V . For
the sake of conciseness in the next definition, we define the following sets:

CmpI(K) = {X ⊆ Ind(K)|X is I-complete}
Cmp2I(K) = {Y ⊆ Ind2(K)|Y is I-complete}

We can now employ the above notions to specify the search space of our
algorithm:

Definition 7. Let (K,M) be a GC-ALCO-KB, where M ∩NC = {A1, ..., An}
and M ∩Nr = {r1, ..., rm}. Then the set



G(K,M) =
{

(X1, ..., Xn, Y1, ..., Ym, I)
∣∣∣Xi ⊆ CmpI(K), Yj ⊆ Cmp2I(K), I ∈

Part(Ind(K))
}

is called configuration space of (K,M). a

G(K,M) is obviously a finite set. Every grounded model I of K wrt. to M cor-
responds to a point in the configuration space. In particular we will call the
tuple (

ExtI(A1), ..., ExtI(An), ExtI(r1), ..., ExtI(rm),AL(I)
)

the assignment of I.

Let G1, G2 ∈ G(K,M) with G1 = (Z1, ..., Zn+m, I) and G2 = (V1, ..., Vn+m, I).
We say that G1 is smaller than G2 and we write G1 ≺ G2 if it holds that Zi ⊆ Vi
for all i ∈ {1, ..., n + m} and there exists i ∈ {1, ..., n + m} such that Zi ⊂ Vi.
The following result then holds trivially:

Lemma 2 Let I,J be grounded models of a knowledge base K wrt M and let
G1, G2 ∈ G(K,M) be their respective assignments. Then it holds that I ≺M J if
and only if G1 ≺ G2. a

Binary Encoding & Linear Order. Let G(K,M) be the configuration space of
a GC-ALCO-KB. Let Ind(K) = {a1, ..., aµ}. For the purposes of the algorithm
presented in the next section, we want to order G(K,M) linearly. We achieve
that by using a binary encoding for every G ∈ G(K,M) and the lexicographical
order. We first introduce an encoding s : Part(Ind(K)) → Z∗2. Every partition
of Ind(K) can be specified by indicating which couples of individual names (that
appear in the knowledge base) belong to the same block of the partition. This
is easily percieved with the following visualization:

a1 a2 a3 . . . aµ
a1 - s(1,2) s(1,3) . . . s(1,µ)
a2 - - s(2,3) . . . s(2,µ)
... - - -

. . .
...

aµ−1 - - - - s(µ−1,µ)
aµ - - - - -

In accordance with the above table we define

s(I) = s(1,2)s(1,3)...s(1,µ)s(2,3)s(2,4)...s(2,µ)...s(µ−1,µ)

where s(i,j) = 1 if there exists Z ∈ I with ai, aj ∈ Z, otherwise s(i,j) = 0. We
can now proceed to define the complete binary encoding of the points of the
configuration space.



Let σ : P
(
Ind(K)

)
∪P

(
Ind2(K)

)
∪ Part

(
Ind(K)

)
→ Z∗2, with

σ(X) =



z1z2 . . . zµ if X ⊆ Ind(K) where zκ =

{
1 if aκ ∈ X
0 if aκ /∈ X

z1z2 . . . zµ2 if X ⊆ Ind2(K) where zκµ+λ =

{
1 if (aκ, aλ) ∈ X
0 if (aκ, aλ) /∈ X

s(X) if X ∈ Part(Ind(K))

We can view words over Z2 as natural numbers encoded in the binary system.
If w1, w2 ∈ Z∗2 are words of the same length, we write w1 < w2 if this relation
holds for the respective natural numbers. We can now define a total order ‘<’
on G(K,M).

Definition 8. Let G1 = (Z1, ..., Zk) and G2 = (V1, ..., Vk) be two points in the
configuration space of a GC-ALCO-KB (K,M). G1 precedes G2 and we write
G1 < G2 if there exists an i ≤ k such that σ(Zi) < σ(Vi) and for all j < i holds
σ(Zj) = σ(Vj). a

For efficiency purposes, it is important here that the order defined above is
induced by the partial order of minimality, so that the algorithm will discover the
minimal model first and discard searching in large sections of the configuration
space. The following lemma ensures that this is indeed the case.

