
HAL Id: lirmm-01400532
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400532

Submitted on 22 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

In Situ Data Steering on Sedimentation Simulation with
Provenance Data

Vítor Silva, José Camata, Daniel de Oliveira, Alvaro L G A Coutinho, Patrick
Valduriez, Marta Mattoso

To cite this version:
Vítor Silva, José Camata, Daniel de Oliveira, Alvaro L G A Coutinho, Patrick Valduriez, et al.. In Situ
Data Steering on Sedimentation Simulation with Provenance Data. SC: High Performance Computing,
Networking, Storage and Analysis, Nov 2016, Salt Lake City, United States. , International Conference
for High Performance Computing, Networking, Storage and Analysis, 2016. �lirmm-01400532�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01400532
https://hal.archives-ouvertes.fr

In Situ Data Steering on Sedimentation Simulation
with Provenance Data

Vítor Silva
Computer Science - COPPE

Federal University of Rio de Janeiro
silva@cos.ufrj.br

José Camata

Civil Engineering - COPPE
Federal University of Rio de Janeiro

camata@nacad.ufrj.br

Daniel de Oliveira
Institute of Computing

Fluminense Federal University
danielcmo@ic.uff.br

Alvaro L.G.A. Coutinho
Civil Engineering - COPPE

Federal University of Rio de Janeiro
alvaro@nacad.ufrj.br

Patrick Valduriez
Inria and LIRMM

patrick.valduriez@inria.fr

Marta Mattoso
Computer Science - COPPE

Federal University of Rio de Janeiro
marta@cos.ufrj.br

Abstract—Parallel adaptive mesh refinement and coarsening
(AMR) are optimal strategies for tackling large-scale simulations.
libMesh is an open-source finite-element library that supports
parallel AMR and is used in multiphysics applications. In
complex simulation runs, users have to track quantities of
interest (residuals, errors estimates, etc.) to control as much as
possible the execution. However, this tracking is typically done
only after the simulation ends. This paper presents DfAnalyzer, a
solution based on provenance data to extract and relate strategic
simulation data for online queries. We integrate DfAnalyzer to
libMesh and ParaView Catalyst, so that queries on quantities of
interest are enhanced by in situ visualization.

Keywords— libMesh; in situ data analysis; raw data analysis;
dataflow management; provenance.

I. OVERVIEW
Parallel adaptive mesh refinement and coarsening (AMR)

are optimal strategies for tackling large-scale sedimentation
simulations. libMesh [1] is an open-source finite-element
library that supports parallel AMR and has been used in several
multiphysics applications. As an application built upon the
libMesh library, libMesh-sedimentation1 simulates turbidity
currents typically found in geological processes. The sediment
transported due to fluid motion is described by a Eulerian
framework in which the mathematical models result from the
incompressible Navier-Stokes equation (fluid) combined with
an advection-dominated transport equation (sediment
concentration). libMesh-sedimentation employs a variational
multiscale finite element method [2] where a staggered
approach is used to evolve in time the coupled fluid-sediment
equations.

In complex simulation runs, users need in situ data steering
to track quantities of interest such as residuals, errors estimates,
etc. to control as much as possible the execution. Often users
need to analyze raw data from multiple related files generated
in different solver steps at runtime. To help on this data
steering, in a previous work [3], we defined a dataflow
provenance aware database schema, PROV-Df, as an extension
of W3C PROV [4], to represent selected domain raw data
captured by a Scientific Workflow Management System
(SWMS) with provenance data [5]. In this SWMS approach,
the simulation has to be modeled as a workflow, and we use

1 https://bitbucket.org/nacadhpc4e/libmesh-sedimentation

the Chiron SWMS [6] to control the execution while extracting
domain data from the files generated by the simulation. Chiron
is a non-intrusive solution with respect to the simulation code.
However, when using a SWMS to manage the parallel
execution of the workflow, it often conflicts with the
simulation solver scheduling and data parallelism. Most
SWMS have provenance data support, but do not manage
workflow activities that invoke highly parallel codes and,
consequently, they may jeopardize performance. Therefore, we
propose online provenance and dataflow queries for solver
libraries or other workflows without using a SWMS.

