
HAL Id: lirmm-01409104
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01409104

Submitted on 5 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Extending CloudMdsQL with MFR for Big Data
Integration

Carlyna Bondiombouy, Boyan Kolev, Patrick Valduriez, Oleksandra
Levchenko

To cite this version:
Carlyna Bondiombouy, Boyan Kolev, Patrick Valduriez, Oleksandra Levchenko. Extending Cloud-
MdsQL with MFR for Big Data Integration. BDA: Gestion de Données - Principes, Technologies et
Applications, LIAS / ISAE-ENSMA, Poitiers, Nov 2016, Poitiers, France. �lirmm-01409104�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01409104
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Extending CloudMdsQL with MFR for Big Data Integration ∗

Carlyna Bondiombouy, Boyan Kolev, Patrick Valduriez, Oleksandra Levchenko
Inria and LIRMM

University of Montpellier, France
firstname.lastname@inria.fr

1. INTRODUCTION
Multistore systems [3] have been recently proposed to pro-

vide integrated access to multiple, heterogeneous data stores
through a single query engine. Compared to multidatabase
systems [6], multistore systems typically trade source au-
tonomy for efficiency, using a tightly-coupled approach. In
particular, much attention is being paid on the integration of
unstructured big data (e.g. produced by web applications)
typically stored in HDFS with relational data, e.g. in a data
warehouse.

Existing solutions to integrate such unstructured and struc-
tured data do not directly apply to solve our problem, as
they rely on having a relational view of the unstructured
data, and hence require complex transformations. SQL en-
gines, such as Hive, on top of distributed data processing
frameworks are not always capable of querying unstructured
HDFS data, thereby forcing the user to query the data by
defining map/reduce functions.

Our approach is different as we propose a query language
that can directly express subqueries that can take full ad-
vantage of the functionality of the underlying data process-
ing frameworks. Furthermore, the language should allow
for query optimization, so that the query operator execu-
tion sequence specified by the user may be reordered by
taking into account the properties of map/filter/reduce op-
erators together with the properties of relational operators.
We respect the autonomy of the data stores and pay special
attention to this throughout our experimental evaluation.

In this short paper (see [2] for the long version), we pro-
pose a functional SQL-like query language (based on Cloud-
MdsQL) and query engine to retrieve data from two dif-
ferent kinds of data stores - an RDBMS and a distributed
data processing framework such as Apache Spark or Hadoop
MapReduce on top of HDFS - and combine them by ap-
plying data integration operators (mostly joins). However,
users need to be aware of how data are organized across

∗Work partially funded by the European Commission under
the Integrated Project CoherentPaaS [1].

(c) 2016, Copyright is with the authors. Published in the Proceedings of the
BDA 2016 Conference (15-18 November, 2016, Poitiers, France). Distri-
bution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.
(c) 2016, Droits restant aux auteurs. Publié dans les actes de la conférence
BDA 2016 (15 au 18 Novembre 2016, Poitiers, France). Redistribution de
cet article autorisée selon les termes de la licence Creative Commons CC-
by-nc-nd 4.0.
BDA 2016, 15 au 18 Novembre, Poitiers, France.

the data stores, so that they write valid queries. The query
therefore contains embedded invocations to the underlying
data stores, expressed as subqueries. As our query language
is functional, it introduces a tight coupling between data
and functions.

2. QUERY LANGUAGE
The query language is based on a more general common

query language, called CloudMdsQL [4], designed in the con-
text of the CoherentPaaS project [1] to solve the problem of
querying multiple heterogeneous databases (e.g. relational
and NoSQL) within a single query while preserving the ex-
pressivity of their local query mechanisms. The common
language itself is SQL-based with the extended capabilities
for embedding subqueries expressed in terms of each data
store’s native query interface. The common data model
respectively is table-based, with support of rich datatypes
that can capture a wide range of the underlying data stores’
datatypes, such as MongoDB arrays and JSON objects, in
order to handle non-flat and nested data, with basic opera-
tors over such composite datatypes.

In this section, we introduce a formal notation to define
Map/Filter/Reduce (MFR) subqueries in CloudMdsQL that
request data processing in an underlying big data processing
framework (DPF). Then we give an overview of how MFR
statements are combined with SQL statements to express
integration queries against a relational database and a DPF.

2.1 MFR Notation
An MFR statement represents a sequence of MFR oper-

ations on datasets. A dataset is considered simply as an
abstraction for a set of tuples, where a tuple is a list of
values, each of which can be a scalar value or another tu-
ple. Although tuples can generally have any number of ele-
ments, mostly datasets that consist of key-value tuples are
being processed by MFR operations. In terms of Apache
Spark, a dataset corresponds to an RDD (Resilient Dis-
tributed Dataset - the basic programming unit of Spark).
Each of the three major MFR operations (MAP, FILTER
and REDUCE) takes as input a dataset and produces an-
other dataset by performing the corresponding transforma-
tion. Therefore, for each operation there should be specified
the transformation that needs to be applied on tuples from
the input dataset to produce the output tuples. Normally,
a transformation is expressed with an SQL-like expression
that involves special variables; however, more specific trans-
formations may be defined through the use of lambda func-
tions.