Lemma 3 Let G(K,M) be the configuration space of aGC-ALCO-KB. For every
G1, G2 ∈ G(K,M) holds that G1 ≺ G2 implies G1 < G2. a

Navigation within the Configuration Space It is critical, given a point in
the configuration space, to be able to construct a grounded model with such an
assignment, if one exists. This is accomplished by adding the axioms specified
in the next definition.

Definition 9. Let (K,M) be a GC-ALCO-KB, where M ∩NC = {A1, ..., An}
and M ∩Nr = {r1, ..., rm}. Let G = (X1, ..., Xn, Y1, ..., Ym, I) be a point in the
configuration space of (K,M). We define KG as the ALCO−KB which consists
of all the axioms that are included in KM as well as the following ones:

– {a} ≡ {b} for all a, b ∈ Ind(K) with a 'I b,
– {a} v ¬{b} for all a, b ∈ Ind(K) with a 6'I b,
– Ai ≡ Xi for every i ∈ {1, ..., n},
– N(a,j) ≡ {c ∈ Ind(K)|(c, a) ∈ Yj} for every a ∈ Ind(K) and j ∈ {1, ...,m},
– ∃rj .{a} ≡ N(a,j) for every a ∈ Ind(K) and j ∈ {1, ...,m}.

KG is then called a pointwise restriction of (K,M). a

Lemma 4 Let KG be a pointwise restriction of a GC-ALCO knowledge base
(K,M). The following statements hold:



i) If I is a model of KG, then G is the assignment of I.
ii) If there exists a model of KM with assignment G, then KG is satisfiable. a

The Algorithm. We can now specify an algorithm for deciding whether or
not a GC knowledge base entails an assertion. We will also give an example and
discuss complexity and possibility of further use and development.

Let (K,M) be aGC-ALCO-KB, whereM∩NC = {A1, ..., An} andM∩Nr =
{r1, ..., rm}. We want to check if an assertion B(a) is a logical consequence of
(K,M). Such a reasoning task is commonly refered to as instance checking, hence
the title of this section. If a /∈ Ind(K) the answer is trivial, so for the rest it
assumed that a ∈ Ind(K). We split the decision procedure in two cases, the
first of which will prove to be solvable in a much more simple way, by only once
calling the “oracle” ALCO reasoner. In the following, given a knowledge base
K0, we use the notation K+

0 := K0 ∪ {¬B(a)} to refer to K0 augmented with
the negation of the assertion we are checking for entailment.

Case 1: B ∈M

Proposition 2 K+
M is unsatisfiable if and only if (K,M) entails B(a). a

Case 2: B /∈M

We want to determine if every GC-model of (K,M) entails B(a). To achieve
that, we navigate bottom up in the configuration space which is essentially the
space of possible individual allocations and ground extensions to the predicates
in M . Let G(K,M) = {G1, ..., Gλ}, where G1 < G2 < ... < Gλ.

IC Algorithm:

1] Initiate Stack := G(K,M).
2] for i = 1 to λ
3] If Gi ∈ Stack:
4] Check KGi for satisfiability.
5] If YES:
6] Check K+

Gi
for satisfiability.

7] If YES return FALSE.
8] Else remove all Gj � Gi from Stack.
9] return TRUE.

That the above algorithm terminates is obvious, because there is only one
loop. Moreover the command in line 9, outside of the loop, guarantees that it
will return either TRUE or FALSE.

Proposition 3 The IC algorithm returns TRUE if and only if (K,M) entails
B(a). a



Fig. 1. The configuration space of (K,M).

To demonstrate how this whole procedure works, we give a simple example.

Example. Let K be a knowledge base consisting of the following axioms:

B(a), ¬B(b), r(b, c), ρ(a, b), ρ(a, c), ∃r.¬A v A
Let M = {A}. Then Part(Ind(K)) = {I1, I2, I3, I4, I5} where

I1 = {{a}, {b}, {c}}
I2 = {{a, b}, {c}}
I3 = {{a, c}, {b}}
I4 = {{a}, {b, c}}
I5 = {{a, b, c}}.

