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ABSTRACT 
Many scientific workflows are data-intensive and need be 
iteratively executed for large input sets of data elements. 
Reducing input data is a powerful way to reduce overall execution 
time in such workflows. When this is accomplished online (i.e., 
without requiring users to stop execution to reduce the data and 
resume execution), it can save much time and user interactions 
can integrate within workflow execution. Then, a major problem 
is to determine which subset of the input data should be removed. 
Other related problems include guaranteeing that the workflow 
system will maintain execution and data consistent after 
reduction, and keeping track of how users interacted with 
execution. In this paper, we adopt the approach “human-in-the-
loop” for scientific workflows by enabling users to steer the 
workflow execution and reduce input elements from datasets at 
runtime. We propose an adaptive monitoring approach that 
combines workflow provenance monitoring and computational 
steering to support users in analyzing the evolution of key 
parameters and determining which subset of the data should be 
removed. We also extend a provenance data model to keep track 
of user interactions when users reduce data at runtime. In our 
experimental validation, we develop a test case from the oil and 
gas industry, using a 936-cores cluster. The results on our 
parameter sweep test case show that the user interactions for 
online data reduction yield a 37% reduction of execution time.  
CCS Concepts 
•  Massively parallel and high-performance simulations.  

Keywords 
Scientific Workflows; Human in the Loop; Online Data 
Reduction; Provenance Data; Dynamic Workflows. 

1. INTRODUCTION 
Scientific Workflow Management Systems (SWMS) with parallel 
capabilities have been designed for executing data-intensive 
scientific workflows, scientific workflows for short hereafter, in 
High Performance Computing (HPC) environments. A typical 
execution may involve thousands of parallel tasks with large input 
datasets. When the workflow is iterative,  it is repeatedly executed 
for each element of an input dataset. The more the data to be 
processed, the longer the workflow may take, which may be days 
depending on the problem and HPC environment [7]. Configuring 
a scientific workflow with parameters and data to be processed is 
hard. Typically, the user needs to try several input data or 
parameter combinations in different workflow executions. These 
trials make the scientific experiment take even longer. It is well 
known that optimizing performance of the parallel system is a 
way to improve overall workflow execution time, but reducing the 
input data that was initially planned to be processed is another 
effective approach to reduce workflow execution time [4].   

In scientific workflows, the total amount of data is very large, but 
not necessarily the entire input dataset has relevant data for 
achieving the goal of the workflow execution. This is particularly 
the case when a large parameter space needs to be processed in 
parameter sweep workflows. There may be slices of the parameter 

space that will not influence relevant results and thus, as with a 
“branch and bound” optimization strategy, can be bounded. A 
similar scenario occurs when the workflow involves a large input 
dataset. When domain-specialist users can actively participate in 
the computational process, practice frequently referred to as 
“human-in-the-loop”, they may analyze partial result data and tell 
which part of the data is relevant or not for the final result [14]. 
Then, based on their domain knowledge, users can identify which 
subset of the data is not interesting and thus should be removed 
from the execution by the SWMS, thereby reducing execution 
time. 
Data reduction can be accomplished in at least three different 
forms. First, users can do it before the execution starts. However, 
in most complex scenarios, the high number of possibilities makes 
it impossible to know beforehand the uninteresting subsets, 
without any prior execution. Furthermore, not only the initial 
dataset can be reduced, but also the data generated by the 
workflow, since the activities composing scientific workflows 
continuously produce significant amounts of partial data that are 
consumed by other activities. A second form of data reduction is 
to do it online. When the SWMS allows for partial result data 
analysis, the user may interact with the generated partial data, find 
which slice of the dataset is not interesting, and reduce the dataset 
online. We use the term online for the interactions where users are 
able to inspect workflow execution, analyze partial and 
performance data, and dynamically adapt (i.e., steer) workflow 
settings while the workflow is running (i.e., at runtime). The third 
form of data reduction is by stopping execution, reducing the data 
offline, and then resuming execution with the reduced dataset. 
Because of the difficulty in defining the exploratory input dataset 
and the long execution time of such iterative workflows, users 
frequently adopt the third form. However, in the offline form, the 
SWMS is not aware of the changes, and the results with one 
workflow configuration are not related to the others. Therefore, 
this is generally more time-consuming, there is no control or 
registration of user interactions, and the execution may become 
inconsistent [7]. 

Online data reduction has obvious advantages but introduces 
several problems related to computational steering in HPC 
environments [14]. First, because of the complexity of their 
scientific question to address and the huge amounts of data, users 
do not exactly know beforehand which subset of dataset should be 
kept or removed. Also, if users cannot actively follow the result 
data evolution online, in particular domain data associated to 
execution and provenance data (history of data derivation), they 
can be driven to misleading conclusions when trying to identify 
the uninteresting subset of the data. Indeed, this is the main 
related challenge. Second, if they can find which subset to remove 
and actually try to remove, the SWMS must guarantee that the 
operation will be done consistently.  Otherwise, it can introduce 
anomalous data, yielding to no control of data elimination, data 
redundancy, or even execution crash. Third, in a long run, there 
may be more than one user interaction, each removing more 
subsets, at different times. If the SWMS does not keep track of 
user actions, it may negatively impact the results’ reproducibility 
and reliability. Although data reduction is not new in SWMS [4], 
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to the best of our knowledge, these problems related to online 
user-steered data reduction while maintaining data provenance 
have not been addressed by related works.  

Our approach is to represent workflow input datasets as database 
relations. Each input element from the scientific domain dataset is 
represented as a tuple of the input relations. When the elements of 
the input dataset are files, we insert paths to these files. The 
approach is implemented in Chiron, a parallel SWMS that adopts 
a tuple-oriented algebraic approach [17]. Chiron has been used to 
manage workflow applications with user steering in domains, 
such as bioinformatics [2], computational fluid dynamics [7], 
astronomy [20], etc. Chiron continuously populates a relational 
database at runtime to store domain-specific data, workflow 
execution data, and, more importantly, provenance data, all 
integrated in the same database available for online queries. In 
this paper, we use the term workflow Database (wf-Database) to 
refer to this database. In addition to the traditional advantages of 
managing provenance data in scientific workflows (i.e., 
reproducibility, reliability, and quality of result data) [3], online 
provenance data management eases interactive domain data 
analysis [2][20]. Such interactive flexible data analysis through 
provenance helps finding which subset of a dataset to be removed. 
Moreover, execution monitoring is another very desirable feature 
in any data-intensive system, including SWMS, and can also be 
used to assist users in addressing the subset to be removed. 
However, Chiron does not control changes in input datasets, 
including removing a subset. In this work, we extend Chiron's wf-
Database to maintain the provenance of the subsets of the dataset 
that are removed. Furthermore, we take advantage of a distributed 
in-memory database system coupled to Chiron, in a version called 
d-Chiron that is significantly more scalable [21], to address 
consistency issues with respect to data reduction. We make the 
following contributions: 

• A mechanism coupled to d-Chiron for online input data 
reduction, which allows users to remove subsets of the dataset 
to be processed at runtime. It guarantees that both execution 
and data remain consistent after reduction. 

