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An argumentation workflow for reasoning
in Ontology Based Data Access

Bruno YUN®, Madalina CROITORU Bl
& INRIA Graphik/LIRMM University Montpellier, France

Abstract. In this paper we demonstrate how to benefit from structured argumenta-
tion frameworks and their implementations to provide for reasoning capabilities of
Ontology Based Data Access systems under inconsistency tolerant semantics. More
precisely, given an inconsistent Datalog® knowledge base we instantiate it using
the ASPIC™ framework and show that the reasoning provided by ASPICT is
equivalent to the main inconsistent tolerant semantics in the literature. We provide
a workflow that shows the practical interoperability of the logic based frameworks
handling Datalog® and ASPICT .
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Introduction and Motivation

Ontology Based Data Access (OBDA) is a popular setting used by many Semantic Web
applications that encodes the access to data sources using an ontology (vocabulary) |17,
1819]. The use of the ontology will help obtain a unified view over heterogeneous data
sources. Moreover, the ontology will enable the exploitation of implicit knowledge not
explicitly stored in the data sources alone. One of the main difficulties in OBDA consists
in dealing with potentially inconsistent union of facts (data sources). Reasoning with
inconsistency needs additional mechanisms because classical logic will infer everything
out of falsum. It is classically assumed (and a hypothesis that we will also follow in
this paper) that the inconsistency in OBDA occurs at the fact level and not due to the
ontology [17/189]]. The facts are error prone due to their unrestrained provenance while
ontologies are considered agreed upon as shared conceptualisations.

We consider here two main methods of handling inconsistency. On one hand (and
inspired from database research) we consider repair based techniques. A repair is a max-
imally consistent set of facts. Reasoning with inconsistency using repairs relies on rea-
soning with repairs and combining the results using various methods (called inconsis-
tency tolerant semantics). [S{7013]] Despite them being the mainstream techniques for
OBDA reasoning, the main drawback of inconsistent tolerant semantics is the lack of
implementations excepting a few dedicated approaches to particular semantics [14)6].

A second method consists of using argumentation techniques. A Dung argumenta-
tion system [12] is a pair AS = (A, C), where A is a set of arguments and C C A x A
is a binary attack relation on them.
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In this paper we demonstrate how to benefit from structured argumentation frame-
works and their implementations to provide for reasoning capabilities of OBDA systems
under inconsistency tolerant semantics. More precisely, given an inconsistent Datalog™®
[8] knowledge base we instantiate it using the ASPIC™ framework [13] and show that
the reasoning provided by ASPIC™ is equivalent to the main inconsistent tolerant se-
mantics in the literature. The significance of this work is a proposed workflow that will
enable Datalog® frameworks to handle inconsistencies in knowledge bases by means
of the ASPIC™ framework. We use two frameworks:

e Graal, a Java toolkit dedicated to querying knowledge bases within the frame-
work of Datalog™ and maintained by GraphIK team. Graal takes as input a Dlgp
file and a query and answer the query using various means (saturation, query
rewriting). This toolkit can be found at ht tps://graphik-team.github.
io/graal/l

e ACL’s ASPIC project that takes as input a query and ASPIC™ knowledge base,
i.e. rules (strict and defeasible), ordinary premises, axioms and preferences. The
output is the answer to the query. This inference engine can be found at http:
//aspic.cossac.org/components.htmll

We use Graal’s representation of a knowledge base and construct the necessary input
for the ASPIC™ argumentation inference engine. The difficulty of this work resides in
the definition of the mapping (the contrariness function and the way facts and rules are
handled) that ensures the semantic equivalence proved in the next sections.
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Figure 1. Interoperability Workflow of ACL and Graal.

In Figure [1] the interoperability workflow of the Graal software and the ASPIC™
implementation are shown. Let us detail here how the workflow functions:

e Step 1. The input of the software is a Datalog®™ knowledge base obtained from
the OBDA setting (that considers several data sources unified under the same
ontology). The digp file that encodes this knowledge base (a textual format for
the existential rule / Datalog framework) is parsed by the Graal framework. Each
line in a digp file corresponds either to a fact, existential rule, negative con-
straint or conjunctive query. Please note that a complete grammar of the digp
format is available here: https://graphik—team.github.io/graal/
papers/datalog+_v2.0_en.pdfl
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e Step 2 and 3. The intermediary files are meant to serve as input for the contrari-
ness function computation in Step 3. The contrariness function encodes the con-
flicts between atoms. This will be formally defined in the next section. Please note
that one of the main difficulties of this work is properly defining the contrariness
function such that the produced results are sound and complete with respect to
inconsistent tolerant semantics.

e Querying. The output of this inference engine is the answer to the query w.r.t the
inconsistent knowledge base K = (F, R, N). The soundness and completeness
of the answer with respect to inconsistency tolerant semantics is ensured by the
equivalence results presented in the next section.