Figure 1 is a visualization of our configuration space. Each possible individual
allocation corresponds to a lattice of possible ground extensions for the closed
predicates, which in our case consists of just A. The restriction of the search
space to I-complete sets of possible extensions, with respect to an individual
allocation I, is portrayed by the apparent reduction of points in I2-I5.

Suppose that we want to check the assertion ¬(A u ∀ρ.A)(a) for entailment.
This basically means that not all individuals can be interpreted as members of
the extension of A. Then the IC algorithm will look bottom-up for grounded
models of K wrt M . If a model is found, then an augmented knowledge base
will be built, consisting of the current pointwise restriction and the negation
of the given assertion, which in our case is just (A u ∀.ρA)(a). In case this
augmented KB is found to be satisfiable, the algorithm will halt, giving FALSE
as an answer. Otherwise it will remove from the Stack all points which are above,
hence reducing further the remaining exploration. For this particular instance,
(K,M) entails ¬(Au∀.ρA)(a), so no minimal model which satisfies (Au∀.ρA)(a)
can be found, and so the algorithm will return TRUE.

Note that the entailment holds exactly because of the minimality, i.e. there
are grounded models where all individuals belong to A. Figure 2 gives an ac-
count of the distribution of grounded models and GC-models of (K,M) over



Fig. 2. The distribution of GC-models of (K,M) in the configuration space.

the configuration space. Points in white are those that do not correspond to any
model of KM , points in black correspond to GC-models and points in grey to
the rest of the grounded models. All the points in grey are exactly those that
will be never “visited”, i.e. at some step they will be removed from the Stack.

Complexity and Optimization Considerations. Considering that the pre-
sented algorithm requires at most exponentially many calls of the ALCO rea-
soner, each of which requires exponential time, we get that the overall complexity
is still in ExpTime. The lower bound is ExpTime as well as in the case M = ∅
the inference problem turns into standard reasoning in ALCO which is known to
be ExpTime-complete. For more expressive description logics, the complexity
of the black-box reasoning part will dominate and hence determine the overall
complexity.

Regarding the practical runtime behavior, we expect a significant improve-
ment through the removal of points that results from the command in line 8.
That is because the algorithm, in accordance with the defined linear order, will
try smaller points of the configuration space first and once a model is found, the
algorithm will stop looking at the rest of the branch.

Of course there is room for optimization of this algorithm. Notably from the
example we can see how two out of the five lattices should have been rejected
from the start, since they represent individual allocations which are incompat-
ible with the given knowledge base. More thoroughly, one could remove points
which correspond to assignments which are not consistent with the axioms in
the knowledge base.

On the other hand, the results we have acquired so far can be directly ex-
tended to more complex languages. That follows from the fact that in none of
the proofs supporting this study did we rely on the limitations of ALCO. In ef-
fect, we have used the constructive capabilities of our language, in creating new
knowledge bases that represent the notion of grounding and different points in
the configuration space. But we have not appealed to any restrictions imposed
by the specific syntax of ALCO, with the exception of course of the property of
decidabilty, which is implicit wherever a decision procedure is regarded.



5 Minimality Checking: A Non-standard Reasoning Task

In this section we present a solution to the task of determining whether a specific
grounded model is minimal by calling the standard DL reasoner just once. It
can be of use in devising algorithms for other reasoning problems in grounded
circumscription, but also maybe in some optimized variant of the IC algorithm
presented previously.