• An extension to a provenance data model (which is W3C 
PROV compliant) to maintain the history of user interactions 
when users decide to reduce a dataset during workflow 
execution. 

• An adaptive monitoring approach that combines monitoring 
and computational steering. It helps users to follow the 
evolution of interesting parameters and result data to find 
which subsets of the dataset can be removed during execution. 
Also, since what users find interesting may change over time, 
this approach allows the user to steer the monitoring 
definitions, such as which data should be monitored and how. 
Although existing solutions enable workflow execution 
monitoring [13][16][19], there is no approach to enable users 
to run monitoring queries that integrate execution, provenance, 
and domain data, and dynamically adapt these queries online, 
to the best of our knowledge. 

Paper organization: Section 2 gives a motivating example. Section 
3 gives the background for this work. We present our online data 
reduction approach in Section 4 and our adaptive monitoring 
approach in in Section 5.  Section 6 gives the experimental 
validation. Section 7 discusses related work. Section 8 concludes. 

2. MOTIVATING EXAMPLE IN OIL AND 
GAS INDUSTRY 
In ultra-deep water oil production systems, a major application is 
to perform risers’ analyses. Risers are fluid conduits between 

subsea equipment and the offshore oil floating production unit. 
They are susceptible to a wide variation of environmental 
conditions (e.g., sea currents, wind speed, ocean waves, 
temperature), which may damage their structure. The fatigue 
analysis workflow adopts a cumulative damage approach as part 
of the riser's risk assessment procedure considering a wide 
combination of possible conditions. The result is the estimate of 
riser’s fatigue life, which is the length of time that it will safely 
operate. The Design Fatigue Factor (DFF) may range from 3 to 
10, meaning that the riser’s fatigue life must be at least DFF times 
higher than the service life [6].  

Sensors located at the offshore platform collect external 
conditions and floating unit data, which are stored in multiple raw 
files. Offshore engineers use specialized programs (mostly 
complex simulation solvers) to consume the files, evaluate the 
impact on the risers in the near future (e.g., risk of a fracture 
occurrence), and estimate the risers’ fatigue life. Figure 1 presents 
a scientific workflow composed of seven piped specialized 
programs (represented by workflow activities) with a dataflow in 
between. 

 
Figure 1. Risers Fatigue Analysis Workflow. 

Each task of Data Gathering (Activity 1) decompresses one 
large file into many files containing important input data, reads 
the decompressed files, and gathers specific values 
(environmental conditions, floating unit’s, and other data), which 
are used by the following activities. Preprocessing (Activity 2) 
performs pre-calculations and data cleansing over some other 
finite element mesh files that will be processed in the following 
activities. Stress Analysis (Activity 3) runs a computational 
structural mechanics program to calculate the stresses applied to 
the riser. Each task consumes pre-processed meshes and other 
important input data values (gathered from first activity) and 
generates result data files, such as histograms of stresses applied 
throughout the riser (this is an output file), and stress intensity 
factors in the riser and principal stress tensor components. It also 
calculates the current curvature of the riser. Then, Stress 
Critical Case Selection (Activity 4) and Curvature 
Critical Case Selection (Activity 5) calculate the fatigue 
life of the riser based on the stresses and curvature, respectively. 
These two activities filter out results corresponding to risers that 
certainly in a good state (no critical stress or curvature values 
were identified), which are of no interest to the analysis. 
Calculate Fatigue Life (Activity 6) uses previously 
calculated values to execute a standard methodology [6]  and 
calculate the final fatigue life value of a riser. Compress 
Results (Activity 7) compresses output files by riser. 

Most of these activities generate result data (both raw data files 
and some other domain-specific data values), which are consumed 
by the subsequent activities. These intermediary data need to be 
analyzed during workflow execution. More importantly, 
depending on a specific range of data values for an output result 
data (e.g., fatigue life value), there may be a specific combination 
of input data (e.g., environmental conditions) that are more or less 
important during an interval of time within the workflow 
execution. The specific range is frequently hard to determine and 
requires a domain expert to analyze partial data during execution. 
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For example, an input data element for Activity 2 is a file that 
contains a large matrix of data values, composed of thousands of 
rows and dozens of columns. Each column contains data for an 
environmental condition and each row has data collected for a 
given instant in time. Each row can be processed in parallel and 
the domain application needs to consume and produce other data 
files (on average, about 14 MB consumed and 6 MB produced per 
processed input data element). After many analyses online, the 
user finds that, for waves > 38m with frequency > 1Hz, a riser 
fatigue will never happen. Thus, within the entire matrix, any 
input data element that contains this specific uninteresting range 
does not need to be processed. Therefore, by reducing the input 
dataset, the overall data processed and generated are reduced and, 
more importantly, the overall execution time is reduced. In this 
paper, we use this workflow in our examples. 

3. USER-STEERED WORKFLOWS 
Mattoso et al. [14] analyze six aspects of computational steering 
in scientific workflows: interactive analysis, monitoring, human 
adaptation, notification, interface for interaction, and computing 
model. Despite their importance, the first three are essential and 
we mostly focus on those in this work. In fact, human adaptation 
is definitely the core of computational steering. However, users 
will only know how to fine-tune parameters or which subset needs 
further focus if they can explore partial result data during a long-
term execution. For this, interactive analysis and monitoring play 
an important role to put the human in the loop. 

Online provenance data management in SWMS is an essential 
asset to support all six aspects of computational steering in 
scientific workflows. In this section, we explain the three 
computational steering aspects explored in this paper. 

3.1 Interactive analysis  
We address two aspects of workflow data that should be 
interactively analyzed: (A) domain dataflow and (B) workflow 
execution information [14]. 

A. Domain dataflow. Workflows are composed of activities 
(scientific programs, scripts, or services) linked as a dataflow. 
Each activity invocation, or task, may consume input datasets and 
input raw data files and produce output datasets and files. These 
flows form the domain dataflow. To support domain dataflow 
interactive analysis, Chiron stores dataflow provenance data in the 
wf-Database during execution and makes them available for 
online user queries. Users can then query the wf-Database using a 
query interface or SQL following PROV-Wf [2], a W3C PROV-
compliant data model [15] that specializes PROV entities into 
domain-data entities to allow for domain dataflow analysis at a 
finer grain than PROV.  

