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Abstract—Parallel adaptive mesh refinement and coarsening 
(AMR) are optimal strategies for tackling large-scale simulations. 
libMesh is an open-source finite-element library that supports 
parallel AMR and is used in multiphysics applications. In 
complex simulation runs, users have to track quantities of 
interest (residuals, errors estimates, etc.) to control as much as 
possible the execution. However, this tracking is typically done 
only after the simulation ends. This paper presents DfAnalyzer, a 
solution based on provenance data to extract and relate strategic 
simulation data for online queries. We integrate DfAnalyzer to 
libMesh and ParaView Catalyst, so that queries on quantities of 
interest are enhanced by in situ visualization.  
 

Keywords— libMesh; in situ data analysis; raw data analysis; 
dataflow management; provenance. 

I. OVERVIEW 
Parallel adaptive mesh refinement and coarsening (AMR) 

are optimal strategies for tackling large-scale sedimentation 
simulations. libMesh [1] is an open-source finite-element 
library that supports parallel AMR and has been used in several 
multiphysics applications. As an application built upon the 
libMesh library, libMesh-sedimentation1 simulates turbidity 
currents typically found in geological processes. The sediment 
transported due to fluid motion is described by a Eulerian 
framework in which the mathematical models result from the 
incompressible Navier-Stokes equation (fluid) combined with 
an advection-dominated transport equation (sediment 
concentration). libMesh-sedimentation employs a variational 
multiscale finite element method [2] where a staggered 
approach is used to evolve in time the coupled fluid-sediment 
equations.  

In complex simulation runs, users need in situ data steering 
to track quantities of interest such as residuals, errors estimates, 
etc. to control as much as possible the execution. Often users 
need to analyze raw data from multiple related files generated 
in different solver steps at runtime. To help on this data 
steering, in a previous work [3], we defined a dataflow 
provenance aware database schema, PROV-Df, as an extension 
of W3C PROV [4], to represent selected domain raw data 
captured by a Scientific Workflow Management System 
(SWMS) with provenance data [5]. In this SWMS approach, 
the simulation has to be modeled as a workflow, and we use 
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the Chiron SWMS [6] to control the execution while extracting 
domain data from the files generated by the simulation.  Chiron 
is a non-intrusive solution with respect to the simulation code. 
However, when using a SWMS to manage the parallel 
execution of the workflow, it often conflicts with the 
simulation solver scheduling and data parallelism. Most 
SWMS have provenance data support, but do not manage 
workflow activities that invoke highly parallel codes and, 
consequently, they may jeopardize performance. Therefore, we 
propose online provenance and dataflow queries for solver 
libraries or other workflows without using a SWMS. 

Different from the SWMS approach, we present 
ARMFUL2, a component-based architecture that enables the 
Analysis of Raw Data from Multiple files. ARMFUL allows 
for raw data analysis by extracting raw data from files and 
relating them through dataflow provenance data. Furthermore, 
ARMFUL data analysis support can be coupled to a simulation 
code, library, script or even a SWMS. In this paper we 
instantiate ARMFUL as DfAnalyzer, which is coupled to the 
libMesh-sedimentation solver to extract and relate strategic 
simulation data for online queries. The DfAnalyzer approach 
keeps all the parallel execution control at the simulation solver.  

In the same way, users plug visualization components to 
their simulation code, in DfAnalyzer, we provide for raw data 
extraction components to be plugged in strategic places of the 
simulation code, e.g. registering time step control data, solver 
convergence, AMR behavior, and data dependencies between 
solver steps. DfAnalyzer can also take advantage of in situ data 
managed by ParaView Catalyst [7]. In this case, DfAnalyzer 
communicates with ParaView to extract data from Catalyst and 
relate it to its provenance database, benefiting from data that is 
already in memory. The resulting provenance database of 
DfAnalyzer complements the data coverage supported by 
Catalyst queries. While Catalyst supports query processing on 
a specific dataset (e.g., XDMF file addressing HDF5 files), 
DfAnalyzer allows for users to monitor the file flow generation 
during the simulation execution and to relate data elements 
from different solver steps (dataflow management). Fig. 1 
shows an overview of DfAnalyzer, where the query results, 
obtained at any time during the simulation, allow for in situ 
data steering. Queries can show, for example, the appearance 
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of sediments for a specific time step or solver convergence 
difficulties, which helps to change set-up parameters such as 
tolerances, at runtime.  