Definition 10. Let KM be a grounded KB where M ∩NC = {A1, ..., An} and
M ∩ Nr = {r1, ..., rm} and let I be a model of KM . We call down-the-chain
axioms with respect to I, the following set of GCIs:

I. {a} ≡ ExtI({a}) for every a ∈ Ind(K),
II. ExtI(¬{a}) v ¬{a} for every a ∈ Ind(K),

III. Ai v ExtI(Ai) for every i ∈ {1, ..., n},
IV. B(a,j) ≡ {c ∈ Ind(K)|(aI , cI) ∈ rIj } for every a ∈ Ind(K) and j ∈
{1, ...,m},

V. {a} v ∀rj .B(a,j) for every a ∈ Ind(K) and j ∈ {1, ...,m},

VI. > v ∃r.
(( ⊔

i∈{1,...,n}

(
ExtI(Ai) u ¬Ai

))
t
( ⊔

j∈{1,...,m}
a∈Ind(K)
c∈B(a,j)

(
{a} u ∀rj .¬{c}

)))
,

where r is a fresh role, i.e. it does not appear in K. KM augmented with the
down-the-chain axioms with respect to a model is called a confining of KM and
symbolized KI−M , where I is the respective model. a

Notice that the number of axioms in each of the categories I-V depends on M
whereas VI is one single axiom. The next lemma shows how we can find a smaller
grounded model than a given one, if there exists one. Intuitively this is like going
down in the lattice of possible grounded models, hence the terminology.

Lemma 5 Let (K,M) be a GC-ALCO-KB and let I be a model of KM . There
exists a model J of KM such that J ≺M I if and only if KI−M is satisfiable. a

For direct practical use, the above lemma is more conveniently expressed in
the following form:

Corollary 1 (Minimality Check) Let (K,M) be a GC-ALCO-KB and let I be
a model of KM . If KI−M is unsatisfiable, then I is a GC-model of (K,M). a

6 Conclusions

In our paper we have refined and rectified the foundational definition of grounded
circumscription and have produced some first results as a basis for further re-
search. Starting from a definition that is more accurate in incorporating the



intuition behind grounded circuscription, we have an improved solution to the
satisfiability task which now does not require any non-standard description logic
and can be solved by a single call to an off-the-shelf DL reasoner. Moreover, we
have provided an algorithm for instance checking, which was only insufficiently
covered in the original paper on grounded circumscription.

Apart from the algorithm itself, the theory provided gives a well-founded
understanding of the general potential of grounded circumscription, as redefined
here. The configuration space can prove to be a useful notion for devising other
non-standard reasoning algorithms. The down-the-chain axioms and minimality
check as a sub-task could contribute to solving other reasoning tasks within
grounded circuscription as well.

As mentioned earlier, an advantage of our approach is that all our results
hold if ALCO is replaced by a more complex language, as long as it is decidable.
Certainly there is a lot of space for further development of grounded circumscrip-
tion. It remains to be seen whether the IC algorithm performs well in practice
and/or can be sufficiently optimized further.

One of our main aims was to reduce as much of the reasoning as possible
to standard DL reasoning. This is achieved, in our opinion to the largest extent
possible. With this feature, our theory is implementation-friendly, and one main
future objective is to create a reasoner for grounded circumscription, which will
of course be working on top of an efficient standard DL reasoner.
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4. P. Hitzler, M. Krötzsch, and S. Rudolph. Foundations of Semantic Web Technolo-
gies. Chapman & Hall/CRC, 1st edition, 2009.

5. J. McCarthy. Circumscription — A Form of Non-Monotonic Reasoning. Artificial
Intelligence, 13:27–39, 1980.

6. S. Rudolph. Foundations of Description Logics. In Proceedings of the 7th Interna-
tional Conference on Reasoning Web: Semantic Technologies for the Web of Data,
RW’11, pages 76–136, Berlin, Heidelberg, 2011. Springer-Verlag.

7. K. Sengupta, A. Krisnadhi, and P. Hitzler. Local Closed World Semantics: Grounded
Circumscription for OWL. In The Semantic Web - ISWC 2011, pages 617–632.
Springer Berlin Heidelberg, 2011.

8. W3C OWL Working Group. OWL 2 Web Ontology Language: Document Overview,
2009. http://www.w3.org/TR/owl2-overview/.

http://www.w3.org/TR/owl2-overview/

	Revisiting Grounded Circumscription in Description Logics