Chiron’s tuple-oriented engine first stores input dataset as tuples 
in the wf-Database. In parameter sweep, tuples are data values 
from the Cartesian product of input parameters. Then, each task 
consumes input tuples retrieved from this database, executes 
them, and then stores the generated output tuples in the wf-
Database immediately after task execution, adequately 
maintaining the data relationships to the input tuples. The 
workflow activities that generated the tuples are also stored in the 
wf-Database and linked accordingly. Large raw data files 
consumed or produced by each task are not stored in the wf-
Database, but are rather linked to them, for file flow management.  

Thus, Chiron enables online fine-grained domain dataflow 
analysis [2] as well as the analysis of related domain raw data files 
through file flow relationships [20]. Table 1 shows some useful 
queries for the riser fatigue analysis workflow involving domain 

data and provenance dataflow analysis. The corresponding 
generated SQL, as well as the relational schema, are in 
http://github.com/hpcdb/d-chiron. These queries reflect typical 
user interactions. When these workflows are executed as scripts, 
without Chiron's support, users look for files in their directories, 
open files, and try to do this analysis in an ad-hoc way, frequently 
writing programs to "query" these result files. Often they interrupt 
the execution to fine tune input data and save execution time. 

Table 1. Domain dataflow provenance interactive queries. 
𝑸𝟏 What is the average of the 10 environmental conditions that are 

leading to the largest fatigue life value? 

𝑸𝟐 What are the water craft’s hull conditions that are leading to risers’ 
curvature lower than 800? 

𝑸𝟑 What are the top 5 raw data files that contain original data that are 
leading to lowest fatigue life value? 

𝑸𝟒 What are the histograms and finite element meshes files related when 
computed fatigue life based on stress analysis is lower than 60? 

 
For Queries 𝑄1-𝑄4, the SWMS needs to store the history of the 
tuples generated in Activities 4 and 5 since the beginning of the 
flow, adequately linking each tuple flow in between. For example, 
environmental conditions (𝑄1) and hull conditions (𝑄2) are 
obtained in Activity 1, and stress- and curvature-related values are 
obtained in Activities 4 and 5, respectively. To correlate output 
tuples from Activity 4 or 5 to tuples from Activity 1, provenance 
data relationships are required. 

B. Workflow execution information. Lower level execution engine 
information, such as physical location (i.e., virtual machine or 
cluster node) where a task is being executed, can highly benefit 
data analysis and debugging in HPC execution. Users may want to 
interactively investigate how many parallel tasks each node is 
running. Moreover, tasks can run domain applications that result 
in errors. If there were thousands of tasks in a large execution, 
how to determine which tasks resulted in domain application 
errors and what the errors were? This also eases debugging, an 
important feature to be provided in large parallel executions. 
Furthermore, performance data analysis is very useful. Users are 
frequently interested in knowing how long tasks are taking. All 
this workflow execution information is important to be analyzed 
and can deliver much more interesting insights when linked to 
domain dataflow data. When execution data is stored separately 
from domain and provenance data, these steering queries are not 
possible or demand combining different tools and writing specific 
analysis programs [20].  

To support all this, Chiron’s wf-Database registers parallel 
workflow execution data. This means that all necessary execution 
information for the parallel engine to work are linked to domain 
dataflow data and managed in the same database. Table 2 shows 
some provenance queries for the Risers Analysis workflow that 
link workflow execution data to domain dataflow. 

Table 2. Domain data linked to performance data. 

𝑸𝟓 

Determine the average of each environmental conditions (output of 
Data Gathering – Activity 1) associated to the tasks that are 
taking execution time more than 2 standard deviations of 
Curvature Critical Case Selection (Activity 5). 

𝑸𝟔 Determine the finite element meshes files (output of Preprocessing – 
Activity 2) associated to the tasks that are finishing with error status. 

𝑸𝟕 
List the 5 computing nodes with the greatest number of 
Preprocessing activity tasks that are consuming tuples that 
contain wind speed values greater than 70 Km/h. 

3.2 Monitoring 
Another important form to help gaining insights from the data is 
by monitoring in a passive way. It means that users can set up 
some monitoring analyses and wait for the monitoring results to 
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be generated. Results might be delivered to end-users as graphical 
dashboards or three-dimensional in-situ scientific data 
visualizations. As users gain insights from monitoring results, if 
the SWMS has dynamic analytical support, they can adapt 
previously set up monitoring configurations or add new 
monitoring analysis [14]. Also, from these new insights, new data 
exploration through interactive analysis can be done.  

If the SWMS allows for provenance data analysis during 
workflow execution, monitoring becomes more effective, since 
the SWMS can exploit the continuously populated wf-Database. 
By doing this, all the aforementioned data provenance analysis 
and queries executed by users may be used by a monitoring 
engine.  

3.3 Human adaptation 
After users have analyzed partial data and gained insight from 
them, they may decide to adapt the workflow execution. 
Adaptation brings powerful abilities to end-users, putting the 
human in full control of scientific workflow executions. Many 
aspects can be adapted by humans, but very few systems support 
human-in-the-loop actions [14]. The human-adaptable aspects 
range from computing resources involved in the execution (e.g., 
adding or removing nodes), to checking-point and rolling-back 
(debugging), loop break conditions, reducing datasets, 
modification of filter conditions, and very specific parameter fine-
tuning. 

Populating the wf-Database during workflow execution can help 
all these aspects. In the Chiron SWMS, it has been shown that it 
particularly facilitates steering. For example, in [8], it was shown 
that it is possible to change filter conditions during execution. 
Also, in [7], it is proposed an algebraic approach to enable 
steering and dynamic changes of loop conditions during execution 
of iterative workflows (e.g., modify number of iterations or loop 
stop conditions), and such approach was evaluated in Chiron. 
These works show that these adaptations can significantly reduce 
overall execution time, since domain expert users are able to 
identify a satisfactory result before the programmed number of 
iterations. Prior to this work, although [7] has highlighted its 
advantages, no work has been developed in Chiron to tackle user-
steered data reduction online. 

Since provenance data is so beneficial, we consider that when a 
user interacts with the workflow execution, new data (user 
interaction data) are generated, and thus their provenance must be 
registered. In a long-running execution, many interactions can 
occur and many adaptations may be made. If the SWMS does not 
adequately register the provenance of interaction data, the users 
can easily lose track of what they have changed in the past. This is 
critical if the entire computational experiment takes days to finish 
and many specific adaptations had to occur, since it may be 
impossible for the users to remember in the last day of execution 
what they have steered in the first days. Furthermore, adding 
interaction data to the wf-Database enriches its content and 
enables future user interaction analysis. One example of how such 
data can be exploited is that the registered interaction data could 
be used by artificial intelligence algorithms for understanding 
interaction patterns and recommend future adaptations. For these 
reasons, the SWMS that enables computational steering should 
collect provenance of user interaction data. To the best of our 
knowledge, this has not been done before. 

