
HAL Id: lirmm-01415472
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415472v1

Preprint submitted on 13 Dec 2016 (v1), last revised 9 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Simultaneous conversions with the Residue Number
System using linear algebra

Javad Doliskani, Pascal Giorgi, Romain Lebreton, Eric Schost

To cite this version:
Javad Doliskani, Pascal Giorgi, Romain Lebreton, Eric Schost. Simultaneous conversions with the
Residue Number System using linear algebra. 2016. �lirmm-01415472v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415472v1
https://hal.archives-ouvertes.fr

A

Simultaneous conversions with the Residue Number System using linear
algebra

Javad Doliskani, Institute for Quantum Computing, University of Waterloo

Pascal Giorgi, LIRMM CNRS - University of Montpellier

Romain Lebreton, LIRMM CNRS - University of Montpellier

Eric Schost, University of Waterloo

We present an algorithm for simultaneous conversion between a given set of integers and their Residue

Number System representations based on linear algebra. We provide a highly optimized implementation of

the algorithm that exploits the computational features of modern processors. The main application of our
algorithm is matrix multiplication over integers. Our speed-up of the conversions to and from the Residue

Number System significantly improves the overall running time of matrix multiplication.

CCS Concepts: •Mathematics of computing → Mathematical software performance; Compu-

tations in finite fields; Computations on matrices; •Theory of computation → Design and

analysis of algorithms;

1. INTRODUCTION

There currently exist a variety of high-performance libraries for linear algebra or polynomial
transforms using floating point arithmetic [Whaley et al. 2001; Goto and van de Geijn 2008;
Frigo and Johnson 2005; Püschel et al. 2005], or computations over the integers or finite
fields [Shoup 1995; Bosma et al. 1997; Dumas et al. 2008; Hart 2010].

In this paper, we are interested in the latter kind of computation, specifically in the
context of multi-precision arithmetic. Suppose for instance we work with matrices or poly-
nomials with coefficients that are multi-precision integers, or lie in a finite ring Z/NZ, for
some large N , and consider a basic operation such as the multiplication of these matrices or
polynomials (there exist multiple applications to this fundamental operation; some of them
such as polynomial factorization are illustrated in Section 4.3).

To perform a matrix or polynomial multiplication in such a context, several possibilities
exist. A first approach consists in applying known algorithms, such as Strassen’s, Karat-
suba’s, . . . directly over our coefficient ring, relying in fine on fast algorithms for multi-
plication of multi-precision integers. Another large class of algorithms relies on modular
techniques, or Residue Number Systems, computing the required result modulo many small
primes before recovering the output by Chinese Remaindering. One should not expect ei-
ther of these approaches to be superior in all circumstances. For instance, in extreme cases
such as the product of matrices of size 1 or 2 with large integer entries, the modular ap-
proach highlighted above is most likely not competitive with a direct implementation. On
the other hand, for the product of larger matrices or polynomials, Residue Number Systems
often perform better than direct implementations, and as such, they are used in libraries or
systems such as NTL, FFLAS-FFPACK, Magma, . . .

In many cases, the bottlenecks in such an approach are the reduction of the inputs modulo
many small primes, and the reconstruction of the output from its modular images by means
of Chinese Remaindering; by contrast, operations modulo the small primes are often quite
efficient. Algorithms of quasi-linear complexity have been known for long for both modular
reduction and Chinese Remaindering [Gathen and Gerhard 2013, Chapter 10], based on so-
called subproduct tree techniques; however, their practical performance remains somewhat
lagging. In this paper, we propose an alternative to these algorithms, dedicated to those cases
where we have several coefficients to convert; it relies on matrix multiplication to perform
these tasks, with matrices that are integer analogues of Vandermonde matrices and their
inverses. As a result, while their asymptotic complexity is inferior to that of asymptotically

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2

fast methods, our algorithms behave extremely well in practice, as they allow us to rely on
high-performance libraries for matrix multiplication.

Finally we give a glimpse at the implications in terms of performance that our improved
matrix multiplication algorithm can yield to many algorithms. We will focus on the prob-
lems of modular composition, power projection, minimal polynomial and factorization. By
plugging our multi-precision integer matrix multiplication algorithm into NTL existing im-
plementations, we are able to show substantial performance gain.

Organization of the paper. We first give an overview of the Residue Number System and
its classical algorithms in Section 2. In Section 3, we discuss algorithms for converting si-
multaneously a given set of integers to their Residue Number System representation, and
vice versa. We contribute by giving a new algorithm using linear algebra in Sections 3.1
and 3.2, and we report on our implementation inside FFLAS-FFPACK in Section 3.3. We
then use these results to implement an efficient integer matrix multiplication algorithm in
Section 4 and report on direct performance improvement of sample applications in Sec-
tion 4.3. Finally, we extend our algorithms to larger moduli in Section 5 and we report on
our implementation in Section 5.5.

Acknowledgment. This work has been supported by the French ANR under the grants
HPAC (ANR-11-BS02-013), CATREL (ANR-12-BS02-001), NSERC and the Canada Re-
search Chairs program.

2. PRELIMINARIES

2.1. Basic results

Our computation model is that of [Gathen and Gerhard 2013, Chapter 2] or [Brent and
Zimmermann 2010, Chapter 1.1]: we fix a base β, that can typically be a power of two such
as 2, 216 or 232, and we assume that all non-zero integers are represented on this basis: such
an integer a is represented by coefficients (a0, . . . , as−1), with all ai in {0, . . . , β − 1} and
as−1 non-zero, together with a bit of sign, such that a = ±(a0 +a1β+ · · ·+as−1β

s−1). The
coefficients ai are referred to as words; the integer s is called the length of a, and denoted
by λ(a).

Our complexity statements are given in terms of number of operations on words, counting
all operations at unit cost (for the details of what operations are used, see [Gathen and
Gerhard 2013, Chapter 2]). We let I : N → N be such that two integers a, b of length at
most n can be multiplied in I(n) word operations, assuming the base-β expansions of a and
b are given as input; we assume that I satisfies the super-linearity assumptions of [Gathen
and Gerhard 2013, Chapter 8]. One can take I(n) in n log(n)2O(log∗(n)) using Fast Fourier
Transform techniques [Fürer 2007].

We will often use the fact that given integers a, b of lengths respectively n and t, with
t 6 n, one can compute the product ab using O(n I(t)/t) word operations: without loss of
generality, assume that a and b are positive and write a in base βt as a = a0 + a1β

t + · · ·+
a`β

`t, with ` ∈ Θ(n/t), so that ab = (a0b) + (a1b)2
t + · · · + (a`b)2

`t. Writing a as above
requires no arithmetic operation; the coefficients ai are themselves written in base β. All
coefficients aib can be computed in time O(` I(t)) = O(n I(t)/t). Since aib < β2t holds for
all i, going from the above expansion to the base-β expansion of ab takes time O(n), which
is O(n I(t)/t).

For m ∈ N>0, we write Z/mZ for the ring of integers modulo m. We denote by respectively
(a rem m) and (a quo m) the remainder and quotient of the Euclidean division of a ∈ Z
by m ∈ N>0, with 0 6 (a rem m) < m; we extend the notation (a rem m) to any rational
a = n/d ∈ Q such that gcd(d,m) = 1 to be the unique b in {0, . . . ,m − 1} such that
bd ≡ n (mod m).

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:3

Let a ∈ Z and m ∈ N>0 be of respective lengths at most n and t, with t 6 n. Then, one
can compute the quotient (a quo m) and the remainder (a rem m) using O(I(n)) word op-
erations; the algorithm goes back to [Cook 1966], see also [Aho et al. 1974, Section 8.2]
and [Brent and Zimmermann 2010, Section 2.4.1]. In particular, arithmetic operations
(+,−,×) in Z/mZ can all be done using O(I(t)) word operations; inversion modulo m
can be done using O(I(t) log(t)) word operations.

