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Abstract—The CloudMdsQL polystore provides integrated 
access to multiple heterogeneous data stores, such as RDBMS, 
NoSQL or even HDFS through a big data analytics framework 
such as MapReduce or Spark. The CloudMdsQL language is a 
functional SQL-like query language with a flexible nested data 
model. A major capability is to exploit the full power of each of 
the underlying data stores by allowing native queries to be 
expressed as functions and involved in SQL statements. The 
CloudMdsQL polystore has been validated with a good number 
of different data stores: HDFS, key-value, document, graph, 
RDBMS and OLAP engine. In this paper, we introduce the 
benchmarking of the CloudMdsQL polystore and evaluate the 
performance benefits of important features enabled by the query 
language and engine. 
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I.  INTRODUCTION 
The blooming of different cloud data management 

infrastructures, specialized for different kinds of data and tasks, 
has led to a wide diversification of DBMS interfaces and the 
loss of a common programming paradigm. This makes it very 
hard for a user to integrate and analyze her data sitting in 
different data stores, e.g. RDBMS, NoSQL, and HDFS. The 
CoherentPaaS project [1] addresses this problem, by providing 
a rich platform integrating different data management systems 
specialized for particular tasks, data and workloads. The 
platform is designed to provide a common programming model 
and language to query multiple data stores. 

The problem of accessing heterogeneous data sources has 
long been studied in the context of multidatabase and data 
integration systems [7]. More recently, with the advent of cloud 
databases and big data processing frameworks, the solution has 
evolved towards polystores (also called multistore systems) 
that provide integrated access to a number of RDBMS, NoSQL 
and HDFS data stores through a common query engine. Data 
mediation SQL engines, such as Apache Drill, Spark SQL, and 
SQL++ provide common interfaces that allow different data 

sources to be plugged in (through the use of wrappers) and 
queried using SQL. The BigDAWG polystore [3] goes farther 
by enabling queries across “islands of information”, where 
each island corresponds to a specific data model and its 
language and provides transparent access to a subset of the 
underlying data stores through the island’s data model. Another 
family of multistore systems [2,6] has been introduced with the 
goal of tightly integrating big data analytics frameworks (e.g. 
MapReduce or Spark) with traditional RDBMS, by sacrificing 
the extensibility with other data sources. However, since none 
of these approaches supports the ad-hoc usage of native 
queries, they do not preserve the full expressivity of an 
arbitrary data store’s query language. But what we want to give 
the user is the ability to express powerful ad-hoc queries that 
exploit the full power of the different data store languages, e.g. 
directly express a path traversal in a graph database. 

The Cloud Multidatastore Query Language (CloudMdsQL) 
is a functional SQL-like query language, designed to serve the 
querying capabilities of the CoherentPaaS platform. A 
CloudMdsQL query can address multiple heterogeneous 
databases by means of nested subqueries [5]. Each subquery 
addresses directly a particular data store and may contain 
embedded invocations to the data store’s native query interface. 
Thus, the major innovation is that a CloudMdsQL query can 
exploit the full power of local data stores, by simply allowing 
some local data store native queries (e.g. a breadth-first search 
query against a graph database) to be called as functions, and at 
the same time be optimized, e.g. by pushing down select 
predicates, using bind join, etc. 

One of the major challenges in front of the CloudMdsQL 
language/engine is to allow joins across heterogeneous data 
stores and to be able to perform them in an efficient way. For 
this reason, we pay special attention to the use of bind joins [4] 
and we apply this technique even when native queries are used. 
In this paper, we introduce the benchmarking of the 
CloudMdsQL system, which evaluates the ability to run 
optimized queries across heterogeneous data stores, as well as 
the functional and performance benefits of the usage of native 
queries in combination with SQL statements. 

The rest of the paper is organized as follows. Section 2 
gives an overview of the CloudMdsQL language and engine. 
Section 3 presents the benchmark environment and the results 
of the performance evaluation. Section 4 concludes. 
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II. CLOUDMDSQL OVERVIEW 
The CloudMdsQL language is SQL-based with the 

extended capabilities for embedding subqueries expressed in 
terms of each data store’s native query interface. The common 
data model respectively is table-based, with support of rich 
datatypes that can capture a wide range of the underlying data 
stores’ datatypes, such as arrays and JSON objects, in order to 
handle non-flat and nested data, with basic operators over such 
composite datatypes. 

The query engine follows a mediator/wrapper architecture, 
where data stores are accessed through wrappers, which 
implement a common interface. The query compiler 
decomposes the query into a query execution plan, which 
appears as a directed acyclic graph of relational operators 
where leaf nodes correspond to subqueries for the wrappers to 
execute directly against the data stores. 

