
HAL Id: lirmm-01408621
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01408621v1

Submitted on 5 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Demonstration of the CloudMdsQL Multistore System
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo

Jiménez-Peris, Raquel Spain, José Pereira

To cite this version:
Boyan Kolev, Carlyna Bondiombouy, Patrick Valduriez, Ricardo Jiménez-Peris, Raquel Spain, et
al.. Demonstration of the CloudMdsQL Multistore System. BDA: Gestion de Données - Principes,
Technologies et Applications, Nov 2016, Poitiers, France. �lirmm-01408621�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01408621v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Demonstration of the CloudMdsQL Multistore System

Boyan Kolev
Inria and LIRMM

Montpellier, France

Carlyna Bondiombouy
Inria and LIRMM

Montpellier, France

Patrick Valduriez
Inria and LIRMM

Montpellier, France

Ricardo Jiménez-Peris
LeanXcale and UPM

Madrid, Spain

Raquel Pau
Sparsity Technologies

Barcelona, Spain

José Pereira
INESC TEC and U. Minho

Braga, Portugal

The blooming of different cloud data management infras-
tructures, specialized for different kinds of data and tasks,
has led to a wide diversification of DBMS interfaces and the
loss of a common programming paradigm. This has turned
multistore systems to a major topic in the nowadays cloud
landscape.

In this demonstration, we present Cloud multidatastore
query language (CloudMdsQL) [1], a functional SQL-like
language, designed for querying multiple heterogeneous data-
bases (e.g. relational and NoSQL) within a single query con-
taining nested subqueries. Each subquery addresses directly
a particular data store and may contain embedded invoca-
tions to the data store’s native query interface. Thus, the
major innovation is that a CloudMdsQL query can exploit
the full power of local data stores, by simply allowing some
local data store native queries to be called as functions, and
at the same time be optimized based on a simple cost model,
e.g. by pushing down select predicates or using bind join.

One of the major challenges in front of the CloudMdsQL
language/engine is to allow joins across heterogeneous data
stores and to be able to perform them in an efficient way.
For this reason, we pay special attention to the use of bind
joins and we apply this technique even when native queries
are used.

This demonstration concentrates on a CloudMdsQL use
case scenario: a social network analysis tool for marketing
companies. The use case aims at finding the communities in
a social network, for a specific set of topics, with their top
influencers. Marketing companies are interested in discov-
ering the people they need to convince about the quality of
a specific brand. The dataset of this use case is a sample of
Twitter, but it allows working with other social networks like
Facebook or blogs. The application runs a Twitter listener
of a set of topics in real-time; it modifies the database for
each tweet it receives. The schema of this application con-
tains a generic entity called Document to store text-items
(tweets, messages, etc.), which can appear copies or refer-

(c) 2016, Copyright is with the authors. Published in the Proceedings of the
BDA 2016 Conference (15-18 November, 2016, Poitiers, France). Distri-
bution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
(c) 2016, Droits restant aux auteurs. Publié dans les actes de la conférence
BDA 2016 (15 au 18 Novembre 2016, Poitiers, France). Redistribution de
cet article autorisée selon les termes de la licence Creative Commons CC-
by-nc-nd 4.0.
BDA 2016, 15 au 18 Novembre, Poitiers, France.

ences. An Entity (person or company) is an author of a doc-
ument or a mention of a social-network account. The peo-
ple interactions in social networks with copies, references or
mentions, can be understood as a set of graph of influences.
In other words, we can infer who influences who and about
what. These Influences and the Communities are incremen-
tally computed when a new tweet comes to the application
and thus, these concepts are part of the application schema.

The specification of the main query the application uses
is as follows: given a set of keywords k1, k2, k3, find the
10 biggest communities and, for each community, find the
20 most influencers. For each of these influencers, the sys-
tem must return the number of influenced entities inside the
community, the influencer’s id, name and account creation
date and the last published document.

In order to implement this use case, we use a graph data-
base (Sparksee) to store the graph of Influences and compute
the Communities; a relational database (MonetDB) for all
the basic information about Entities and Documents (only
metadata); a document database (MongoDB) to store the
Document contents; and a key-value data store (HBase) to
index communities per keyword. Following the execution
plan for the CloudMdSQL query, the query engine first in-
vokes an HBase query to retrieve the communities prelimi-
narily computed for a specific keyword; then, for each com-
munity, runs a Sparksee query using the Sparksee Python
API to find the top 20 influencers, the number of influenced
entities inside the community, and the maximum influence
propagation depth. Finally, the basic information of each
influencer (id, name, account creation date) and the last
published document is retrieved by running queries to Mon-
etDB and MongoDB.

For the execution plan, the query optimization plays an
important role to assign the bind join method to all the join
operations. The reason is that the selected communities rel-
evant to the keywords k1, k2 and k3 are always a few, and
thus the Sparksee query is evaluated only for a few commu-
nities, which significantly reduces the number of executions
of expensive graph computations.

1. REFERENCES
[1] B. Kolev, P. Valduriez, C. Bondiombouy,

R. Jiménez-Peris, R. Pau, and J. Pereira. Cloudmdsql:
querying heterogeneous cloud data stores with a
common language. Distributed and Parallel Databases,
34(4):463–503, 2016.