More refined estimates for Euclidean division are available in some particular cases:

— Consider first the case where n � t. Given a and m as above, we can compute both
(a quo m) and (a rem m) using

O
(
I(t)

t
n

)
(1)

word operations. To do so, write a in base βt as a = a0 + a1β
t + · · · + a`β

`t, with
` ∈ Θ(n/t); this does not involve any operations, since a is given by its base-β expansion.
Define q`+1 = r`+1 = 0, and, for i = `, . . . , 0, ri = (βtri+1 + ai) rem m and qi =
(βtri+1 + ai) quo m. This computes r0 = (a rem m), and we get q = (a quo m) as
q = q0 + q1β

t + · · ·+ q`β
`t (from which its base-β expansion follows without any further

work). The total time of this calculation is as in (1).

— Finally, if we suppose more precisely that βt−1 6 m < βt holds, in cases where n− t 6 t,
the remainder (a rem m) can be computed in time

O
(
I(n− t)
n− t

t

)
. (2)

Indeed, in this case, the quotient q = (a quo m) can actually be computed in O(I(n− t))
word operations, since λ(q) is in O(n− t) (see [Giorgi et al. 2013, Algorithm 2]). Once q
is known, one can compute qm in time O(t I(n− t)/(n− t)), as explained above; deducing
(a rem m) takes another O(t) word operations, whence the cost claimed above .

We also let MM : N3 → N be such that one can do integer matrix multiplication in
size (a, b) × (b, c) using MM(a, b, c) operations (+,−,×) in Z, with an algorithm that uses
constants bounded independently of a, b, c. The latter requirement implies that for any
m > 0, with m of length t, one can do matrix multiplication in size (a, b)× (b, c) over Z/mZ
using O(MM(a, b, c) I(t)) word operations. This also implies that given integer matrices
of respective sizes (a, b) and (b, c), if the entries of the product are bounded by βt in
absolute value, one can compute their product using O(MM(a, b, c) I(t)) word operations,
by computing it modulo an integer of length Θ(t).

Let ω be such that we can multiply b × b integer matrices within O(bω) operations in
Z, under the same assumption on the constants used in the algorithm as above; the best
known bound on ω is ω < 2.3729 [Coppersmith and Winograd 1990; Stothers 2010; Vas-
silevska Williams 2012; Le Gall 2014]. So MM(b, b, b) = O(bω) and MM(a, a, b) = aω−1b
when a 6 b by partitioning into square blocks of size a.

2.2. The Residue Number System

The Residue Number System (RNS) is a non-positional number system that allows one to
represent finite sets of integers. Let m1,m2, . . . ,ms ∈ N be pairwise distinct primes, and let

M = m1m2 · · ·ms.

Then any integer a ∈ {0, . . . ,M − 1} is uniquely determined by its residues
([a]1, [a]2, . . . , [a]s), with [a]i = (a rem mi); this residual representation is called a Residue
Number System.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4

Operations such as addition and multiplication are straightforward in the residual repre-
sentation; however, conversions between the binary representation of a and its residual one
are potentially costly. For the following discussion, we assume that all mi’s have length at
most t; in particular, any a in {0, . . . ,M − 1} has length at most st.

The conversion to the RNS representation amounts to taking a as above and computing
all remainders (a rem mi). Using (1), we can compute each of them in O(s I(t)) word oper-
ations, for a total time in O(s2I(t)). A divide-and-conquer approach [Borodin and Moenck
1974] leads to an improved estimate of O(I(st) log(s)) word operations (see also [Gathen
and Gerhard 2013, Theorem 10.24]).

The inverse operation is Chinese Remaindering. Let a be an integer in {0, . . . ,M − 1}
given by its RNS representation ([a]1, . . . , [a]s); then, a is equal to[

s∑
i=1

([a]iui rem mi)Mi

]
rem M, (3)

where we write Mi = M/mi and ui = (1/Mi rem mi) for all i.
From this expression, one can readily deduce an algorithm of cost O(s2 I(t) + s I(t) log(t))

to compute a. One first computes M in the direct manner, by multiplying 1 by successively
m1, . . . ,ms; the total time is O(s2 I(t)) word operations. From this, all Mi’s can be deduced
in the same asymptotic time, since we saw in the previous section that we can compute
(M quo mi) in time O(s I(t)) for all i. One can further compute all remainders (Mi rem mi)
in time O(s2 I(t)) as well, by the same mechanism. Deducing all ui’s takes O(s I(t) log(t))
word operations, since we do s modular inversions with inputs of length at most t. One can
then deduce a by simply computing all summands in (3) and adding them (subtracting M
whenever a sum exceeds this value), for another O(s2 I(t)) word operations. The total time
is thus O(s2 I(t) + s I(t) log(t)) word operations.

To do better, consider the mapping

ϕ : (v1, . . . , vs) 7→
s∑
i=1

viMi rem M,

with vi in {0, . . . ,mi − 1} for all i. Using a divide-and-conquer approach, ϕ(v1, . . . , vs)
can be computed in O(I(st) log(s)) word operations using [Gathen and Gerhard 2013,
Algorithm 10.20] (taking care to reduce all results, whenever required). In particular,
(Mi rem mi) can be computed as (ϕ(1, . . . , 1) rem mi), so all of them can be deduced in
time O(I(st) log(s)); as above, we deduce all ui’s using an extra O(s I(t) log(t)) operations.
Once they are known, the computation of a = ϕ(a1u1, . . . , asus) from its residuals is re-
duced to s modular multiplications of length t, and an application of ϕ; the overall cost is
thus O(I(st) log(s) + s I(t) log(t)).

Note that in term of implementation, simultaneous reductions using the naive algorithms
can benefit from vectorized (SIMD) instructions to save constant factors, and can be easily
parallelized. On the other hand, simultaneous reductions using the quasi-linear approach
does not benefit from SIMD instructions in a straightforward manner.

3. ALGORITHMS FOR SIMULTANEOUS CONVERSIONS

In this section, we present new algorithms for conversions to and from a Residue Number
System, with a focus on the case where the moduli (m1, . . . ,ms) are fixed and several
conversions are needed. In this section, we suppose that all mi’s have length at most t ≥ 1,
which implies that s < βt. As above, we also let M = m1m2 · · ·ms; in particular, any
integer a in {0, . . . ,M − 1} has length at most st.

Using the divide-and-conquer algorithms mentioned in the previous section, convert-
ing a vector (a1, . . . , ar) ∈ {0, . . . ,M − 1}r to its RNS representation can be done in

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:5

O(r I(st) log(s)) word operations. For the converse operation, Chinese Remaindering, the
cost O(s I(t) log(t)) of computing all modular inverses ui needs only be incurred once, so
that the cost of Chinese Remaindering for r inputs is O(r I(st) log(s) + s I(t) log(t)). Up to
logarithmic factors, both results are quasi-linear in the size rst of the input and output.

The algorithms in this section are not as efficient in terms of asymptotic complexity, but
we will see in further sections that they behave very well in practice. They are inspired by
analogue computations for polynomials: in the polynomial case, multi-point evaluation and
interpolation are linear maps, which can be performed by plain matrix-vector products. In
our context, we will thus use matrices that mimic Vandermonde matrices and their inverses,
which essentially reduce conversions to matrix-vector products. Simultaneous conversions
reduce to matrix-matrix products, which brings an asymptotic complexity improvement
with respect to many matrix-vector products.

To describe the algorithms, we need a further parameter, written t′: for conversions to
and from the RNS, we will write the multi-precision inputs and outputs in base βt

′
. We will

always assume that t′ 6 t holds, and we accordingly let s′ = dst/t′e > s be an upper bound

on the length of all elements of {0, . . . ,M−1} written in base βt
′
. We will see that choosing

t′ ' t allow us to minimize the cost of the algorithms, at least in theory; for practical
purposes, we will see in Section 4.2 that we actually choose t′ < t.