Different from the SWMS approach, we present
ARMFUL2, a component-based architecture that enables the
Analysis of Raw Data from Multiple files. ARMFUL allows
for raw data analysis by extracting raw data from files and
relating them through dataflow provenance data. Furthermore,
ARMFUL data analysis support can be coupled to a simulation
code, library, script or even a SWMS. In this paper we
instantiate ARMFUL as DfAnalyzer, which is coupled to the
libMesh-sedimentation solver to extract and relate strategic
simulation data for online queries. The DfAnalyzer approach
keeps all the parallel execution control at the simulation solver.

In the same way, users plug visualization components to
their simulation code, in DfAnalyzer, we provide for raw data
extraction components to be plugged in strategic places of the
simulation code, e.g. registering time step control data, solver
convergence, AMR behavior, and data dependencies between
solver steps. DfAnalyzer can also take advantage of in situ data
managed by ParaView Catalyst [7]. In this case, DfAnalyzer
communicates with ParaView to extract data from Catalyst and
relate it to its provenance database, benefiting from data that is
already in memory. The resulting provenance database of
DfAnalyzer complements the data coverage supported by
Catalyst queries. While Catalyst supports query processing on
a specific dataset (e.g., XDMF file addressing HDF5 files),
DfAnalyzer allows for users to monitor the file flow generation
during the simulation execution and to relate data elements
from different solver steps (dataflow management). Fig. 1
shows an overview of DfAnalyzer, where the query results,
obtained at any time during the simulation, allow for in situ
data steering. Queries can show, for example, the appearance

2 https://hpcdb.github.io/armful

of sediments for a specific time step or solver convergence
difficulties, which helps to change set-up parameters such as
tolerances, at runtime.

DfAnalyzer has two main components, named as
Provenance Gatherer (PG) and Query Processor (QP), to
manage dataflow at physical (i.e., file flow) and logical (i.e.,
data flow) levels [3]. PG component captures provenance and
domain-specific data from application code, generating a JSON
file with the extracted data and their dependencies. Then, all
captured provenance and domain-specific data are loaded into
the database that follows PROV-Df schema and is managed by
the column-store Database Management System MonetDB [8].
QP helps users to submit SQL queries to the provenance
database and to show results.

Fig. 1. Overview of our solution with DfAnalyzer.

 To complement in situ provenance database analysis with
visual information at runtime, ParaView Catalyst is embedded
into libMesh-sedimentation. Catalyst can access libMesh data
structures, extracting additional data information from solution
fields and performing live visualization. Catalyst can provide
profiles of the deposited sediments that are the relevant
quantities of interest for geologists. Those profiles are
generated through filters applied on the original data and are
defined in Python scripts at the beginning of the simulation.
Comparing this solution to the ad-hoc programs for raw data
analysis, our approach only needs to export Python scripts
using analyses already developed in ParaView UI, without
modifying the libMesh-sedimentation code. Then, Catalyst will
perform the parallel raw data analysis and visualization based
on those scripts.

II. EXPERIMENTAL EVALUATION
We ran DfAnalyzer integrated to libMesh-sedimentation

and ParaView Catalyst using 1,040 cores in Stampede cluster3,
at Texas Advanced Computing Center (TACC). This proof-of-
concept experiment executes the sedimentation solver with
adaptive mesh refinement and consumes an initial input mesh
with 480×80×80 hexahedra. The adaptive mesh refinement is
applied every 10 time steps. The simulation took 137.75
minutes running 200 time steps. Catalyst is also invoked every
10 time steps. Considering the total elapsed time, 136.80
minutes correspond to the solver elapsed time (99.31% of the
total elapsed time), 0.60 minute to the in situ data analysis
(0.44%), and 0.35 minute to the provenance data capture
(0.25%) – and manipulates approximately 3.17 GB of data –
5.7 MB corresponds to the provenance database, 3.15 GB to
raw data files, and 15.0 MB to log files. Even in real-life larger
runs, where number of files and their sizes are much larger,

3 https://portal.tacc.utexas.edu/user-guides/stampede

execution time overhead of DfAnalyzer will remain negligible
compared to the solver time.