DfAnalyzer has two main components, named as 
Provenance Gatherer (PG) and Query Processor (QP), to 
manage dataflow at physical (i.e., file flow) and logical (i.e., 
data flow) levels [3]. PG component captures provenance and 
domain-specific data from application code, generating a JSON 
file with the extracted data and their dependencies. Then, all 
captured provenance and domain-specific data are loaded into 
the database that follows PROV-Df schema and is managed by 
the column-store Database Management System MonetDB [8]. 
QP helps users to submit SQL queries to the provenance 
database and to show results. 

 
Fig. 1. Overview of our solution with DfAnalyzer. 

 To complement in situ provenance database analysis with 
visual information at runtime, ParaView Catalyst is embedded 
into libMesh-sedimentation. Catalyst can access libMesh data 
structures, extracting additional data information from solution 
fields and performing live visualization. Catalyst can provide 
profiles of the deposited sediments that are the relevant 
quantities of interest for geologists. Those profiles are 
generated through filters applied on the original data and are 
defined in Python scripts at the beginning of the simulation. 
Comparing this solution to the ad-hoc programs for raw data 
analysis, our approach only needs to export Python scripts 
using analyses already developed in ParaView UI, without 
modifying the libMesh-sedimentation code. Then, Catalyst will 
perform the parallel raw data analysis and visualization based 
on those scripts.  

II. EXPERIMENTAL EVALUATION 
We ran DfAnalyzer integrated to libMesh-sedimentation 

and ParaView Catalyst using 1,040 cores in Stampede cluster3, 
at Texas Advanced Computing Center (TACC). This proof-of-
concept experiment executes the sedimentation solver with 
adaptive mesh refinement and consumes an initial input mesh 
with 480×80×80 hexahedra. The adaptive mesh refinement is 
applied every 10 time steps. The simulation took 137.75 
minutes running 200 time steps. Catalyst is also invoked every 
10 time steps. Considering the total elapsed time, 136.80 
minutes correspond to the solver elapsed time (99.31% of the 
total elapsed time), 0.60 minute to the in situ data analysis 
(0.44%), and 0.35 minute to the provenance data capture 
(0.25%) – and manipulates approximately 3.17 GB of data – 
5.7 MB corresponds to the provenance database, 3.15 GB to 
raw data files, and 15.0 MB to log files. Even in real-life larger 
runs, where number of files and their sizes are much larger, 

                                                             
3 https://portal.tacc.utexas.edu/user-guides/stampede 

execution time overhead of DfAnalyzer will remain negligible 
compared to the solver time.  

Figs. 2 and 3 present two analytical queries that users are 
able to run using DfAnalyzer’s provenance database. The 
query in Fig. 2 monitors the appearance of sediments in the 
domain bottom layer for a specific time step. Fig. 3 shows how 
users can monitor the progress of their solver at runtime. For 
example, in Fig. 3 the query returns solver data in a specific 
time step that allows for users to steer their simulation based, 
for instance, on the solver convergence. When solver 
convergence or AMR difficulties are detected, users can 
benefit from provenance support to trace simulation data from 
previous non-linear iterations and time steps or meshes, since 
our provenance database represents the dataflow while being 
generated by the sedimentation simulation execution and 
acting in runtime.  

 
Fig. 2. Monitoring query: analysis of a horizontal line in the mesh associated 
to the simulation identifier 1, when the deposited sediment (d) in the bottom 

layer is different from zero. 

 
Fig. 3. Query for debugging and user steering: analysis of the algorithm output 

parameters after the convergence of the simulation solver in the fluid and 
sediments loops in a specific simulation. 
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SELECT time_step, x, y, z, d 
FROM horizontal_line_extraction_1  
WHERE simulation_id = 1 AND d <> 0; 

SELECT f.final_linear_residual,  
                 f.final_non_linear_residual,  
                 s.final_linear_residual, s.final_non_linear_residual 
FROM solver_simulation_fluid as f,  
              solver_simulation_sediments as s 
WHERE f.converged = true  AND s.converged = true 
        AND f.simulation_id = s.simulation_id 
        AND f.time_step = s.time_step AND f.simulation_id = 1; 