3.1. Conversion to RNS

Let a = (a1, . . . , ar) be a vector of r integers, all in {0, . . . ,M − 1}. The conversion to its
residual representation is split up into three phases:

(1) First, we compute all [βit
′
]j = (βit

′
rem mj) for 1 6 i < s′, 1 6 j 6 s and gather them

into the matrix

B =

1 [βt
′
]1 [β2t′]1 . . . [β(s′−1)t′]1

...
...

...
...

1 [βt
′
]s [β2t′]s . . . [β(s′−1)t′]s

 ∈Ms×s′(Z).

Because t′ 6 t and all mi have length at most t, computing each row of B takes O(s′ I(t))
word operations, by successive multiplications, for a total of O(ss′ I(t)) for the whole
matrix. Note that this computation is independent of the numbers ai to reduce and so
can be precomputed.

(2) Then, we use this matrix to compute a pseudo-reduction of (a1, . . . , ar) modulo the mi’s.

For this purpose, we write the expansion of each ai in base βt
′

as

ai =

s′−1∑
j=0

ai,jβ
jt′ for 1 6 i 6 r.

We then gather these coefficients into the matrix

C =

 a1,0 a2,0 a3,0 . . . ar,0
...

...
...

. . .
...

a1,s′−1 a2,s′−1 a3,s′−1 . . . ar,s′−1

 ∈Ms′×r(Z).

From the definition of matrices B and C we have

(BC)i,j ≡ aj (mod mi) (4)

and since s′ 6 st < βt · βt

0 6 (BC)i,j < s′miβ
t′ < β4t. (5)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6

Computing the entries of C is done by rewriting ai from its β-expansion to βt
′
-expansion,

which takes no arithmetic operation. The bound above on the entries of the product BC
shows that computing it takes O(MM(s, s′, r) I(t)) word operations (see Section 2.1).

(3) The last step consists in reducing the i-th row of the matrix product BC modulo mi,
for 1 6 i 6 r. Since all entries of BC have length at most 4t, this costs O(rs I(t)) word
operations.

The overall cost is thus O(MM(s, s′, r) I(t)) word operations. As announced above, choos-
ing t′ = t, or equivalently s′ = s, minimizes this cost, making it O(MM(s, s, r) I(t)). This
amounts to O(rsω−1I(t)) when r > s.

3.2. Conversion from RNS

Given residues (a1,1, . . . , a1,s), . . . , (ar,1, . . . , ar,s), we now want to reconstruct (a1, . . . , ar)
in {0, . . . ,M − 1}r such that ai,j = (ai rem mj) holds for 1 6 i 6 r and 1 6 j 6 s. As in
Subsection 2.2, we write Mj = M/mj and uj = (1/Mj rem mj) for 1 6 j 6 s.

We first compute pseudo-reconstructions

`i :=

s∑
j=1

γi,jMj , with γi,j = (ai,juj) rem mj ,

for 1 6 i 6 r, so that ai = (`i rem M) holds for all i, and `i < sM < sβst. In a second
stage, we reduce them modulo M . We can decompose our algorithm in 5 steps:

(1) We saw in Subsection 2.2 that M1, . . . ,Ms and u1, . . . , us can be computed us-
ing O(s2 I(t) + s I(t) log(t)) word operations (which is quasi-linear in the size s2t of
M1, . . . ,Ms). This is independent of the ai’s.

(2) Computing all γi,j , for 1 6 i 6 r and 1 6 j 6 s takes another O(rs I(t)) operations.

(3) For 1 6 j 6 s, write Mj in base βt
′

as

Mj =

s′−1∑
k=0

µj,kβ
kt′ ,

so that we can write `i as

`i =

s∑
j=1

γi,jMj =

s∑
j=1

γi,j

s′−1∑
k=0

µj,kβ
kt′ =

s′−1∑
k=0

di,kβ
kt′ ,

with

di,k =

s∑
j=1

γi,j µj,k.

These latter coefficients can be computed through the following matrix multiplication
d1,0 d1,1 · · · d1,s′−1
d2,0 d2,1 · · · d2,s′−1

...
...

...

dr,0 dr,1 · · · dr,s′−1

 =


γ1,1 γ1,2 · · · γ1,s
γ2,1 γ2,2 · · · γ2,s

...
...

...

γr,1 γr,2 · · · γr,s




µ1,0 µ1,1 · · · µ1,s′−1

µ2,0 µ2,1 · · · µ2,s′−1
...

...
...

µs,0 µs,1 · · · µs,s′−1

 , (6)

using O(MM(r, s, s′) I(t)) word operations.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:7

(4) From the matrix (di,j), we get all `i =
∑s′−1
k=0 di,kβ

kt′ . Note that (di,j)06k6s′−1 are not

the exact coefficients of the expansion of `i in base βt
′
; however, since they are all at

most sβtβt
′
6 β3t, we can still recover the base-βt

′
expansion of all `i’s in linear time

O(rs′t). From this, their expansion in base β follows without any further work.

(5) The final step of the reconstruction consists in reducing all `i’s modulo M . This step is
relatively cheap, since the `i’s are “almost” reduced. Indeed, since all `i’s are at most sM ,
Equation (2) shows that this last step costs O(logβ(M) I(logβ(s))/ logβ(s)) per `i. By

assumption x 7→ I(x)/x is non-decreasing, and since we have s < βt and logβ(M) 6 st,
the latter cost is O(s I(t)) per `i, for a total cost of O(rs I(t)) word operations.

Altogether, the cost of this algorithm is O(MM(r, s, s′) I(t) + s I(t) log(t)) word opera-
tions, where the second term accounts for inversions modulo respectively m1, . . . ,ms. As
for the first conversion, choosing t′ = t, and thus s′ = s, gives us the minimal value,
O(MM(r, s, s) I(t) + s I(t) log(t)).

3.3. Implementation

We have implemented our algorithm in C++ as a part of the FFLAS-FFPACK li-
brary [FFLAS-FFPACK-Team 2016], which is a member of the LinBox project [LinBox-
Team 2016; Dumas et al. 2002].

Our main purpose in designing our algorithm was to improve performances for multi-
precision integer matrix multiplication for a wide range of dimensions and bitsizes. For
general dimensions and bitsizes, it is worthwhile to reduce one matrix multiplication with
large entries to many matrix multiplications with machine-word entries using multi-modular
reductions.

Indeed, it is well known that matrix multiplication with floating point entries can almost
reach the peak performance of current processors. Many optimized implementations such
as ATLAS [Whaley et al. 2001], MKL [Intel 2007] or GotoBlas/OpenBlas [Goto and van de
Geijn 2008] achieve this in practice. It was shown in [Dumas et al. 2008] that one can get
similar performance with matrix multiplication modulo mi whenever m2

i holds in a machine
word. Indeed, if the moduli mi satisfies the inequality b(mi − 1)2 < 253, with b the inner
dimension of the matrix multiplication, then one can get the result by first computing the
matrix product over the floating point number and then reducing the result modulo mi.
Furthermore, using Strassen’s subcubic algorithm [Strassen 1969] and a stronger bound
on mi one can reach even better performance [Dumas et al. 2008; FFLAS-FFPACK-Team
2016]. This approach provides the best performance per bit for modular matrix multipli-
cation [Pernet 2015] and thus we rely on it to build our RNS conversion algorithms from
Section 3.

In particular, we set the base β = 2 and t 6 26 to ensure that all the moduli mi satisfy
(mi − 1)2 < 253, which is the case whenever m2

i 6 253. Our simultaneous RNS conversion
algorithms also rely on machine-word matrix multiplication, see Equations (4) and (6); in
order to guarantee that the results of these products fit into 53 bits, we must ensure that
the inequality s′mi2

t′ 6 253 holds for all i, where t′ is the parameter introduced in Section 3
which satisfies 1 6 t′ 6 t 6 26 .

This parameter governs how we cut multi-precision integers; indeed we use the βt
′
-

expansion of the integers a1, . . . , ar during reduction and of M1, . . . ,Ms during reconstruc-
tion. The GMP library [GMP-Team 2015] is used to handle all these multi-precision integers.
We choose t′ = 16 because the integer data structure of GMP is so that conversions to the
βt
′
-adic representation are done almost for free by simply casting mp_limb_t* pointers to

uint16_t* pointers.
Then we choose the maximum value of t satisfying 16 6 t 6 26 such that s′2t+t

′
6 253.