4. ONLINE DATA REDUCTION 
In this section, we show our main contribution. Suppose that after 
analyzing the monitoring results, a user identifies, within the 

entire dataset, the subset that contains those values can be 
removed, hence reducing the dataset. 

However, reducing a dataset to be processed has specific 
constraints that need to be addressed so the execution remains in a 
consistent state, i.e., with valid data and with guarantee that the 
execution will not crash. As previously described, Chiron 
implements a relational data model in a tuple-oriented algebraic 
approach for scientific workflows [17]. 
We propose to represent the input dataset as a database relation, 
which is a set of tuples. In the tuple-oriented approach [17], tuples 
represent a domain-specific dataset to be consumed or produced 
by a workflow activity. As examples, tuples may be composed of 
parameter values of a computational model, file paths to a large 
raw data file (e.g., genomic sequences, finite element meshes, 
textual data, binary files), or calculated values. In the tuple-
oriented approach, removing a subset of the entire dataset to be 
processed means removing a set of tuples to be consumed by a 
workflow activity. As a consequence of this removal, the tasks 
that would process the tuples within the removed set of tuples will 
not be executed, hence, reducing both workflow execution time 
and data processing. Data processing reduction becomes more 
evident if the removed tuples contain paths to large raw data files 
that would be consumed by tasks if the tuples were not removed. 
Not only this prevents execution of tasks that would consume 
uninteresting data, but also the non-executed tasks will not 
produce more data, reducing overall generated data amount in a 
workflow execution. Furthermore, if a tuple of a given activity is 
removed, the following tuples forming the tuple-flow of the next 
linked activities will not be processed too, reducing data and, 
more importantly, execution time in cascade. 

Addressing which specific subset will be removed is quite 
important. So, we first formalize the subset to be removed 
(Section 4.1). In Section 4.2, we describe how we implemented 
this in d-Chiron, which is a modified version of Chiron that 
manages the wf-Database in an in-memory distributed database 
system and is significantly more scalable than the original Chiron 
[21]. We also highlight that even though we implemented our 
solutions in d-Chiron, other SWMS could be used. The only 
requirement is that the SWMS engine needs to manage workflow 
data as datasets in a tuple-oriented approach and manage domain, 
provenance, and workflow execution data online in the same 
database. 

4.1 Removing slices of input datasets 
In the tuple-oriented approach, to address a subset of the dataset to 
be removed, we first define a slice, which is a subset of tuples to 
be removed according to a criteria defined by the user. Let 𝑅 with 
data schema ₰ = {𝐶} be the relation that represents a workflow 
activity input dataset to be reduced. {𝐶}  is the set of attributes 𝑐!, 
1   ≤   𝑗   ≤ | 𝐶 |,   from   𝑅 and each 𝑐!  assumes a data type 
(integer, string, boolean, etc). Moreover, we split 𝑅 into two 
subsets 𝑃 and 𝑆, where 𝑃 is the subset of 𝑅 containing tuples that 
have already been processed and 𝑆 is the subset of 𝑅 containing 
tuples that will be processed. Thus, 𝑅 ← 𝑃 ∪ 𝑆  |  𝑃 ∩ 𝑆 =   ∅. 𝑃 
and 𝑆 have the same schema ₰.  
Then, we define a slice § as a subset of 𝑆, which is represented as 
a primary horizontal fragment of 𝑆, defined by the selection 
relational algebraic operation 𝜎 [18]. Thus, § ←   𝜎! 𝑆 , where 𝐹 
is the selection formula to obtain the primary horizontal fragment. 
The formula 𝐹 may either be a simple predicate (e.g., 𝑐!"   =
′𝐹𝐴𝑇𝐼𝐺𝑈𝐸′) or a minterm predicate (e.g., 𝑐! > 38   ∧ 𝑐! > 0.1 
∧ 𝑐! < 1.0) [18]. Figure 2 shows a workflow example on the left: 
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Act. 1 consumes input relation 𝑅 and produces an output relation 
that also works as an input relation to be consumed by Act. 2, 
which produces the final output relation. Although in this 
illustration we show a data reduction in the first activity, we 
highlight that input data of any workflow activity can be reduced, 
including intermediary ones, as shown in Section 6, where input 
data from the second activity is reduced. The input relation 𝑅 is 
magnified on the right of Figure 2, where we show the subsets 𝑃 
and 𝑆, and the slice § defined by the formula 𝐹. 

Once the user has selected the slice to be removed (based on user-
defined criteria), the slice can be cut off. For this, we define the 
operation 𝐶𝑢𝑡 using the difference relational algebraic operator, so 
that 𝐶𝑢𝑡 𝑅, § ← 𝑅 − §. 

By doing so, we ensure that only tuples from 𝑆 will be removed, 
since § only contains tuples from 𝑆. This is necessary because 
only tuples that have not been processed yet (i.e., they are “ready” 
to be processed) can be removed. Otherwise, either the data or the 
workflow execution may become inconsistent. We note that our 
solution is applicable to reduce input data of any workflow 
activity that needs to process a dataset, as long as the SWMS is 
aware of the data elements composing the dataset. 

4.2 Implementation 
In this section, we describe how we implement slice removal and 
cut in d-Chiron. In the SWMS that implements the tuple-oriented 
approach and manages execution data in the wf-Database, each 
input tuple (or set of tuples, depending on the dataflow operator) 
to be consumed is related to a task. For this reason, removing 
tuples means removing the tasks that would consume the 
referenced tuples. In the PROV-Wf data model [2], which d-
Chiron supports, tasks’ data and input tuples are stored in 
different relations, with a relationship in between. Thus, to 
implement the set 𝑆, as defined previously, we need to semi-join 
[18] input tuples from the input relation 𝑅 with tasks in READY 
state in order to only select the tuples that will be processed. Then, 
to get the identifiers of the ready tasks 𝜋!"#$%  to be removed, we 
project over the task identifiers. Using relational algebra:  

𝜋!"#$% ←   Π!"#$_!" 𝜎! 𝑅 ⋉ 𝜎!"#"$!!"#$% 𝑇𝑎𝑠𝑘 , 

where the formula 𝐹 is analogous to that in Section 4.1, which is 
the criteria to select the slice § to be removed. We emphasize that 
such verifications are necessary to guarantee consistency and are 
the SWMS’s responsibility only, not the users’. The users would 
only need to specify the formula 𝐹 to select the slice.  