A. Query Language 
Queries that integrate data from several data stores usually 

consist of subqueries and an integration SELECT statement. A 
subquery is defined as a named table expression, i.e. an 
expression that returns a table and has a name and signature. 
The signature defines the names and types of the columns of 
the returned relation. Thus, each query, although agnostic to the 
underlying data stores’ schemas, is executed in the context of 
an ad-hoc schema, formed by all named table expressions 
within the query. A named table expression can be defined by 
means of either an SQL SELECT statement (that the query 
compiler is able to analyze and possibly rewrite) or a native 
expression (that the query engine considers as a black box and 
delegates its processing directly to the data store). For example, 
the following simple CloudMdsQL query contains two 
subqueries, defined by the named table expressions T1 and T2, 
and addressed respectively against the data stores rdb (an SQL 
database) and mongo (a MongoDB database): 
T1(x int, y int)@rdb = ( SELECT x, y FROM A ) 
T2(x int, z array)@mongo = {* 
  db.B.find( {$lt: {x, 10}}, {x:1, z:1, _id:0} ) 
*} 
SELECT T1.x, T2.z 
FROM T1, T2 

WHERE T1.x = T2.x AND T1.y <= 3 

The purpose of this query is to perform relational algebra 
operations (expressed in the main SELECT statement) on two 
datasets retrieved from a relational and a document database. 
The two subqueries are sent independently for execution 
against their data stores in order the retrieved relations to be 
joined by the CloudMdsQL query engine. The SQL table 
expression T1 is defined by an SQL subquery, while T2 is a 
native expression (identified by the special bracket symbols {* 
*}) expressed as a native MongoDB call. Note that subqueries 
to some NoSQL data stores can also be expressed as SQL 
statements; in such cases, the wrapper must provide the 
mapping from relational operators to native calls. Within our 
evaluation, unlike in the example above, we use an SQL 
wrapper to query MongoDB, which also benefits from 
subquery rewriting. 

CloudMdsQL allows named table expressions to be defined 
as Python functions, which is useful for querying data stores 
that have only API-based query interface. A Python expression 
yields tuples to its result set much like a user-defined table 
function. It can also use as input the result of other subqueries. 
Furthermore, named table expressions can be parameterized by 
declaring parameters in the expression’s signature. For 
example, the following Python expression uses the 
intermediate data retrieved by T2 to return another table 
containing the number of occurrences of the parameter v in the 
array T2.z. 
T3(x int, c int WITHPARAMS v string)@python = {* 
  for (x, z) in CloudMdsQL.T2: 
    yield( x, z.count(v) ) 
*} 

A (parameterized) named table can then be instantiated by 
passing actual parameter values from another native/Python 
expression, as a table function in a FROM clause, or even as a 
scalar function (e.g. in the SELECT list). Calling a named table 
as a scalar function is useful e.g. to express direct lookups into 
a key-value data store. In fact, in the current benchmark, we 
evaluate the usage of scalar lookups as an efficient alternative 
to the usage of expensive joins. 

Note that parametrization and nesting is also available in 
SQL and native named tables. Within our evaluation, we give 
an example that involves the Sparksee graph database and we 
use its Python API to express subqueries that benefit from all 
of the features described above. In fact, our initial query engine 
implementation enables Python integration; however support 
for other languages (e.g. JavaScript) for user-defined 
operations can be easily added. 

B. Bind Join 
CloudMdsQL uses bind join as an efficient method for 

performing semi-joins across heterogeneous data stores that 
uses subquery rewriting to push the join conditions. For 
example, the list of distinct values of the join attribute(s), 
retrieved from the left-hand side subquery, is passed as a filter 
to the right-hand side subquery.  To illustrate it, let us consider 
the following CloudMdsQL query: 
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a) 
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b) 
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id 

Let us assume that the optimizer has decided to use the bind 
join method and that the join condition will be bound to the 
right-hand side of the equi-join operation. First, the relation B is 
retrieved from the corresponding data store using its query 
mechanism. Then, the distinct values of B.id are used as a 
filter condition in the query that retrieves the relation A from its 
data store. Assuming that the distinct values of B.id are b1 … 
bn, the query to retrieve the right-hand side relation of the bind 
join uses the following SQL approach (or its equivalent 
according to the data store’s query language), thus retrieving 
from A only the rows that match the join criteria: 
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn) 

In the above example, using bind join will be reasonable 
only in the presence of an index on the column a.id in data 



store DB1, because such a presence will make the pushed down 
IN operator avoid an expensive table scan. 