Note that in the case of integer matrix multiplication, we may have to pick t even lower

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8

because the inner dimension of the modular matrix multiplication may be bigger than
s′. Therefore in our setting, we get an upper bound on the integer bitsizes of about 189
KBytes (st ' 220.5 bits) for RNS conversions on a 64-bits machine, which is obtained for
values t = 20, s = 216.2, t′ = 16, s′ = 216.5. Note that for these very large integers, our
method might not be competitive with the fast divide-and-conquer approach of [Borodin
and Moenck 1974].

We finish with a few implementation details. When we turn pseudo-reductions into re-
ductions, we are dealing with integers that fit inside one machine-word. Therefore we have
optimized our implementation by coding an SIMD version of the Barrett reduction [Bar-
rett 1986] as explained in [Hoeven et al. 2016]. Finally, to minimize cache misses we store
modular matrices contiguously to each other, as ((A rem m1), (A rem m2), . . .).

3.4. Timings

We compared our new RNS conversion algorithms with the libraries FLINT [Hart 2010] and
Mathemagix [Hoeven et al. 2012], both of which implement simultaneous RNS conversion.
However, these implementations do not all come with the same restrictions on the moduli
size. The Mathemagix library uses 32 bits integers and limits the moduli to 31 bits, the
FLINT library uses 64 bits integers and limits the moduli to 59 bits and our code represents
integers using 64 bits floating point numbers and limits the moduli to 26 bits. Each library
uses different RNS bases, but all of them were chosen to allow the same number of bits (i.e.
the length of M is almost constant) in order to provide a fair comparison. Our benchmark
mimics the use of RNS conversions within multi-modular matrix multiplication : therefore
the inputs of the conversion to RNS have a bitsize that is about half of the bitsize of M .

Our benchmarks are done on an Intel Xeon E5-2697 2.6 GHz machine. We chose the
number of elements to convert from/to RNS to be 1282 as conversion time per element is
constant above 1000 elements. In Tables I and II we report the RNS conversion time per
element from an average of several runs (adding up to a total time of a few seconds). The
MMX columns correspond to Mathemagix library where two implementations are available:
the asymptotically fast divide-and-conquer approach and the naive one. The FLINT column
corresponds to fast divide-and-conquer implementation available in FLINT version 2.5 while
FFLAS corresponds to the implementation of our new algorithms with parameters t′ = 16
and an adaptative value of t < 27 that is maximal for the given RNS bitsize. For both

Table I: Simultaneous conversions to RNS (time per integer in µs)

RNS bitsize FLINT MMX (naive) MMX (fast) FFLAS [speedup]

28 0.17 0.34 1.49 0.06 [x 2.8]

29 0.35 0.75 3.07 0.13 [x 2.7]

210 0.84 1.77 6.73 0.27 [x 3.1]

211 2.73 4.26 14.32 0.75 [x 3.6]

212 7.03 11.01 30.98 1.92 [x 3.7]

213 17.75 29.86 72.42 5.94 [x 3.0]

214 50.90 88.95 183.46 21.09 [x 2.4]

215 165.80 301.69 435.05 80.82 [x 2.0]

216 506.91 1055.84 1037.79 298.86 [x 1.7]

217 1530.05 3973.46 2733.15 1107.23 [x 1.4]

218 4820.63 15376.40 8049.31 4114.98 [x 1.2]

219 13326.13 59693.64 20405.06 15491.90 [none]

220 37639.48 241953.39 54298.62 55370.16 [none]

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:9

Table II: Simultaneous conversions from RNS (time per integer in µs)

RNS bitsize FLINT MMX (naive) MMX (fast) FFLAS [speedup]

28 0.63 0.74 3.80 0.34 [x 1.8]

29 1.34 1.04 7.40 0.39 [x 3.4]

210 3.12 1.86 15.53 0.72 [x 4.3]

211 6.92 4.29 30.91 1.57 [x 4.4]

212 16.79 12.18 63.53 3.94 [x 4.3]

213 40.73 43.89 139.16 12.77 [x 3.2]

214 113.19 144.57 309.88 43.13 [x 2.6]

215 316.61 502.18 687.45 161.44 [x 2.0]

216 855.48 2187.65 1502.16 609.22 [x 1.4]

217 2337.96 10356.08 3519.61 2259.84 [x 1.1]

218 7295.26 39965.23 9883.07 8283.64 [none]

219 18529.38 156155.06 22564.36 31382.81 [none]

220 48413.81 685329.45 59809.07 111899.47 [none]

tables, we add in the FFLAS column the speedup of our code against the fastest code
among FLINT and Mathemagix.

One can see from Tables I and II that up to RNS bases with 200 000-bits, our new method
outperforms existing implementations, even when asymptotically faster methods are used.
For RNS basis with at most 215 bits = 4 KBytes our implementation is at least twice
faster. If we only compare our code with the naive implementation in Mathemagix, which
has basically the same theoretical complexity, we have alway a speedup between 3 and 6.
Recall however that our approaches of Section 3 cannot handle bitsizes greater that 220 bits
(this is why our benchmarks do not consider larger bitsizes); in practice, asymptotically fast
methods perform better before this bitsize limit is reached.

Table III: Precomputation for RNS conversions from/to together (total time in µs)

RNS bitsize FLINT MMX (naive) MMX (fast) FFLAS

28 18.58 0.34 1.49 670.30

29 19.60 0.75 3.07 708.40

210 35.80 1.77 6.73 933.30

211 68.30 4.26 14.32 1958.60

212 148.10 11.01 30.98 5318.30

213 338.90 29.86 72.42 17568.60

214 765.10 88.95 183.46 65323.40

215 2013.70 301.69 435.05 250234.90

216 5392.80 1055.84 1037.79 987044.30

217 13984.80 3973.46 2733.15 4066830.50

218 35307.50 15376.40 8049.31 17133438.90

219 89413.10 59693.64 20405.06 69320436.10

220 243933.90 837116.30 805324.30 244552123.40

Table III provides time estimates of the precomputation phase for each implementation.
As expected, one can see that our method is based on a long phase of precomputation that

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10

make possible to save some time during the conversions. Despite this long precomputation,
our method is really competitive when the number of elements to convert is sufficiently large.
For example, if we use an RNS basis of 215 bits, our precomputation phase needs 250ms
while FLINT’s code needs 2ms. However, for such basis bitsize, our conversion to RNS
(resp. from) needs 80µs and 161µs per element while FLINT’s one needs 165µs and 316µs.
Assuming one needs to convert back and forth with such RNS basis, our implementation
will be faster when more than 1000 integers need to be converted. Note also that the code
of our precomputation phase has not been fully optimized and we should be able to lower
down this threshold.

4. APPLICATION TO INTEGER MATRIX MULTIPLICATION

An obvious application for our algorithms is integer matrix multiplication, and by extension
matrix multiplication over rings of the form Z/NZ for large values of N . Several computer
algebra systems or libraries already rely on Residue Number Systems for this kind of matrix
multiplication, such as Magma [Bosma et al. 1997], FFLAS-FFPACK [FFLAS-FFPACK-
Team 2016] or Flint [Hart 2010]; in these systems, conversions to and from the RNS are
typically done using divide-and-conquer techniques. In this section, after reviewing such
algorithms, we give details on our implementation in FFLAS-FFPACK, and compare its
performance to other software; we conclude the section with a practical illustration of how
computations with polynomials over finite fields can benefit from our results.

4.1. Overview of the algorithm

Let A,B be matrices in respectively Ma×b(Z) and Mb×c(Z), such that all entries in the
product AB have β-expansion of length at most k, for some positive integer k. Computing
the product AB in a direct manner takes O(MM(a, b, c) I(k)) bit operations as seen in
Section 2.1.