Figs. 2 and 3 present two analytical queries that users are
able to run using DfAnalyzer’s provenance database. The
query in Fig. 2 monitors the appearance of sediments in the
domain bottom layer for a specific time step. Fig. 3 shows how
users can monitor the progress of their solver at runtime. For
example, in Fig. 3 the query returns solver data in a specific
time step that allows for users to steer their simulation based,
for instance, on the solver convergence. When solver
convergence or AMR difficulties are detected, users can
benefit from provenance support to trace simulation data from
previous non-linear iterations and time steps or meshes, since
our provenance database represents the dataflow while being
generated by the sedimentation simulation execution and
acting in runtime.

Fig. 2. Monitoring query: analysis of a horizontal line in the mesh associated
to the simulation identifier 1, when the deposited sediment (d) in the bottom

layer is different from zero.

Fig. 3. Query for debugging and user steering: analysis of the algorithm output

parameters after the convergence of the simulation solver in the fluid and
sediments loops in a specific simulation.

ACKNOWLEDGMENTS
This work was partially funded by CNPq, CAPES, FAPERJ
and Inria (MUSIC project) and the EU H2020 Programme
jointly with MCTI/RNP-Brazil (HPC4E project). Computer
time on Stampede is provided by TACC at UT-Austin.

REFERENCES
[1] B.S. Kirk, J.W. Peterson, R.H. Stogner, and G.F. Carey. libMesh : a C++

library for parallel adaptive mesh refinement/coarsening simulations.
Engineering with Computers, 22(3–4):237–254, 2006.

[2] G.M. Guerra, S. Zio, J.J. Camata, J. Dias, R.N. Elias, M. Mattoso, P.L. B.
Paraizo, A.L. G. A. Coutinho, and F.A. Rochinha. Uncertainty
quantification in numerical simulation of particle-laden flows.
Computational Geosciences, 20(1):265–281, 2016.

[3] V. Silva, D. de Oliveira, P. Valduriez, and M. Mattoso. Analyzing related
raw data files through dataflows. CCPE, 28(8):2528–2545, 2016.

[4] P. Groth and L. Moreau. W3C PROV - An Overview of the PROV Family
of Documents. Available at: https://www.w3.org/TR/prov-overview, 2013.

[5] S.B. Davidson and J. Freire. Provenance and scientific workflows:
challenges and opportunities. ACM SIGMOD, 1345–1350, 2008.

[6] E. Ogasawara, J. Dias, V. Silva, F. Chirigati, D. Oliveira, F. Porto, P.
Valduriez, and M. Mattoso. Chiron: A Parallel Engine for Algebraic
Scientific Workflows. CCPE, 25(16):2327–2341, 2013.

[7] U. Ayachit, A. Bauer, B. Geveci, P. O’Leary, K. Moreland, N. Fabian, and
J. Mauldin. ParaView Catalyst: Enabling In Situ Data Analysis and
Visualization. In Situ Infrastructures for Enabling Extreme-Scale Analysis
and Visualization, 25–29, 2015.

[8] P.A. Boncz, M.L. Kersten, and S. Manegold. Breaking the memory wall in
MonetDB. Communications of the ACM, 51(12):77, 2008.

SELECT time_step, x, y, z, d
FROM horizontal_line_extraction_1
WHERE simulation_id = 1 AND d <> 0;

SELECT f.final_linear_residual,
 f.final_non_linear_residual,
 s.final_linear_residual, s.final_non_linear_residual
FROM solver_simulation_fluid as f,
 solver_simulation_sediments as s
WHERE f.converged = true AND s.converged = true
 AND f.simulation_id = s.simulation_id
 AND f.time_step = s.time_step AND f.simulation_id = 1;