The way to do the bind join analogue for native/Python 
queries is through the use of a JOINED ON clause in the named 
table signature. For example, if A is defined as the Python 
function below, as A.id participates in an equi-join, the values 
b1 … bn will be provided to the Python code through the 
iterator b_keys (in this context, we refer to the table B as the  
“outer” table, and b_keys as the outer keys): 
A(id int, x int JOINED ON id 
   REFERENCING OUTER AS b_keys)@DB1 = 
{* 
  for id in CloudMdsQL.b_keys: 
    yield ( id, db.get_x(id) ) 
*} 

In fact, each wrapper may provide different mechanisms for 
the programmer to consume the values of the outer keys. In this 
example, as the native query is expressed in an imperative 
language, the set of outer keys is represented by an iterator 
object; however, for declarative native queries, more 
appropriate will be to define a placeholder, which the wrapper 
will substitute with the textual representation of the set of 
values. 

C. Query Engine 
For the current implementation of the query engine, we 

modified the open source Apache Derby database to accept 
CloudMdsQL queries and transform the corresponding 
execution plan into Derby SQL operations. We developed the 
query planner and the query execution controller and linked 
them to the Derby core, which we use as the operator engine. 
Derby allows extending the set of SQL operations by means of 
CREATE FUNCTION statements. This type of statements creates 
an alias, with an optional set of parameters, to invoke a specific 
Java component as part of an execution plan. Thus, for each 
named table expression in a query, a table function is created 
dynamically, which invokes the corresponding wrapper as a 
Java class. Thus, Derby handles global execution, delegating 
local optimization and execution to the underlying data stores. 
As a second step, the query engine evaluates which named 
expressions are queried more than once and must be cached 
into the temporary table storage, which will be always queried 
and updated from the specified Java functions to reduce the 
query execution time. Finally, the last step consists of 
translating all operation nodes that appear in the execution plan 
into a Derby specific SQL execution plan. 

III. BECNHMARKING AND PERFORMANCE EVALUATION 
The goal is to assess the ability of the query engine to 

perform optimized CloudMdsQL queries across data stores. To 
evaluate the performance improvements, we compare the 
execution times (with and without optimization) of queries that 
involve a quite diverse set of data stores. We divide the 
performed test cases in two groups that focus on the 
performance benefits thanks to: (1) bind joins and (2) the 
support of native queries. 

A. Data Stores 
We performed the experiments on 5 different data stores, 

each having different interfaces and data models, in order to 
have a representative data store in each of the categories: 
relational, key-value, document, graph databases, and an OLAP 
engine. They are summarized in this subsection, detailing the 
aspects that are important for the evaluation, namely: (1) the 
data model, (2) the query language, (3) whether SQL or native 
queries are used for subquerying, and (4) how the wrapper 
handles the set of outer keys to provide bind join support. 

MonetDB is a column-store database with an SQL engine 
atop. It follows a relational data model and is queried by SQL 
through CloudMdsQL subqueries. To handle the outer keys for 
bind join, the wrapper creates a temporary table (say 
outer_keys) in the MonetDB database and populates it with 
the values of the outer keys; then it rewrites the subquery by 
adding the predicate IN (SELECT * FROM outer_keys). If 
the bind join is on multiple keys, the generated predicate is 
different and uses the EXISTS operator. 

MongoDB is a document database that has a Java based 
query interface, where the chain of operations is specified 
through the use of API calls with JSON documents as 
parameters that typically return document collections. Since in 
some particular but very common cases (e.g. collections of flat 
documents with fixed field names), the document data model 
can be considered as a subset of the relational model, it is 
possible to map simple SQL commands to native MongoDB 
queries. For this reason, our MongoDB wrapper provides a 
translation from relational operations to native API calls, so 
that MongoDB can be subqueried by SQL statements. In 
addition, it also supports native MongoDB queries. When 
consuming the outer keys for bind join, the wrapper 
dynamically builds a filter condition using the MongoDB $in 
operator and applies it through a call to the find() function. 

Apache HBase is a key-value data store with a very simple 
interface mostly consisting of primitives to scan a whole table 
or to get the value for a particular key. Within CloudMdsQL, 
subqueries to HBase are expressed with native statements that 
can be of the form of either (1) scan '<table_name>' or (2) 
get '<table_name>', <key>. Therefore, there is no way 
to directly apply an equivalent of an IN operator to HBase 
subqueries, but the optimized functionality of a bind join can 
be achieved through the use of scalar lookups. 