Using multi-modular techniques, we proceed as follows. We first generate primes
m1,m2, . . . ,ms in an interval {βt−1, . . . , βt − 1}, for some integer t 6 k to be discussed
below; these primes are chosen so that we have βk+1 < M , with M = m1m2 · · ·ms, as well
as M < βk+1βt. These constraints on the mi’s imply that st = Θ(k).

We then compute Ai = (A rem mi) and Bi = (B rem mi) for all 1 6 i 6 s, using
the algorithm of Section 3.1. The matrices Ai, Bi have entries at most βt, so the products
(AiBi rem mi) can be computed efficiently (typically using fixed precision arithmetic). We
can then reconstruct (AB rem M) from all (AiBi rem mi), using the algorithm of Sec-
tion 3.2; knowing (AB rem M), we can recover AB itself by subtracting M to all entries
greater than M/2. Choosing the parameter t′ ∈ {1, . . . , t} as in the previous section, the
total cost of this procedure is

O
(
MM(a, b, c)s I(t) +

(
MM(s, s′, ab) +MM(s, s′, bc) +MM(ac, s, s′)

)
I(t) + s I(t) log(t)

)
(7)

word operations, with s′ = dst/t′e; here, the first term describes the cost of computing all
products (AiBi rem mi), and the second one the cost of the conversions to and from the
RNS by means of our new algorithms.

Let us briefly discuss the choice of parameters s, t and t′. We mentioned previously that
to lower the cost estimate, one should simply take t′ = t, so that s′ = s; let us assume
that this is the case in the rest of this paragraph. Since we saw that st = Θ(k), the middle
summand, which is Ω(s2t), is minimal for small values of s. For s = 1 and t = Θ(k), this is
the same as the direct approach and we get the same cost estimate O(MM(a, b, c) I(k)). On
the other hand, minimizing the first and third term in the runtime expression then amounts
to choosing the smallest possible value of t. The largest possible value of s for a given t
is s = Θ(βt/t), by the prime number theorem since β is a constant; since st = Θ(k), this
a priori analysis leads us to choose t = Θ(log(k)) and s = Θ(k/ log(k)). However, as we will

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:11

see below, in practice the choice of moduli is also in large part dictated by implementation
considerations.

4.2. Implementation and timings

As mentionnned in Section 3.3, our code has been integrated in the FFLAS-FFPACK library.
In order to re-use the fast modular matrix multiplication code [Dumas et al. 2008] together
with our simultaneous RNS conversion, we use the following choice of parameters. We set
β = 2, t′ = 16 and choose the maximum value of t such that b 22t 6 253 (modular matrix

multiplication constraint) and s′2t+t
′
6 253 (RNS constraint). As an example, with t = 20

our code is able to handle matrices up to dimension 8192 with entries up to 189 KBytes
(' 220.5 bits).

Let k denote a bound on the bitsize in our input matrices. From Equation 7, one can easily
derive a crossover point where RNS conversions become dominant over the modular matrix
multiplication. Assuming matrix multiplication of dimension n costs 2n3 operations then
RNS conversions dominate as soon as k > 16n/3. Indeed, modular matrix multiplications
cost 2n3k/t while the three RNS conversions (2 conversions to RNS and 1 conversion from
RNS) costs 6k2n2/16t since t′ = 16. According to the matrix dimensions that will be used
in our benchmark, our code will be always dominated by the RNS conversions and we will
see its impact.

0.00

0.02

0.06

0.25

1.00

4.00

16.00

64.00

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

T
im

e
 i
n
 s

e
c
o
n
d
s

Entry bitsize

(matrix dimension = 32)

FLINT (classic)
FLINT (multi−modular)
MMX (kronecker−fft)
MMX (multi−modular)
FFLAS

0.02

0.06

0.25

1.00

4.00

16.00

64.00

256.00

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

T
im

e
 i
n
 s

e
c
o
n
d
s

Entry bitsize

(matrix dimension = 64)

FLINT (classic)
FLINT (multi−modular)
MMX (kronecker−fft)
MMX (multi−modular)
FFLAS

0.25

1.00

4.00

16.00

64.00

256.00

1024.00

4096.00

16384.00

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

T
im

e
 i
n
 s

e
c
o
n
d
s

Entry bitsize

(matrix dimension = 256)

FLINT (classic)
FLINT (multi−modular)
MMX (kronecker−fft)
MMX (multi−modular)
FFLAS

1.00

4.00

16.00

64.00

256.00

1024.00

4096.00

16384.00

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

T
im

e
 i
n
 s

e
c
o
n
d
s

Entry bitsize

(matrix dimension = 512)

FLINT (classic)
FLINT (multi−modular)
MMX (kronecker−fft)
MMX (multi−modular)
FFLAS

Fig. 1: Multi-precision integer matrix multiplication (time comparisons)

Our benchmarks are done on an Intel Xeon E5-2697 2.6 GHz machine. Figure 1 reports
time of integer matrix multiplication for different matrix entries bitsize (abscissa of plots)

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12

and different matrix dimensions (4 different plots). We compared our integer matrix multi-
plication code in FFLAS-FFPACK with the ones in FLINT [Hart 2010], and Mathemagix
[Hoeven et al. 2012] :

— FLINT provides two implementations: the direct algorithm FLINT (classic) with
some hand-tuned inline integer arithmetic, and multi-modular algorithm FLINT
(multi-modular) using divide-and-conquer techniques for conversions to and from the
RNS. The fmpz_mat_mul method in FLINT automatically switches between these two
algorithms based on a heuristic crossover point.

— The Algebramix package of the Mathemagix library provides three implementations: the
direct algorithm, the multi-modular one and the Kronecker+FFT algorithm. The MMX
(kronecker-fft) reduces multi-precision integer to polynomials over single-precision
integers via Kronecker subtitution, and then perform FFT on those polynomials. The
MMX (multi-modular) plot corresponds to an hybrid multi-modular approach that either
uses quadratic or fast divide-and-conquer algorithms for RNS conversions. The generic
integer matrix multiplication code in Mathemagix switches between these two strategies
according to hardcoded thresholds.

— The FFLAS entry correspond to our multi-modular implementations from Section 3.

In order to provide a fair comparison to our code, we decided to not use the generic code
using threshold from FLINT and Mathemagix, and call directly the specific underlying
implementations.

From Figure 1, one can see that our method improves performance in every case on
some initial bitsize range (as our method has a super-linear complexity with respet to the
bitsize, it cannot be competitive with fast methods for large bitsize); however, when the
matrix dimension is increasing, the benefits of our method tend also to increase. One should
note that the Kronecker method with FFT has the best asymptotic complexity in terms
of integer bitsize. However, it turns out not to be the best one when matrix dimension is
increasing. This is confirmed in Figure 1 where for a given bitsize value (e.g. k = 212),
MMX (kronecker-fft) implementation is the fastest code for small matrix dimension (e.g.
n = 32) while it becomes the worst for larger one (e.g. n = 512).

4.3. Applications

We conclude this section with an illustration of how improving matrix multiplication can im-
pact further, seemingly unrelated operations. Explicitly, we recall how matrix multiplication
comes to play when one deals with finite fields and how our linear algebra implementations
of these operations result in significant speed-ups over conventional implementations for
some important operations.

Modular composition. Given a field Fp and polynomials f, g, h of degrees less than n over
Fp, modular composition is the problem of computing f(g) mod h. No quasi-linear algorithm
is known for this task, at least in a model where one counts operations in Fp at unit cost.
The best known algorithm to date is due to Brent and Kung [Brent and Kung 1978], and is
implemented in several computer algebra systems; it allows one to perform this operations
using C(n) = O(

√
nM(n) + MM(

√
n,
√
n, n)) operations in Fp, where M : N → N is such

that one can multiply polynomials of degree n over Fp in M(n) operations. One should point
out that the Kedlaya-Umans algorithm reaches an almost linear cost, in a boolean model,
but to our knowledge no implementation of it has been showed to be competitive with the
Brent and Kung approach.