2.2 Combining SQL and MFR
Queries that integrate data from both a relational data

store and a DPF usually consist of two subqueries (one ex-
pressed in SQL that addresses the relational database and
another expressed in MFR that addresses the DPF) and
an integration SELECT statement. The syntax follows the
CloudMdsQL grammar introduced in [5]. A subquery is de-
fined as a named table expression, i.e. an expression that
returns a table and has a name and signature. The signature
defines the names and types of the columns of the returned
relation. Thus, each query, although agnostic to the un-
derlying data store’ schemas, is executed in the context of
an ad-hoc schema, formed by all named table expressions
within the query. A named table expression can be defined
by means of either an SQL SELECT statement (that the
query compiler is able to analyze and possibly rewrite) or
a native expression (that the query compiler considers as a
black box and passes to the wrapper as is, thus delegating
it the processing of the subquery).

3. EXPERIMENTAL VALIDATION
The goal of our experimental validation is to evaluate the

impact of query rewriting and optimization on execution
time. More specifically, we explore the performance benefit
of using bind join under different conditions.

3.1 Datasets
We generated data to populate the PostgreSQL table sci-

entists, the MongoDB document collection publications,
and text files with unstructured log data stored in HDFS.

3.2 Experimental Results
To evaluate the impact of optimization on query execu-

tion, we use a cluster of the GRID5000 platform (www.grid
5000.fr), with one node for PostgreSQL and MongoDB and
4 to 16 nodes for the HDFS cluster. The Spark cluster,
used as both the DPF and the query processor, is collocated
with the HDFS cluster. Each node in the cluster runs on
16 CPU cores at 2.4GHz, 64GB main memory, and the net-
work bandwidth is 10Gbps. To demonstrate in detail the
optimization techniques and their impact on the query exe-
cution, we prepared 1 query with different selectivity factors
of the bind join condition. We execute the query in three dif-
ferent HDFS cluster setups - with 4, 8, and 16 nodes. Then
we compare the execution times without and with bind join
to the MFR subquery, which are illustrated in each query’s
corresponding graphical chart.

Query 1 involves all the data stores and aims at find-
ing experts for publications of authors with a certain affilia-
tion, it uses the MFR subquery experts_alt , which uses
more sophisticated map functions, but makes only one shuf-
fle, where the key is a keyword. For comparison, the MFR
expression experts makes two shuffles, of which the first
one uses a bigger key, composed of a keyword-author pair.
Therefore, the corresponding Spark computation of Query 1
involves much smaller size of data to be shuffled, which ex-
plains its better overall efficiency and higher relative benefit
of using bind join.

–Query 1.1: selectivity factor 10%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts_alt e

WHERE s.affiliation = ’affiliation1’

AND p.author = s.name AND e.kw IN p.keywords

–Query 1.2: selectivity factor 30%
SELECT p.author, p.title, e.kw, e.expert

FROM scientists s, publications p, experts_alt e

WHERE s.affiliation IN (’affiliation1’,

’affiliation2’, ’affiliation3’)

AND p.author = s.name AND e.kw IN p.keywords

This experimental evaluation illustrates the query engine’s
ability to perform optimization and choose the most efficient
execution plan. The results show the significant benefit of
performing bind join in our experimental scenario, despite
the overhead it produces (see [2]).

4. CONCLUSION
In this short paper, we proposed a functional SQL-like

query language and query engine to integrate data from
relational, NoSQL, and big data stores (such as HDFS).
Our validation demonstrates that the proposed query lan-
guage achieves the following requirements. First, it provides
high expressivity by allowing the ad-hoc usage of specific
map/filter/reduce operators through the MFR notation, as
it was demonstrated with the hdfs subqueries. Second,
it is optimizable as was demonstrated through performing
bind join by rewriting the MFR subquery after retrieving
the dataset from the MongoDB database. Our performance
evaluation illustrates the query engine’s ability to optimize
a query and choose the most efficient execution strategy.

5. REFERENCES
[1] Coherentpaas project. coherentpaas.eu.

[2] C. Bondiombouy, B. Kolev, O. Levchenko, and
P. Valduriez. Multistore big data integration with
cloudmdsql. TLDKS, 28:48–74, 2016.

[3] C. Bondiombouy and P. Valduriez. Query processing in
multistore systems: an overview. International Journal
of Cloud Computing (IJCC), 38, 2016.

[4] B. Kolev, C. Bondiombouy, P. Valduriez,
R. Jiménez-Peris, R. Pau, and J. Pereira. The
cloudmdsql multistore system. In ACM SIGMOD Int.
Conf. on Data Management, pages 2113–2116, 2016.

[5] B. Kolev, P. Valduriez, C. Bondiombouy,
R. Jiménez-Peris, R. Pau, and J. Pereira. Cloudmdsql:
querying heterogeneous cloud data stores with a
common language. Distributed and Parallel Databases,
34(4):463–503, 2016.

[6] M. T. Özsu and P. Valduriez. Principles of Distributed
Database Systems, Third Edition. Springer, 2011.