The Logical Language: Datalog™

In this section we explain the logical language Datalog™ used throughout the paper. We
define the notion of Datalog™ knowledge base, inconsistent knowledge base and explain
the three inconsistency tolerant semantics mostly used in the literature. Its language L is
composed of formulas built with the usual quantifier (3, V) and only the connectors im-
plication (—) and conjunction (A). We consider first-order vocabularies with constants
but no other function symbol. An atomic formula (or atom) is of the form p(¢y, ..., t,)
where p € P is an n-ary predicate, and ¢1, ..., t,, are terms. Classically, a fact is a ground
atom. We denote by & a vector of variables. An existential rule (or simply a rule) is a
closed formula of the form R = VZVy(B — 3ZH), where B and H are conjuncts,
with vars(B) = £ U ¥, and vars(H) = Z U Z. The variables 2’ are called the existential
variables of the rule R. B and H are respectively called the body and the head of R. We
denote them respectively body(R) for B and head(R) for H. We may sometimes omit
quantifiers and write R = B — H. A negative constraint (or simply a constraint) is a
rule of the form N = VZ(B — 1). Arule R = B — H is applicable to a fact F' if
there is a homomorphism o from B to F'. Let F' be a fact and R be a set of rules. A
fact F is called an R-derivation of F' if there is a finite sequence (called the derivation
sequence) (Fy = F, ..., F,, = F’) such that for all 0 < ¢ < n there is a rule R which is
applicable to F; and F;; is an immediate derivation from F;. Given a fact F' and a set of
rules R, the chase (or saturation) procedure starts from F' and performs rule applications
in a breadth-first manner. The chase computes the closure of F, i.e. CLg(F'), which
is the smallest set that contains F' and that is closed under R-derivation, i.e. for every
R-derivation F’ of F' we have F’ € CLg(F). Given a chase variant C [4], we call C-
finite the class of set of rules R, such that the C-chase halts on any fact F', consequently
produces a finite C' L (F'). We limit our work in this paper to these kind of classes.

Let F' and F’ be two facts. F' |= F” if and only if there is a homomorphism from
F' to F. Given two facts F' and F” and a set of rules R we say F, R |= F’ if and only if
CLg(F) | F’ where |= is the classical first-order entailment [16].

Knowledge base and inconsistency Let us denote by L the language described so far,
A knowledge base K is a finite subset of L. Precisely, K is a tuple (F, R, ) of a finite
set of facts F, rules R and constrains . Saying that K |= F' means CLr(F) = F.
We say a set of facts F is R-inconsistent with respect to a set of constraints A and rules
R if and only if there exists N € N such that CLz (F) | body(N), otherwise F is
R-consistent. A knowledge base K = (F, R, ) is said to be inconsistent with respect



to R and N (inconsistent for short) if F is R-inconsistent. We may use the notation
CLg(F) E L to mean the same thing.

In the area of inconsistent ontological knowledge base query answering, we usu-
ally check what can be inferred from an inconsistent ontology. We usually begin by cal-
culating all maximal consistent subsets of IC called repairs. Given a knowledge base
K = (F,R,N), we call by Repairs(K) the set of all repairs defined as:

Repairs(K) = {F' C F|F' is maximal for C and R-consistent}

Different inconsistency tolerant semantics are used for inconsistent ontology knowl-
edge base query answering (Intersection of All Repairs: IAR, All Repairs: AR, Intersec-
tion of Closed Repairs: ICR); these semantics can yield different results.

Definition 1 [cf [T1]]. Let K = (F, R, N) be a knowledge base and o be a query.

e «is AR-entailed from K: K Eag « iff for Vr € Repairs(K), Clg(r) E o
e o is ICR-entailed from K, written K [=rcr @ iff (e gepairs(c) CIR(T) E o
e «is IAR-entailed from K, written K \=1ar o iff CLR (¢ pepairs(icy T) F @

Structured Argumentation for Datalog™®

In this section we address the problem of how to use structured argumentation for
Datalog® . We show how the ASPIC™ framework can be instantiated to yield results
equivalent to the state of the art in OBDA inconsistency tolerant semantics. We define
the first instantiation in the literature of ASPIC™ using Datalog® .