As showed in the run-time estimate, the bottleneck of this algorithm is a matrix multi-
plication in sizes (

√
n,
√
n) and (

√
n, n), and can benefit from our work. Remark that the

goal is here to multiply matrices with coefficients defined modulo a potentially large p; this

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:13

is done by seeing these matrices over Z and multiplying them as such, before reducing the
result modulo p.

We have implemented modular polynomials composition using our matrix multiplica-
tion in C++, on the basis of Shoup’s NTL [Shoup 2015], simply by modifying the existing
CompMod method to use the fast matrix multiplication we implemented in FFLAS-FFPACK.
Figure 2a compares our implementation to the preexisting one in NTL on an Intel(R)
Core(TM) i7-4790, 3.60GHz machine. As we can see, this readily offers a substantial im-
provement for primes of 200 bits in our example.

Power projection. Let f be a polynomial of degree n over Fp, and define F = Fp[x]/(f).
For vectors v, u ∈ Fnp denote by 〈v, u〉 their inner product; this extends to an inner prod-
uct over F , considering elements of F as vectors in Fnp . The power projection problem is
computing the sequence

〈v, 1〉, 〈v, g〉, . . . , 〈v, gm−1〉
for given integer m > 0, v ∈ Fnp and g in F . The best known algorithm for power projection
is due to Shoup [Shoup 1994; Shoup 1999], with a runtime that matches that of the Brent
and Kung algorithm. The dominant part of the algorithm can be formulated as a matrix
multiplication similar to the one for modular composition, this time in sizes (

√
n, n) and

(n,
√
n).

Similar to modular composition, we have modified NTL’s ProjectPowers routine to use
our matrix multiplication implementation. Figure 2b compares our implementation to the
built-in method, and shows improvements that very similar to the ones seen for modular
composition.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10000 15000 20000 25000 30000

T
im

e
in

 s
ec

on
ds

Polynomial degree

NTL
FFLAS

(a) Modular composition

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10000 15000 20000 25000 30000

T
im

e
in

 s
ec

on
ds

Polynomial degree

NTL
FFLAS

(b) Power projection

Minimal polynomial and factorization. The above two operations are key ingredients of
many higher level operations in finite fields. Two such operations are Minimal polynomial
computation, and Polynomial factorization. Let f ∈ Fp[X] be a polynomial of degree n, and
let a ∈ Fp[X]/(f). The minimal polynomial of a over Fp is a monic irreducible polynomial
g ∈ Fp[X] of degree less than n such that g(a) = 0 mod f . An efficient algorithm for
computing minimal polynomials is presented in [Shoup 1994], using power projection as its
main subroutine.

Given f ∈ Fp[X], polynomial factorization is the problem of expressing f as a product of
irreducible factors. A well-known algorithm for factoring polynomials is due to [Cantor and
Zassenhaus 1981]; one of the main operations in this algorithm is modular composition, as
explained in [Gathen and Shoup 1992].

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14

We have modified the minimal polynomial and factoring implementations available in
NTL to use our new power projection and modular composition algorithms. Figures 2a, 2b
compare the methods MinPolyMod and CanZass of NTL to their new versions on an Intel(R)
Core(TM) i7-4790, 3.60GHz machine, showing significant improvements. Here the prime p is
random of size 200 bits, and the polynomials are chosen with uniformly random coefficients
in Fp.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10000 15000 20000 25000 30000

T
im

e
in

 s
ec

on
ds

Polynomial degree

NTL
FFLAS

(a) Minimal polynomial computation

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10000 15000 20000 25000 30000

T
im

e
in

 s
ec

on
ds

Polynomial degree

NTL
FFLAS

(b) Polynomial factorization

5. EXTENDING THE ALGORITHMS FOR LARGER MODULI

5.1. Motivation

Our algorithms for simultaneous conversions of Section 3 work for primes of limited bitsize
in practice. Indeed, we have seen in Section 3.3 that we use BLAS to benefit from very
fast matrix multiplication and that since BLAS works on double precision floating point
numbers, it limits our prime size to about 26 bits. There are enough of those primes for most
application of multi-modular techniques. However, there is still an application where such
limit can be too restrictive : the multiplication of polynomials with large integer coefficients.

The multi-modular strategy is classically used to multiply such polynomials, but we need
to use particular primes. The most advantageous situation for multiplying large modular
polynomials is when one uses DFT algorithms over a ring Z/pZ which has 2d-roots of unity,
for 2d larger than the degree of the product [Gathen and Gerhard 2013, Chapter 8]. The
existence of 2d-roots of unity in Z/pZ happens if and only if 2d divides p− 1. We call FFT
primes such primes p.

However, the number of FFT primes is much smaller than the number of primes. Since
FFT primes are exactly primes that appear in the arithmetic progression (1+2dk)k∈N, num-
ber theory tells us that the number of FFT primes less than x is asymptotically equivalent
to the numbers of primes less than x divided by ϕ(2d) = 2d−1 (where ϕ is Euler’s totient
function).

In practice, assuming e.g. that we multiply polynomials of degree 214 and we use prime’s
bitsize limit of Section 3 (mi < 226), we have enough FFT primes to handle input of approx-
imately 212.5 bits (724 Bytes), which is not sufficient for some applications (for instance,
in many forms of Hensel lifting algorithms, one is led to compute modulo large powers of
primes).

If we want to handle larger integer coefficients with multi-modular techniques, we could
take at least two different directions. A first direction is to lift the prime size limit of our
simultaneous RNS conversion; this requires us to provide efficient (comparable to BLAS)
fixed precision matrix multiplication above 26-bits entries. The second direction is to use 3-
primes FFT [Gathen and Gerhard 2013, Chapter 8] when we have exhausted all the possible

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:15

FFT primes. This option at least triples the asymptotic runtime per bit of the input. For the
sake of completeness, we also have to consider the direct approach, e.g. Schönhage-Strassen
algorithm [Schönhage and Strassen 1971].

In this section, we investigate the first direction and we present a variant of our algo-
rithm that handles larger moduli. Note that already slightly larger moduli will allow one
to substantially increase the possible bitsize of coefficients: with our forthcoming technique,
we will be able to multiply polynomials up to degree 222 and of coefficient bitsize 220 us-
ing primes of 42-bits. Note that this is particularly interesting since FFT performances are
almost not penalized when one uses primes up to 53 bits instead of primes of 32 bits as
demonstrated in [Hoeven et al. 2016].

5.2. Enlarging moduli size in practice

Since we want moduli above BLAS limit (26-bits) but still want to perform matrix oper-
ation using BLAS, we will cut our moduli of bitsize t into κ chunks of bitsize δ. The new
parameter δ represents the precision for which numerical matrix multiplications are feasible,
i.e. s′βδ+t

′
6 253. In Section 3, we considered the case where κ = 1 and δ = t. We will

assume that t′ 6 δ the same way we assumed t′ 6 t before. Finally, we will assume that
s′ < β2δ in the following sections. Indeed, this hypothesis is verified in practice since t′ = 16
and β = 2 implies s′β2t′ 6 s′βδ+t

′
6 253 < β4t′ and so s′ < β2t′ 6 β2δ.

5.3. Conversion to RNS

We start by giving the algorithm, followed by its complexity analysis. As in Section 3.1, we
first compute all [βit

′
]j = (βit

′
rem mj) for 1 6 i < s′, 1 6 j 6 s and gather them into the

matrix

B =

1 [βt
′
]1 [β2t′]1 . . . [β(s′−1)t′]1

...
...

...
...

1 [βt
′
]s [β2t′]s . . . [β(s′−1)t′]s

 ∈Ms×s′(Z).

Then we write the βδ-expansion of the matrix B as B = B0 +B1β
δ + · · ·+Bκ−1β

δ(κ−1)

and also compute the matrix C which gathers the βt
′
-expansions of the aj ’s. We rewrite

Equation (4) as

(B0C)i,j + · · ·+ β(κ−1)δ(Bκ−1C)i,j ≡ aj (mod mi). (8)

So, we compute the left-hand side of Equation (8) and reduce it to get aj mod mi.