Sparksee is a graph database that has a Python API and a 
declarative notation for graph algebra expressions. Within 
CloudMdsQL, subqueries to Sparksee are expressed in Python 
code. When handling the outer keys for bind join, the wrapper 
provides to the Python code an iterator object that the 
programmer can use to get the values of the outer keys and use 
them in native API calls to apply the filter. 

ActivePivot is an OLAP engine where data are organized in 
cubes and queried through MDX statements. Subqueries within 
CloudMdsQL are expressed as native MDX commands. To 
handle the outer keys for bind join, the programmer uses a 
special placeholder in the MDX expression, which the wrapper 
identifies and dynamically replaces with the textual 
representation of the set of values of the outer keys. 



B. Experimental Setup 
We performed our experiments using data based on the 

TPC-H benchmark schema (www.tpc.org/tpch). Each data 
store contains the same 8 datasets, generated by the TPC-H 
generator, stored in tables or in the corresponding for the data 
store structures, as follows. In MonetDB the TPC-H datasets 
are stored as relational tables, in MongoDB – as document 
collections. In HBase they are organized in HBase tables, 
where each key-value pair corresponds to a row from the 
dataset; in particular, the key corresponds to the value(s) of the 
key column(s), while the value contains the serialization of the 
entire row. In Sparksee, each of the TPC-H datasets is loaded 
into a set of graph nodes of the same type, while relationships 
between them are mapped to graph edges, i.e., a join between 
two datasets is expressed as a graph neighborship query. In 
ActivePivot, all the generated TPC-H data are loaded in one 
single cube. 

For the experiments, we use a cluster of 6 identical 
machines (8GB RAM, 4 CPU cores @2.4GHz), of which one 
node is dedicated to the CloudMdsQL engine and one node per 
each of the data stores. Each data store node contains data 
generated as per the TPC-H schema, with scale factor 1. Our 
queries use the datasets LINEITEM and ORDERS, where the 
columns L_ORDERKEY, L_PARTKEY, O_ORDERKEY, 
O_ORDERSTATUS and O_ORDERPRIORITY are indexed. 

Our queries use the datasets LINEITEM and ORDERS, where 
the columns L_ORDERKEY, L_PARTKEY, O_ORDERKEY, 
O_ORDERSTATUS and O_ORDERPRIORITY are indexed. 

C. Evaluation of Bind Joins 
With this set of test cases, we focus on the evaluation of 

performance benefits thanks to the use of bind joins, which is 
an efficient technique to apply semi-joins between datasets 
from different data stores by allowing the output of one of the 
subqueries to be used by the other subquery to filter out the 
unnecessary for the join rows. As we apply this technique to a 
quite diverse set of data stores, even if they do not natively 
support SQL querying, we consider this evaluation very 
important for the benchmarking of the CloudMdsQL system. 

We consider the following query, assuming that the column 
O_ORDERKEY is indexed. The selection predicate L_PARTKEY 
= 10 results in retrieving only 24 rows from the LINEITEM 
table which are then supposed to be joined with the ORDERS 
table, which contains 1.5 million rows. The non-optimized 
execution of this query implies that the entire ORDERS table is 
retrieved at the common query engine before being joined with 
the small table. In the optimized variant, the T2 subquery is 
rewritten by adding the predicate O_ORDERKEY IN (k1, k2, 
…, k24), where ki are the values of the column L_ORDERKEY, 
taken from the small table T1. Thus, only the rows that match 
the join condition (24 instead of 1.5 million) will be retrieved 
from the ORDERS table. 
T1( L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long, 
  L_LINENUMBER int, L_QUANTITY float, 
  L_EXTENDEDPRICE float, L_DISCOUNT float, 
  L_TAX float, L_RETURNFLAG string, 
  L_LINESTATUS string, L_SHIPDATE date, 
  L_COMMITDATE date, L_RECEIPTDATE date, 

  L_SHIPINSTRUCT string, L_SHIPMODE string, 
  L_COMMENT string)@datastore1 =  
( 
  SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY, 
    L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE, 
    L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS, 
    L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE, 
    L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT 
  FROM LINEITEM 
  WHERE L_PARTKEY = 10 
) 

T2( O_ORDERKEY long, O_CUSTKEY long, 
    O_ORDERSTATUS string, O_TOTALPRICE float, 
    O_ORDERDATE date, O_ORDERPRIORITY string, 
    O_CLERK string, O_SHIPPRIORITY int, 
    O_COMMENT string)@datastore2 = 
( 
    SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS, 
      O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY, 
      O_CLERK, O_SHIPPRIORITY, O_COMMENT 
    FROM ORDERS 
) 