To ease slice removal in d-Chiron, we developed a Steer 
module. With the Steer module, users can issue command lines 
to inform the name of the input relation 𝑅 and the formula 𝐹 to 
select the slice to be removed. Then, the module is responsible for 
retrieving the identifiers 𝜋!"#$% of the ready tasks to be removed 
(analogous to the set 𝑆 needed for the slice definition). Instead of 
physically removing the tasks from the wf-Database, we choose to 
mark them with the state REMOVED_BY_USER. By doing so, we 
enable these tasks to be later analyzed with provenance queries 
and to be consistently related within the table Modified_Task.  

To guarantee consistency, we take advantage of d-Chiron’s 
database system [21]. d-Chiron uses a transaction-optimized in-
memory distributed database system that provides atomicity, 
consistency, isolation, and durability (ACID). In a data reduction, 
both d-Chiron's engine and the Steer module need to 
concurrently update a shared resource, the Task table in the wf-
Database. While d-Chiron's engine updates the Task table to get 
tasks for execution and to mark them later as executed, the Steer 

component needs to update the Task table to mark the tasks with 
the identifiers in the 𝜋!"#$% slice as removed by user, so that the 
engine will not get them for execution. 

The wf-Database tables are distributed, thus making concurrency 
control of the Task table partitions even more complex. In d-
Chiron, distributed concurrency control in the Task table is 
outsourced to the distributed database system that guarantees the 
ACID properties [18]. Thus, concurrency caused by the 
aforementioned updates is controlled by the database system, 
guarantying that both execution and data remain consistent. 

To store provenance of removed tuples, we extend the wf-
Database schema with the table User_Query to store the queries 
that select the slice of the dataset to be removed. The description 
for each User_Query column is described in Table 3. We also 
keep track of the removed tasks in table Modified_Task, which 
is a table that represents a many-to-many relationship between 
User_Query and Task tables. In Section 5.2, we will give the 
necessary extensions to the PROV-Wf data model implemented in 
d-Chiron to accommodate User_Query and modified tasks. 

Table 3. User_Query table description. 
Column name Description 
query_id Auto increment identifier 

slice_query Query that selects the slice of the dataset to be 
removed. 

tasks_query Query generated by the SWMS to retrieve the 
ready tasks associated. 

issued_time Timestamp of the user interaction 

query_type 

Field that determines how the user interacted. 
It could be “Removal”, “Addition”, and 
others. We currently only implemented 
“Removal” of tuples, but it can be extended in 
future work. 

user_id Relationship with the user who issued the 
interaction query 

wkfid To maintain relationship with the rest of 
workflow execution data. 

5. ADAPTIVE MONITORING  
In this section, we combine monitoring and computational 
steering into an adaptive monitoring approach. Our workflow 
monitoring approach relies on online queries to the continuously 
populated wf-Database. Users can set up monitoring queries (as in 
Table 1 and Table 2) and analyze monitoring results. 

In Section 5.1, we present a formal description and describe the 
implementation in Section 5.2 with the extensions to PROV-Wf to 
accommodate adaptive monitoring and online data reduction. 

Figure 2. Relation 𝑹 with subsets 𝑷 and 𝑺, and a slice 
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5.1 Formal description of adaptive monitoring 
Monitoring works as follows. There is a set {𝑄}  composed of 
monitoring queries 𝑚𝑞!, 0   ≤   𝑖   ≤ | 𝑄 |, each one to be executed 
at each 𝑑! > 0. Users do not need to specify queries at the 
beginning of execution, since they do not know everything they 
want to monitor. This is why {𝑄} starts empty. After users gain 
insights from the data, after some interactive provenance data 
analyses, they can add monitoring queries to {𝑄}  in an ad-hoc 
manner. Each 𝑑! can be adapted by users, meaning that users have 
control of the time frame of each 𝑚𝑞!   during execution. 
Each 𝑚𝑞! execution generates a monitoring query result set 
𝑚𝑞𝑟!", 𝑡   = 𝑘𝑑!|  𝑘   ∈ ℕ!! , at each time interval 𝑑!. We 
constrain that each 𝑚𝑞𝑟!"  must deliver one column only. If users 
want more columns, they can write different monitoring queries 
for each new column. However, the number of rows in the result 
set is not limited. This means that each monitoring result set 
𝑚𝑞𝑟!"  should be either a scalar value or an array. 
To improve human-in-the-loop, the end-users have the flexibility 
to adapt monitoring during workflow execution. To do so, at each 
instant 𝑡 after each monitoring query result 𝑚𝑞𝑟!"  has been 
generated, the values for 𝑑! and 𝑚𝑞!   are reloaded from the wf-
Database. If any change has happened, it will be considered in the 
next iteration 𝑡   +   𝑑!. Moreover, at each certain amount of time 
during execution (also configured by the user), the system checks 
if the user has added new monitoring queries in {𝑄}. Our adaptive 
monitoring approach takes full advantage of the data stored online 
in the wf-Database. More importantly, it enables users to 
dynamically steer monitoring settings (including which data will 
be monitored and how), highly benefiting them in finding 
uninteresting subsets to be removed. 

5.2 Implementation 
To implement our approach, we first need to extend the wf-
Database schema. To store {𝑄}, we add the table 
Monitoring_Query, shown in Table 4.  

Table 4. Monitoring_Query table description.  
Column name Description 

monitoring_id Auto increment identifier 

interval Interval time (in seconds) between each 
monitoring query (𝑑!) 

monitoring_query Raw SQL query to be queried 

wkfid 

Relationship between the monitoring queries 
and the current execution of the workflow. In 
d-Chiron’s wf-Database, there may be data 
from past executions for a same workflow. 

The main advantage of storing monitoring results in the wf-
Database (and adequately linking the results with the remainder of 
the data already stored in this database) whenever a monitoring 
query result is executed is that users are able to query the results 
immediately after their generation. The wf-Database can also 
serve as data source for data visualization applications. To store 
monitoring results in the wf-Database, we add another table: 
Monitoring_Query_Result, shown in Table 5. 

Table 5. Monitoring_Result table description.  
Column name Description 

monitoring_result_id Auto increment identifier 

monitoring_id Relationship with the monitoring query 
that generated this result 

monitoring_values Results of the monitoring_query 

result_type 
Data type of the result values of both 
queries. Currently, “Integer”, “Double”, 
“Array[Integer]”, and “Array[Double]” 

 

Similar to what we did for the Steer module, we also developed 
the module Monitor to facilitate utilization. The Monitor should 
start at any cluster node that is able to access the distributed 
database system and should start after the workflow execution has 
begun, whenever users want to monitor the workflow execution. 