Complexity estimates. The computation of [β(i+1)t′]j from [βit
′
]j is a multiplication of

integers of length 1 and κ in base βδ, which costs O(κI(δ)), just as the reduction modulo
mj using Equation (2). So computing B reduces to O(ss′κI(δ)) arithmetic operations. As
before, matrices Bk and C do not involve any arithmetic operations.

Now turning to matrix products, we get 0 6 (B`C)i,j < s′βδβt
′
< β4δ for all `. This bound

is for theoretic purposes ; in practice all these matrix products do not exceed BLAS limit
and can be performed efficiently. In Equation (8) all the products (B`C) can be computed
in one matrix multiplication of cost O(MM(κs, s′, r)I(δ)) by stacking vertically the B` in a
matrix B̄ ∈Mκs×s′(Z) and computing B̄C. Then the sum of the (B`C) costs O(κrsδ) and
its reduction O(rsκI(δ)) using Equation (2).

Altogether, the cost is dominated by matrix multiplication O(MM(κs, s′, r)I(δ)), which
matches the cost in Section 3 when κ = 1. To compare for other values of κ, notice that our
cost is O(MM(s, s′, r)I(t)) using MM(κs, s′, r) = O(κMM(s, s′, r)) and the super-linearity
assumption κI(δ) 6 I(t). So our new approach retain the asymptotic complexity bound while
lifting the restriction on the moduli size.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16

5.4. Conversion from RNS

Similarly, we adapt the method from Section 3.2 to our setting mi < βt 6 βκδ. Recall that
we first compute the pseudo-reconstructions

`i :=

s∑
j=1

γi,jMj , with γi,j = (ai,juj rem mj), uj = 1/Mj mod mj

for 1 6 j 6 s and 1 6 i 6 r, followed by a cheap reduction step ai = (`i rem M) with `i <
sM . Following the notations of Section 3.2, let G = [γi,j] ∈Mr×s(Z) and write U = [µj,k] ∈
Ms×s′(Z) the matrix of the βt

′
-expansions of all Mj . Then D = [di,k] = GU ∈ Mr×s′(Z)

satisfies `i =
∑s′−1
k=0 di,kβ

kt′ . According to our setting, γi,j < mi < βκδ, and one cannot use

BLAS to perform this product. As before, we expand G = G0 +G1β
δ + · · ·+ β(κ−1)δGκ−1

in base βδ so that we can compute D as

D = G0U + βδG1U + · · ·+ β(κ−1)δGκ−1U. (9)

It remains to recover `i using `i =
∑s′−1
k=0 di,kβ

kt′ and reduce them modulo M .

Complexity estimates. As in Section 3.2, computing Mi, ui, γi,j and the final reductions
(`i rem M) costs O((r + s + log(t))sI(t)). Now focusing on the linear algebra part, the

products GiU have coefficients less than sβδ+t
′
6 s′βδ+t

′
< β4δ ; as in Section 5.3 all these

products can be computed at cost O(MM(κr, s, s′)I(δ)) by stacking vertically the Gi. Then
we shift and sum these products to recover D at cost rs′κδ and recovering the `i in the
same cost.

So we get a total cost of O(MM(κr, s, s′)I(δ) + (r + s+ log(t))sI(t)) which boils down to
O(MM(r, s, s′)I(t) + sI(t) log(t)) because MM(κr, s, s′) = O(κMM(r, s, s′)) and κI(δ) 6 I(t).
This corresponds to the same complexity of Section 3.2. Here again, our modification for
RNS conversion with larger moduli does not change the asymptotic complexity bound while
still allowing the use of BLAS.

5.5. Implementation and timings

Our modified RNS conversions have been implemented in the FFLAS-FFPACK package.
We restrict our implementation to κ = 2 as it offers a sufficient range of values for integer

polynomial multiplication as mentioned in Section 5.1. As in Section 3.3, we chose β = 2
and t′ = 16 to simplify Kronecker substitution. The value of δ is dynamically chosen to
ensure s′βδ+16 6 253. Since we chose κ = 2, this means our primes must not exceed 22δ. For
small RNS basis of bitsize less than 215 (' 4 KBytes), we can chose the maximum value
δ = 26. For larger RNS basis, we need to reduce the value of δ, e.g. with δ = 21 one can
use 42-bits primes and reach RNS basis of 220 bits (' 131 KBytes).

Our implementation is similar to the one in Section 3.3, and we use the same tricks to
improve performances. In order to speed-up our conversions with larger primes, we always
stack the matrices to compute the κ matrix product using one larger multiplication. We
have seen that the complexity estimates of stacking are always better because of fast matrix
multiplication algorithms. And in practice, it is often best to have larger matrices to multiply
because peak performance of BLAS are attained starting from a certain matrix dimension.
Furthermore, doubling a matrix dimension may offer an extra level of sub-cubic matrix
multiplication in FFLAS-FFPACK.

We perform our benchmark on an Intel Xeon E5-2697 2.6GHz. As in section 4.2, we choose
the number of elements to convert from/to RNS to be 1282, and the bitsize of integer inputs
are almost twice as small as the RNS basis bitsize. In table IV, we report the conversion
time per element for a given RNS bitsize. As matter of comparison, we report the time of

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

A:17

our RNS conversions when κ = 1, corresponding to ”small” prime, and also the ones from
FLINT library which is the fastest available contestant with 59-bits primes.

Values reported in Table IV confirm our conclusion that performances should not asymp-
totically changed for different value of κ. However, for small RNS bitsize, one may remark
slight difference between κ = 1 and κ = 2. For this size, the matrix multiplication is not
dominant in the complexity and the constant behind second order terms roughly double
the cost. Furthermore, our implementation with κ = 2 does not benefit from all SIMD
vectorization code that has been done with κ = 1, explaining the variation.

Note that for larger RNS bitsize, the conversion to RNS with κ = 2 is faster then the
one with κ = 1. This is of course due to larger matrix multiplication which benefit more
from sub-cubic matrix multiplication of FFLAS-FFPACK. This is not true for conversion
from RNS as the last step is almost twice more costly than our method with κ = 1. Finally,
comparing to FLINT, we can see that our approach can improve performances up to a
factor of two. For very large bitsize, the fast divide-and-conquer approach of FLINT kicks
in and becomes more advantageous.

Table IV: Simultaneous RNS conversions (time per integer in µs)

To RNS From RNS

RNS bitsize FLINT FFLAS FFLAS FLINT FFLAS FFLAS

(κ = 1) (κ = 2) (κ = 1) (κ = 2)

mi < 259 < 227 < 253 < 259 < 227 < 253

28 0.17 0.06 0.15 0.63 0.34 0.63

29 0.35 0.13 0.24 1.34 0.39 0.70

210 0.84 0.27 0.53 3.12 0.72 1.39

211 2.73 0.75 1.20 6.92 1.57 2.46

212 7.03 1.92 2.92 16.79 3.94 5.15

213 17.75 5.94 8.01 40.73 12.77 14.98

214 50.90 21.09 25.05 113.19 43.13 47.54

215 165.80 80.82 85.38 316.61 161.44 167.93

216 506.91 298.86 299.11 855.48 609.22 629.69

217 1530.05 1107.23 1099.52 2337.96 2259.84 2375.98

218 4820.63 4114.98 4043.68 7295.26 8283.64 8550.81

219 13326.13 15491.90 15092.94 18529.38 31382.81 33967.42

220 37639.48 55370.16 67827.24 48413.81 111899.47 121432.66

REFERENCES

A. V. Aho, J. E. Hopcroft, and J. D. Ullman. 1974. The Design and Analysis of Computer Algorithms.
Addison-Wesley.

P. Barrett. 1986. Implementing the Rivest Shamir and Adleman public key encryption algorithm on a
standard digital signal processor. In Advances in Cryptology, CRYPTO’86 (LNCS), Vol. 263. Springer,
311–326.