ASPICT [13] is a framework for obtaining logical based argumentation system
using any logical language L. It is meant to generate an abstract argumentation frame-
work and was created because abstract argumentation does not specify the structure of
arguments and the nature of attacks. ASPICT is meant to provide guidance to those
aspects without losing a large range of instantiating logics. Before going any further we
will provide a few basic abstract argumentation notions needed later in this section. We
consider AS = (A, C), where A is a set of arguments and C C A X A is a binary attack
relation on them. We say that the argument a € A is acceptable w.r.t a set of arguments
e C Aiff Vb € A such that (b,a) € C,3c € € such that (¢,b) € C. ¢ is conflict-free iff
Aa,b € esuch that (a,b) € C. € is admissible iff ¢ is conflict-free and all arguments of €
are acceptable w.r.t €. € is preferred iff it is maximal (for set inclusion) and admissible. €
is stable iff it is conflict-free and Va € A\e,3b € ¢ such that (b, a) € C. € is complete iff
it contains all arguments that are acceptable w.r.t €. ¢ is grounded iff it is minimal (for set
inclusion) and complete. Reasoning takes place on the various ¢ (also called extensions).
Following [13]], to use ASPIC™ , we need to choose a logical language £ closed under
negation (—), provide a set of rules R = R4 U R, composed of defeasible rules and
strict rules with Rq MR, = (), specify a contrariness function cf : £ — 2 and a partial
naming function n : R4 — L that associates a well-formed formulas of £ to a defeasible
rule. The function n will not be used in this instantiation. In ASPIC™ an argumentation
system is a triple AS = (£, R,n) and a knowledge base is X C L consisting of two
disjoint subsets C,, (the axioms) and /C,, (the ordinary premises).



To instantiate ASPIC for Datalog™ , we define £ as Datalog® , rules in defini-
tion[2]and the contrariness function in definition[3] Please note that definition[4] and[7] are
new w.r.t. state of art regarding Datalog® instantiations conform [15].

Definition 2 Strict rules (resp. defeasible rules) are of the form V2Ny(B — 3ZH) (resp.
VZVy(B = 3ZH) ) with B, the body and H, the head are atoms or conjunction of atoms
with vars(B) = Z U ¢, and vars(H) = £ U Z.

Definition 3 [[I5]]. The function cf is a function from L to 2* such that:

® s the contrary of Y if ¢ € cf(¢), ¢ & cf(p)
®  is the contradictory of Y if ¢ € cf (), € cf(y)
e Each ¢ € L has at least one contradictory.

We define our own contrariness function to instantiate ASPIC™ for Datalog*®
(L = Datalog™ ). This contrariness function is necessary because it is used in the attack
relation. It is worth noting that the idea that we want to capture (as also defined in [[1])
is that z is the contrary of y iff they cannot be both true but they can be both false. They
are contradictory if the truth of one implies the falsity of the other and vise versa.

Definition 4 (Datalog™ contrariness function) Let a € L and b be a conjunction of
atoms. b € cf(a) iff I an atom such that a |= 1 and {b,} is R-inconsistent.

Here we recall that an ASPIC™ argument can be built from axioms and ordinary
premises or from rules and other arguments. The arguments are built once R4, R, cf
and C are known.

Definition 5 (Argument cf [15]) Arguments in ASPIC™ can be in two forms:

o () — c(resp. ) = c) withc € K, (resp. ¢ € K, or 0 = ¢ € Ry) such that
Prem(A) = {c},Conc(A) = ¢,Sub(A) = {A} with Prem returns premisses
of A and Conc returns its conclusion.

DefRules(A) = 0.

o Ay,..., A, — c(resp. Aq,...,Ap, = c), such that there exists a strict (resp.
defeasible) rule r = B — H (resp. r = B = H) and a homomorphism o from
Bito X = Conc(Ay) A Conc(A) A -+ A Conc(Ap).

Prem(A) = Prem(A;) U...U Prem(An,),

Conc(A) =c=a(X,r,0),

Sub(A) = Sub(A1) U ...USub(A,,) U{A},

TopRule(A) = ruler = B — H (resp. r = B = H), such that there exists an
homomorphism o from B to X.

DefRules(A) = DefRules(A;)U---UDef Rules(Ay,) (resp. Def Rules(A) =
DefRules(A1) U ---U DefRules(Ay,) U{TopRule(A)}).

Attacks in ASPIC™ are based on three notions (undercutting, undermining and re-
butting). Each of those notions are useful as they capture different aspects of conflicts.
In short, arguments can be attacked on a conclusion of a defeasible inference (rebut-
ting attack), on a defeasible inference step itself (undercutting attack), or on an ordinary
premise (undermining attack).



Definition 6 [cf [15]]. Let a and b be arguments, we say that a attacks b iff a undercuts,
undermines or rebuts b, where:

e a undercuts argument b (on V') iff Conc(a) € cf(n(r)) for some b’ € Sub(b)
such that b'’s top rule v is defeasible.

® a rebuts argument b (on V') iff Conc(a) € cf (v) for some b’ € Sub(b) of the
form b, ... b, = .