Similar to what we did for the Steer module, we also developed 
the module Monitor to facilitate utilization. The Monitor should 
start at any cluster node that is able to access the distributed 
database system and should start after the workflow execution has 
begun, whenever users want to monitor the workflow execution. 
A command line starts the Monitor module that runs in 
background. It establishes a connection with the distributed 
database system (connection settings are provided in the XML 
configuration file). Chiron (and d-Chiron) makes use of this XML 
file to define the workflow design, workflow general settings, and 
other user-defined variables. Then, the Monitor program keeps 
querying the Monitoring_Query table at each 𝑠 to check if a 
new monitoring query was added. The default value for 𝑠 is 30s, 
as the time interval to check if monitoring queries were added or 
removed. However, users can customize this. After the Monitor 
has started, users can add (or remove) monitoring queries to (or 
from) the Monitoring_Query table. Currently, users can add 
monitoring queries using a command line to inform the SQL 
query to be executed at each time interval and the time interval.  
Whenever the Monitor module identifies that the user added a 
new monitoring query, it launches a new thread. Each thread is 
responsible for executing each monitoring query in 
Monitoring_Query at each defined time interval. A thread is 
finished when a monitoring query is removed or when the 
workflow stops executing (in that case, all threads are finished). 
Figure 3 shows the steps executed at each time interval.  
1. Execute the monitoring query 𝑚𝑞!  
2. Store query results in the wf-Database 
3. Reload all information for 𝑚𝑞!    from the wf-Database for the next 

time iteration. The user could have adapted any of this information. 
4. Wait for 𝑑!  seconds 

Figure 3. Steps executed by each thread within a time interval. 

To enable all these monitoring capabilities and human-adaptation, 
three of these steps represent queries to the wf-Database, 
including reads and writes. The stored results can be further 
analyzed a posteriori or, more interestingly, used as input for 
runtime data visualization tools, since results are immediately 
made available after they are generated. 

Another contribution of this paper is that we add three concepts to 
PROV-Wf [2], which is W3C PROV-compliant [15]. Our main 
motivations to adhere to the W3C PROV recommendations are to 
help on query specification, to maintain compatibility between 
different SWMS and facilitate interoperability between different 
databases. 

These concepts are: UserQuery, MonitoringQuery, and 
MonitoringResult, as in Figure 4. Using PROV nomenclature, 
UserQuery is a PROV Activity that stores the user queries that 
remove sets of tuples and thus influence the state of the associated 
tasks (i.e., remove them). MonitoringQuery is a PROV Activity 
that contains the monitoring queries submitted by the user in 
specific time intervals. The monitoring queries generate PROV 
Entity MonitoringResult that stores the query results. 
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6. EXPERIMENTAL VALIDATION 
In this section, we validate our solution (for online data reduction 
and adaptive monitoring) based on a real data. In Section 6.1, we 
show the experimental setup, Section 6.2 shows a test case where 
an expert monitors the execution and removes slices of the 
dataset. In Section 6.3, we analyze the added overhead.  

6.1 Experimental setup 
Scientific workflow. As a proof of concept for this work, we use 
a synthetic parameter sweep workflow of the Riser Fatigue 
Analysis example (see Figure 1), which is based on a real case 
study. The workflow manipulates approximately 300 GB of raw 
data. In all executions, we use the same dataset, which spans over 
approximately 12,000 data elements to be processed in parallel. 
Depending on the workflow activity, tasks may take few seconds 
(e.g., Activity 7) or up to one minute on average (e.g., Activity 3). 

Software. In all executions, we use d-Chiron [21], which uses 
MySQL Cluster 7.4.9 as its in-memory distributed database 
system to manage the wf-Database. The code to run d-Chiron and 
setup files are in github.com/hpcdb/d-chiron. 

Hardware. The experiments were conducted in Grid5000 using a 
cluster with 39 nodes, containing 24 cores each (936 cores). Every 
node has two AMD Opteron 1.7 GHz 12-core processors, 48GB 
RAM, and 250GB of local disk. All nodes are connected via 
Gigabit Ethernet and access a shared storage of 10TB. 

6.2 Test case 
Let us consider the following scenario. Peter is an offshore 
engineer, expert in riser analysis and learned how to set up 
monitoring, analyze d-Chiron’s wf-Database, and use the Steer 
module developed in this work. In Peter’s project, the Design 
Fatigue Factor is set to 3 and service life is set to 20 years, 
meaning that fatigue life must be at least 60 years (see from 
Section 2). Peter is only interested in analyzing risers with low 
fatigue life values, because they are critical and might need repair 
or replacement. During workflow execution, it would be 
interesting if Peter could inform the SWMS, which input values 
would lead to low risk of fatigue, so they could be removed. 
However, this is not simple because it is hard to determine the 
specific range of values (i.e., the slice to be removed). For this, 
Peter first needs to understand the pattern of input values 

associated to low risk of fatigue life values. In the workflow 
(Figure 1), the final value of fatigue life is calculated in Activity 
6, but input values are obtained as output of Activity 1, gathered 
from raw input files. Keeping provenance is essential to associate 
data from Activity 1 with data from Activity 6. 

To understand which input values are leading to high fatigue life 
values, Peter monitors the generated data online. For simplicity, 
we consider wind speed, which is only one out of the many 
environmental condition parameter values captured by Activity 1 
to serve as input for Activity 2. Peter knows that wind speed has a 
strong correlation with fatigue life in risers. He expects that with 
low speed winds, there is a lower risk of accident. 

When workflow execution starts, the Monitor module is  
initialized. Then, Peter adds two monitoring queries: 𝑚𝑞!   shows 
the average of the 10 greatest values of fatigue life calculated in 
the last 30s of workflow execution, setting 𝑑!   =   30s; and 𝑚𝑞!  
shows the average wind speed associated to the 10 greatest values 
of fatigue life calculated in the last 30s, also setting the query 
interval 𝑑!   =   30s. We recall from Table 1 that 𝑚𝑞! is similar to 
𝑄1, but only considering data processed in the last 30s. 𝑚𝑞! and 
𝑚𝑞!  queries are added to the Monitoring_Query table.  

Peter monitors the results using the Monitoring_Result table. 
These results can be a data source for a visualization that plots 
dashboards dynamically, refreshed according to the query 
intervals. After gaining insights from the results and 
understanding patterns, he can start removing the undesired values 
for wind speed. The monitoring query results 𝑚𝑞𝑟!! and 
𝑚𝑞𝑟!!  for the two previously listed queries, as well as when the 
user reduced the data, are plotted along the workflow elapsed 
time, as shown in Figure 5. It presents 𝑚𝑞𝑟!!  in full black line 
with square markers and 𝑚𝑞𝑟!! in full gray line with triangle 
markers. These markers determine when the monitoring occurred.  