A. Borodin and R. Moenck. 1974. Fast modular transforms. J. Comput. System Sci. 8, 3 (1974), 366–386.

W. Bosma, J. Cannon, and C. Playoust. 1997. The Magma algebra system. I. The user language. J. Symbolic
Comput. 24, 3-4 (1997), 235–265. DOI:http://dx.doi.org/10.1006/jsco.1996.0125 Computational algebra
and number theory (London, 1993).

R. P. Brent and H. T. Kung. 1978. Fast algorithms for manipulating formal power series. Journal of the
Association for Computing Machinery 25, 4 (1978), 581–595.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1006/jsco.1996.0125

A:18

R. P. Brent and P. Zimmermann. 2010. Modern Computer Arithmetic. Cambridge University Press, New
York, NY, USA.

D. G. Cantor and H. Zassenhaus. 1981. A new algorithm for factoring polynomials over finite fields. Math.
Comp. (1981), 587–592.

S. Cook. 1966. On the minimum computation time of functions. Ph.D. Dissertation. Harvard University.

D. Coppersmith and S. Winograd. 1990. Matrix multiplication via arithmetic progressions. J. Symb. Comp
9, 3 (1990), 251–280.

J.-G. Dumas, T. Gautier, M. Giesbrecht, P. Giorgi, B. Hovinen, E. Kaltofen, B. D. Saunders, W. J. Turner,
G. Villard, and others. 2002. LinBox: A generic library for exact linear algebra. In Proceedings of the
2002 International Congress of Mathematical Software, Beijing, China. World Scientific Pub, 40–50.

J.-G. Dumas, P. Giorgi, and C. Pernet. 2008. Dense Linear Algebra over Word-Size Prime Fields: the
FFLAS and FFPACK Packages. ACM Trans. on Mathematical Software (TOMS) 35, 3 (2008), 1–42.
DOI:http://dx.doi.org/10.1145/1391989.1391992

FFLAS-FFPACK-Team. 2016. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines / Package
(v2.2.2 ed.). http://github.com/linbox-team/fflas-ffpack.

M. Frigo and S. G. Johnson. 2005. The design and implementation of FFTW3. Proc. IEEE 93, 2 (2005),
216–231. Special issue on “Program Generation, Optimization, and Platform Adaptation”.

M. Fürer. 2007. Faster integer multiplication. In STOC’07. ACM, 57–66.

J. von zur Gathen and J. Gerhard. 2013. Modern Computer Algebra (3 ed.). Cambridge University Press,
New York, NY, USA.

J. von zur Gathen and V. Shoup. 1992. Computing Frobenius maps and factoring polynomials. Computa-
tional complexity 2, 3 (1992), 187–224.

P. Giorgi, L. Imbert, and T. Izard. 2013. Parallel modular multiplication on multi-core
processors. In 21st IEEE Symposium on Computer Arithmetic (ARITH). 135–142.
DOI:http://dx.doi.org/10.1109/ARITH.2013.20

GMP-Team. 2015. Multiple precision arithmetic library. (2015). https://gmplib.org/.

K. Goto and R. van de Geijn. 2008. High-performance implementation of the level-3 BLAS. ACM Trans.
Math. Software 35, 1 (2008), 4.

W. B. Hart. 2010. Fast library for number theory: an introduction. In Mathematical Software–ICMS 2010.
Springer, 88–91. http://www.flintlib.org/.

J. van der Hoeven, G. Lecerf, B Mourrain, P. Trébuchet, J. Berthomieu, D. N. Diatta, and A. Mantzaflaris.
2012. Mathemagix: the quest of modularity and efficiency for symbolic and certified numeric computa-
tion? ACM Communications in Computer Algebra 45, 3/4 (2012), 186–188. http://www.mathemagix.
org/.

J. van der Hoeven, G. Lecerf, and G. Quintin. 2016. Modular SIMD Arithmetic in Mathemagix. ACM
Trans. Math. Softw. 43, 1 (Aug. 2016), 5:1–5:37. DOI:http://dx.doi.org/10.1145/2876503

MKL Intel. 2007. Intel math kernel library. (2007).

F. Le Gall. 2014. Powers of Tensors and Fast Matrix Multiplication. In Proceedings of the 39th International
Symposium on Symbolic and Algebraic Computation (ISSAC ’14). ACM, New York, NY, USA, 296–303.
DOI:http://dx.doi.org/10.1145/2608628.2608664

LinBox-Team. 2016. LinBox: C++ library for exact, high-performance linear algebra (v1.4.2 ed.). http:
//github.com/linbox-team/linbox.

Clément Pernet. 2015. Exact Linear Algebra Algorithmic: Theory and Practice. In Proceedings of the 2015
ACM on International Symposium on Symbolic and Algebraic Computation (ISSAC ’15). ACM, New
York, NY, USA, 17–18. DOI:http://dx.doi.org/10.1145/2755996.2756684

M. Püschel, J. M. F. Moura, J. Johnson, D. Padua, M. Veloso, B. Singer, J. Xiong, F. Franchetti, A.
Gacic, Y. Voronenko, K. Chen, R. W. Johnson, and N. Rizzolo. 2005. SPIRAL: code generation for
DSP transforms. Proceedings of the IEEE, special issue on “Program Generation, Optimization, and
Adaptation” 93, 2 (2005), 232– 275.

A. Schönhage and V. Strassen. 1971. Schnelle Multiplikation grosser Zahlen. Computing 7 (1971), 281–292.

V. Shoup. 1994. Fast construction of irreducible polynomials over finite fields. Journal of Symbolic Compu-
tation 17, 5 (1994), 371–391.

V. Shoup. 1995. A new polynomial factorization algorithm and its implementation. Journal of Symbolic
Computation 20, 4 (1995), 363–397.

V. Shoup. 1999. Efficient computation of minimal polynomials in algebraic extensions of finite fields. In
ISSAC’99. ACM, 53–58.

V. Shoup. 2015. NTL: A library for doing number theory. (2015). http://www.shoup.net/ntl/.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1145/1391989.1391992
http://github.com/linbox-team/fflas-ffpack
http://dx.doi.org/10.1109/ARITH.2013.20
https://gmplib.org/
http://www.flintlib.org/
http://www.mathemagix.org/
http://www.mathemagix.org/
http://dx.doi.org/10.1145/2876503
http://dx.doi.org/10.1145/2608628.2608664
http://github.com/linbox-team/linbox
http://github.com/linbox-team/linbox
http://dx.doi.org/10.1145/2755996.2756684
http://www.shoup.net/ntl/

A:19

A. Stothers. 2010. On the Complexity of Matrix Multiplication. Ph.D. Dissertation. University of Edinburgh.

V. Strassen. 1969. Gaussian elimination is not optimal. Numer. Math. 13, 4 (1969), 354–356.
DOI:http://dx.doi.org/10.1007/BF02165411

V. Vassilevska Williams. 2012. Multiplying Matrices Faster Than Coppersmith-winograd. In Proceedings of
the Forty-fourth Annual ACM Symposium on Theory of Computing (STOC ’12). ACM, New York,
NY, USA, 887–898. DOI:http://dx.doi.org/10.1145/2213977.2214056

R. C. Whaley, A. Petitet, and J. J. Dongarra. 2001. Automated empirical optimizations of software and the
ATLAS project. Parallel Comput. 27, 1 (2001), 3–35.

ACM Transactions on Mathematical Software, Vol. V, No. N, Article A, Publication date: January YYYY.

http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1145/2213977.2214056

	Introduction
	Preliminaries
	Basic results
	The Residue Number System

	Algorithms for simultaneous conversions
	Conversion to RNS
	Conversion from RNS
	Implementation
	Timings

	Application to integer matrix multiplication
	Overview of the algorithm
	Implementation and timings
	Applications

	Extending the algorithms for larger moduli
	Motivation
	Enlarging moduli size in practice
	Conversion to RNS
	Conversion from RNS
	Implementation and timings