® a undermines b (on ) iff Conc(a) € cf (¥) for an ordinary premise 1) of b.

We are now ready to define the mapping that allows the instantiation of ASPIC™
with Datalog® . The mapping will consider each fact as a defeasible rule because the
inconsistency in the OBDA setting is assumed to come from the facts level. Therefore
the only attack we consider in this instantiation is the undermine attack because we have
simple defeasible rules. The rules of the ontology become strict rules.

Definition 7 (Mapping For ASPIC™ Instantiation of Datalog® ) We denote by S
the set of all possible inconsistent knowledge bases of the form K = (F,R,N') and G the
set of all ASPIC™ instantiation using Datalog® language. The mapping 7 : S — G is
defined as follows:

1. The mapping T associates every R-consistent subset I; C F to its defeasible
rule ) = conjunct(F;) where conjunct(F;) denotes the conjunction of facts
contained in F;.

2. The mapping T associates every rules r; € R to the same rule r; € Rs.

We will considerate that if ) = ¢, then c is an ordinary premise (¢ € K,,).

In order to give properties of the ASPIC™ instantiation presented in this paper
we remind few notions. € is admissible iff ¢ is conflict-free and all arguments of ¢ are
acceptable w.r.t €. ¢ is preferred iff it is maximal (for set inclusion) and admissible. ¢ is
stable iff it is conflict-free and Va € A\e, 3b € ¢ such that (b,a) € C.

We denote by AFZ the ASPIC™ argumentation framework constructed from K
using the mapping of definition |7, We restate that attacks in AF,’C4 are composed only
of undermining because we only have simple defeasible rules of the form () = c. The
following lemma shows that stable extensions are closed under sub-arguments in the
Datalog® instantiation of ASPICT .

Lemma 1 Let € be an ASPIC™ stable extension and A € € an argument contained in
e. Then Sub(A) C .

Notation Let ¢ = a1 A ag A -+ A ay, be a conjunction of facts. Elimination(c) =
{a1,a9,...,a,} is the set resulting from eliminating the conjunction of c. Let S be a
set of facts. We denote by P(.5) the superset of S which correspond to all subsets of .S.

We can now define the set of arguments constructed on a consistent set of facts.

Definition 8 Let K = (F, R, N) be a knowledge base and AF{ be the corresponding
ASPIC™ instantiation and S C F a R-consistent subset of F. We denote by Arg”(S)
the set of arguments such that their premises are contained in S. Formally:



Arg?(S) = {ASPIC™ argument a| U Elimination(c) C P(S)}

cePrem(a)

The main result shows that the set of stable extension coincides with the set of pre-
ferred one and it is obtained from the arguments built on repairs.

Theorem 1 (Repair Equivalence for ASPIC™ Instantiation) Ler K = (F,R,N)
be a knowledge base, AF{ be the corresponding ASPIC™* instantiation and o €
{preferred, stable}. Then:

{ArgA(R)|R € Repair(K)} = Ext, (AF,é)

The state of the art can also provide a structured argumentation framework of
Datalog™ [11I10]. Let K = (F,R,N') be a knowledge base, we denote by AF the
instantiated logical argumentation framework (A, C) with A = Arg(F) and C defined
in [L1410]]. According to [11]] the arguments constructed on the set of repairs coincide
with the arguments in the stable and preferred extension: { Arg(R)|R € Repair(K)} =
Ext,(AF). We can thus conclude that the preferred/stable extensions in the two in-
stantiated frameworks are the same and that for each stable/preferred extension of one
framework, there is a corresponding stable/preferred extension in the other and vice-
versa. This is formalized in the theorem below.

Theorem 2 (Instantiations Equivalence) Let K = (F,R,N) be a knowledge base,
AF % and AF ,’é be the two argumentation framework instantiations. Then if o €
{preferred, stable}, |Ext,(AFM)| = |Ext,(AFE)| and for each extension under se-
mantics o,¢ € Ext,(AFM), there is a corresponding extension €3 € Ext,(AF) and
vice-versa (the corresponding extension can be found via repairs).

Conclusions

In this paper we demonstrated how to benefit from structured argumentation frameworks
and their implementations to provide for reasoning capabilities of OBDA systems un-
der inconsistency tolerant semantics. More precisely, given an inconsistent Datalog™®
knowledge base we instantiated it using the ASPIC™ framework and showed that the
reasoning provided by ASPIC™ is equivalent to the main inconsistent tolerant seman-
tics in the literature. A workflow of interoperability between ASPIC™ ACL framework
and Graal Datalog® framework was thus formally underpinned. In future work we are
interested in exploiting this workflow for the explanation capabilities of inconsistent tol-
erant semantics [2//3].
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