The workflow execution starts at 𝑡   =   0, but only after 
approximately 150s, the first output results from Activity 6 starts 
to be generated. From the first results, at 𝑡   =   150    and 𝑡 = 180, 
Peter checks that when wind speed is less than 16 Km/h (see 
horizontal dashed line in 𝑤𝑖𝑛𝑑  𝑠𝑝𝑒𝑒𝑑   =   16 in Figure 5), the 
results lead to the largest fatigue life values. Since risers with 
large fatigue life values are not interesting in this analysis, he 
decides, at 𝑡   =   190, to remove all input data elements that 

Figure 4. Extended PROV-Wf data module to accommodate modified tasks and monitoring 
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contain wind speed less than 16 Km/h. For this, the first user 
query 𝑞! is issued with a command line to the Steer module. 
User queries are represented with circles in the horizontal axis 
(Elapsed time) in Figure 5. The exact time a user issued an 
interaction query is stored in User_Query table. 

The next markers after 𝑞! happens at 𝑡   =   210. Comparing with 
the previous monitoring mark, at 𝑡   =   180, we can observe that 
this Peter’s steering (𝑞!) increases the minimum wind speed 
values to be considered from 14.2 Km/h to 24.1 Km/h. Also, we 
observe a significant decrease in the slope of the largest values for 
fatigue life (10.6% lower). This means that the removal of these 
input data containing wind speed less than 16 Km/h made the 
SWMS not process data containing low wind speed values, which 
would lead to larger fatigue life results. 

Then, monitoring continues, but that slope decrease calls Peter’s 
attention. To obtain a finer detail of what is happening, he decides 
to adjust the monitoring interval time (𝑑!  and 𝑑!) at runtime, by 
reducing to 10s to get monitoring feedbacks more frequently. We 
can observe that for both lines 𝑚𝑞𝑟!!  and 𝑚𝑞𝑟!!, the markers 
become more frequent during 𝑡   =    [220, 270]. This is because a 
monitoring is registered at every 10s. We highlight that, although 
in test use case we are only showing monitoring correlating wind 
speed and fatigue life, other monitoring correlations could also be 
analyzed and users can add, remove or adjust monitoring queries 
at any time during execution. 

After verifying that the results are reasonable, Peter decides to 
increase back the monitoring query intervals for both queries to 
30s after 𝑡   =   270. He then observes that since 𝑞!, wind speed 
less than 25 Km/h are leading to large fatigue life values. 

Then, at 𝑡   =   310, he calls Steer again to issue 𝑞! that removes 
input data for wind speed < 25 Km/h. The next markers after 
𝑞!  shows that this steering made the wind speed value associated 
to large fatigue life be at least 30.5 Km/h and a decrease of 6.5% 
in large fatigue life values between 𝑡   =   300  𝑎𝑛𝑑  𝑡   =   330. 

Similarly, Peter continues to monitor and steer the execution. He 
issues 𝑞!  at 𝑡   =   370 to remove input data with wind speed < 
30.5 Km/h, making a decrease of 4.9% in large fatigue life 
(comparing fatigue life in 𝑡   =   360 and 𝑡   =   390). Then, he 
issues 𝑞!  at 𝑡   =   430 to remove input data with wind speed < 
34.5, attaining a decrease of 1.7% in large fatigue life (comparing 
fatigue life in 𝑡   =   420 and 𝑡   =   450). Despite this small 
decrease, he decides at t = 520 to further remove data, but with 
wind speed < 35.5 Km/h. However, no decrease greater than 1% 

in the large fatigue life values was registered after this last Peter’s 
steering. Thus, he keeps analyzing the monitoring results, but does 
not remove input data anymore until the end of execution.  

We store each interaction in the User_Query table and map (in 
table Modified_Task) its rows with rows in the Task table, to 
consistently keep provenance of which tasks were modified (in 
this case, removed) by each specific user steering. Thus, keeping 
provenance of user steering helps analyzing how specific 
interactions impacted the results. Figure 5 shows that some 
specific interactions imply significant changes in lines’ slopes. 
Queries on the wf-Database can show finer details about how 
many tuples each user interaction made the SWMS not process, as 
shown in Table 6. Each issued time follows Figure 5 and is 
registered with the timestamp of when the first activity started. 

Table 6. Provenance of slices removed by the user 
Inter
act. 

Issued 
time (s) Slice query Number of removed 

data elements  

𝑞! 190 wind_speed < 16 623 

𝑞! 310 wind_speed < 25 373 

𝑞! 370 wind_speed < 30 355 

𝑞! 430 wind_speed < 34.5 115 

𝑞! 520 wind_speed < 35.5 3 

Finally, we run the exact same workflow and input datasets, but 
with no monitoring or interactions to compare how such slice 
removals help decrease overall execution time. The workflow 
with no interaction processes all input data, including those 
containing wind speed values that lead to risers with low risk of 
fatigue, which are not considered in Peter’s analyses. In total, 
Peter’s steering yields the removal of 1469 input data elements 
(out of approximately 12,000). This reduces the execution time 
for this test case by 37% compared with no steering. Furthermore, 
these removed input data would make the workflow process and 
generate more raw data files if the input data elements were not 
removed. By querying the wf-Database in the end of execution, 
we found that the execution with no user steering processed 
approximately 300GB of raw data files, whereas with steering the 
total was 258GB, representing 14% of data reduction. 

6.3 Analyzing monitoring overhead 
A monitoring query 𝑚𝑞! in {𝑄} is run by a thread at each 𝑑! 
seconds. Depending on the number of threads (|{𝑄}|) and on the 
interval 𝑑! there may be too many concurrent accesses to the wf-
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Figure 5. Use case plot to analyze impact of user steering comparing Wind Speed (input) with Fatigue life (output).  
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Database, which may add overhead. The goal of this experiment is 
to analyze such overhead. 

We set up the Monitor module to run queries, which are 
variations of the queries 𝑄1-𝑄7 presented in Table 1 and Table 2. 
For example, in 𝑄2, we vary the curvature value. We also modify 
them to calculate only the results over the last 𝑑 seconds, at each 
𝑑 seconds. To evaluate the overheads, we measure execution time 
without monitoring and then with monitoring, but varying the 
number of queries |{𝑄}| and the interval 𝑑, which is considered 
the same for all queries in {𝑄} in this experiment. The 
experiments were repeated until the standard deviation of 
workflow elapsed times was less than 1%. The results are the 
average of these times within the 1% margin. Figure 6 shows the 
results, where the gray portion represents the workflow execution 
time when no monitoring is used; and the black portion represents 
the difference between the workflow execution time with and 
without monitoring (i.e., the monitoring overhead). 
From these results, we observe that when the interval 𝑑 is equal to 
30s, the overhead is negligible. When the interval is 1s, the 
overhead is higher when the number of monitoring threads is 
greater. This happens because three queries are executed in each 
time interval (see Figure 3), for each thread. In the scenarios with 
30 threads, there will be 120 queries in a single time interval 𝑑. In 
that case, if 𝑑 is small (e.g., 𝑑 = 1), there are 120 queries being 
executed per second, just for the monitoring. The database that is 
queried by the monitors is also frequently queried by the SWMS 
engine, thus adding higher overhead. However, even in this 
specific scenario that shows higher overhead (|{𝑄}| = 30 and 
𝑑 = 1), it is only 33s or 3.19% higher than when no monitoring is 
used. Most of the real monitoring cases do not need such frequent 
(every second) updates. If 30s is frequent enough for the user, 
there might be no added overhead, like in this test case. 

We also evaluated the same scenarios without storing monitoring 
results in the wf-Database, but rather appending in CSV files, 
which is simpler. The results are nearly the same as in Figure 6. 
This suggests storing all monitoring results in the wf-Database at 
runtime, which enables users to submit powerful queries as they 
are generated, with all other provenance data. This would not be 
possible with a solution that appends data to CSV. 

7. RELATED WORK 
Considering our contributions, we discuss the SWMS with 
parallel capabilities with respect to human adaptation (especially 
data reduction), online provenance support, and monitoring 
features.  

Although online human adaptation is the core of computational 
steering, there are few parallel SWMS [11][12][19] that support it. 
These solutions have monitoring services and are highly scalable, 
but do not allow for online data reduction as a means to reduce 
overall execution time. WorkWays [16] is a powerful science 
gateway that enables users to steer and dynamically reduce data 

being processed online by dimension reduction or by reducing the 
range of some parameters, sharing similar motivations to our 
work. It uses Nimrod/K as its underlying parallel workflow 
engine, which is an extension of the Kepler workflow system [1]. 
WorkWays presents several tools for user interaction in human-in-
the-loop workflows, such as graphic user interfaces, data 
visualization, and interoperability among others. However, 
WorkWays does not provide for provenance representation and 
users do not have query access to simulation data, execution data, 
metadata, and provenance, all related in a database, which limits 
the power of online computational steering. For example, it 
prevents ad-hoc data analysis using both domain and workflow 
execution data, such as those presented in Table 1 and Table 2, 
which support the user in defining which slice of the dataset 
should be removed. In contrast, our work uses a robust in-memory 
distributed database system to manage and relate analytical data 
involved in the workflow execution. Moreover, the lack of 
provenance data support in WorkWays, either online or post-
mortem, does not support reproducibility and prevents from 
registering user adaptations, missing opportunities to determine in 
detail how specific user interactions influenced workflow results. 
Another notable SWMS example is WINGS/Pegasus [9], which 
especially focus on assisting users in automatic data discovery. It 
helps generating and executing multiple combinations of 
workflows based on user contraints,  selecting appropriate input 
data, and eliminating workflows that are not viable. However, it 
differs from our solution in the sense that it tries to explore 
multiple workflows until finding the most suitable one, whereas 
we often model our experiments as one single scientific workflow 
to be processed. Also, it does not aim at putting users in the loop 
to actively eliminate subsets of an input dataset, especially based 
on extensive ad-hoc intermediary data analysis online. 
Additionally, as WorkWays, provenance data is not collected 
online, nor is it integrated with domain-specific and execution 
data for enhanced analysis. 

While human adaptation is less explored in parallel SWMS, 
monitoring is widely supported in several existing SWMS 
[13][14]. For example, Pegasus [5] and Triana may be integrated 
to analytical tools such as Stampede [10][22], which provides a 
framework to monitor workflow executions and has rich 
capabilities for online performance monitoring, troubleshooting, 
and debugging. However, in these solutions, it is not possible to 
monitor workflow execution data associating them to provenance 
and domain data, as we do using queries to the wf-Database. To 
the best of our knowledge, there is no related work that allows for 
online data reduction based on a rich analytical support with 
adaptive monitoring and provenance registration of human 
adaptations in scientific workflows. These features allow for 
performance improvements of scientific workflows, while 
keeping data reduction consistency and provenance queries that 
can show the history of human-in-the-loop actions and results. 

8. CONCLUSION 
This work contributes to putting the human in the loop of 
scientific workflow systems, especially when users can actively 
steer and reduce data online to improve performance. As a 
solution to the input data reduction problem, we made use of a 
tuple-oriented algebraic approach that organizes workflow data to 
be processed as sets of tuples stored in a wf-Database, managed 
by an in-memory distributed database system at runtime. We 
developed a mechanism coupled to d-Chiron, a distributed version 
of Chiron SWMS, which allows for reducing data, while 
maintaining both data integrity and execution consistency. A 
major challenge to the problem of data reduction is to address 

 
Figure 6. Results of adaptive monitoring overhead. 
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which subset of the data should be removed. As a solution to this, 
we proposed an adaptive monitoring approach that aids users in 
analyzing partial result data at runtime. Based on the evaluation of 
input data elements and its corresponding results, the user may 
find which subset of the input data is not interesting for a 
particular execution, hence can be removed. The adaptive 
monitoring allows users not only to follow the evolution of the 
workflow, but also to dynamically adjust monitoring aspects 
during execution. We extended our previous workflow 
provenance data model to be able to represent provenance of the 
online data reduction actions by users and the monitoring results. 
Although we implemented our solution in d-Chiron, other SWMS 
could be used if provenance, execution, and domain dataflow data 
are managed in a database at runtime. 
To validate our solution, we executed a data-intensive parameter 
sweep workflow based on a real case study from the oil and gas 
industry, running on a 936-cores cluster. A test case demonstrated 
how the user can monitor the execution, dynamically adapt 
monitoring settings, and especially remove uninteresting data to 
be processed, all during execution. Results for this test case show 
that the user interactions reduced the execution time by 37% 
comparing with the execution that processed the whole dataset. 
Although the test case was from the oil and gas domain, any other 
workflow application could have been used, as long as a domain 
expert can tell which slice is not interesting, removed with no 
harm to the final results. 
To the best of our knowledge, this is the first work that explores 
user-steered online data reduction in scientific workflows steered 
by ad-hoc queries and adaptive monitoring, while maintaining 
provenance of user interactions. The results motivate us to extend 
our solution and explore different aspects that can be adapted by 
humans based on sophisticated workflow data analysis support. 
Our solution is currently dependent on the domain expert’s 
knowledge to identify correlations between input and output data 
to determine which subsets are uninteresting. We plan to address 
in-situ data visualization based on the adaptive monitoring and 
interactive queries results and develop recommendation models to 
suggest correlations based on history stored in the wf-Database. 
Other future work include: enabling users to set priorities to 
different slices of the data in a way that the SWMS system will 
process critic slices before; improving usability of the system by 
developing intuitive user interfaces to decrease the learning curve, 
especially related to the query interface, to take full advantage of 
the wf-Database. We also plan to expand our experiments and 
analyze how reducing each specific type of data (relation tuples, 
raw data files not processed and not generated) impact final 
results. 
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