SELECT T1.*, 
    T2.O_CUSTKEY, T2.O_ORDERSTATUS, T2.O_TOTALPRICE, 
    T2.O_ORDERDATE, T2.O_ORDERPRIORITY, T2.O_CLERK, 
    T2.O_SHIPPRIORITY, T2.O_COMMENT 
FROM T1 JOIN T2 ON L_ORDERKEY = O_ORDERKEY 

The above query, as specified, is applicable only if both 
datastore1 and datastore2 support SQL subquerying 
(MonetDB and MongoDB). To apply the bind join method, the 
query compiler takes care of doing subquery rewriting by 
pushing down to the subquery for T2 a predicate condition 
containing an IN operator that takes the values from an 
intermediate named table, containing the set of outer keys. As 
described in the previous subsection, the wrappers for 
MonetDB and MongoDB use different approaches to achieve 
the goal. 

Next, we will explore the performance of this approach 
when using native subqueries, especially when T2 is native, as 
it requires the native query to access intermediate data from the 
table storage of the common query engine. This is done with 
the help of the programmer by adding to the signature of T2 the 
following clause: 
JOINED ON O_ORDERKEY REFERENCING OUTER AS t1_keys 

Thus, whenever T2 is used for a bind join, the join key 
values of the other side of the join (the outer keys, taken from 
T1) are provided in the intermediate table t1_keys and the 
native query for T2 needs to use the corresponding mechanism 
that its wrapper provides to access these join keys and use them 
to return only rows that match the join criteria. Sparksee and 
ActivePivot wrappers provide different mechanisms for 
expressing this, as illustrated in the corresponding 
implementations of T2 below (for simplicity, the full signature 
of T2 is not repeated and some notations are shortened): 
T2( ... JOINED ON O_ORDERKEY 
    REFERENCING OUTER AS t1_keys)@sparksee = 
{* 
  rs = CloudMdsQL.t1_keys() 
  while rs.next(): 
    rs2 = graph.compute( \ 
      "GRAPH::SELECT( 'ORDERS'.'O_ORDERKEY' = " + \ 
        rs[1] + ")") 



    while rs2.next(): 
      yield( rs2[1], rs2[2], ..., rs2[9] ) 
    rs2.close(); 
  rs.close() 
*} 

The above Python code for Sparksee iterates through the 
outer keys and for each key finds the corresponding graph node 
and yields a tuple with its attributes, which correspond to the 
columns of the ORDERS dataset. 
T2( ... JOINED ON O_ORDERKEY 
    REFERENCING OUTER AS t1_keys)@activepivot = 
{* 
  SELECT NON EMPTY CROSSJOIN( 
    [Orders].[O_ORDERKEY].Members, 
    [Orders].[O_CUSTKEY].Members, 
    ........., 
    [Orders].[O_COMMENT].Members)  
  ON ROWS FROM 
    (SELECT {$§£[Orders].[O_ORDERKEY].£t1_keys§$}  
  ON COLUMNS FROM [TPCHCube]) 
*} 

The above MDX query contains the special placeholder 
$§£[Orders].[O_ORDERKEY].£t1_keys§$, which the 
ActivePivot wrapper uses as a template to dynamically 
generate the list of the outer keys and hence substitute the 
placeholder with a list of values like: 
[Orders].[O_ORDERKEY].[36341], ... 

The above approaches allow for the native query to filter 
out rows by applying an analogue of the IN operator. This is 
possible, because Sparksee and ActivePivot provide powerful 
query mechanisms. However, for simpler query notations, such 
as the one for the key-value data store HBase, this approach is 
not applicable, as HBase has only primitives either to retrieve a 
whole table (scan) or to make a lookup for the value for a 
particular key (get) or ranges of keys. That is why, to achieve 
the same benefits of bind join as above, when T2 is an HBase 
query, we take advantage of scalar lookups, that allow a 
parameterized named table (T2) to be used as a scalar function 
and evaluated for every value of a column from another table 
(T1). So, T2 is defined as a parameterized function that gets all 
the values of ORDERS for a particular key. Then, T2 is called in 
the SELECT list of the main SELECT statement of the query, 
instead of being joined with T1. The implementation of T2 for 
HBase and the main SELECT statement for this case are as 
follows: 
T2( ... WITHPARAMS orderkey long)@hbase =	{*	
    get 'orders', orderkey	
*}	
SELECT T1.*,	T2(L_ORDERKEY).O_CUSTKEY,	
  T2(L_ORDERKEY).O_ORDERSTATUS, 
  .........,	
  T2(L_ORDERKEY).O_COMMENT	
FROM T1 

We performed our experiments in the context of the above 
query and its variations with respect to the T2 subquery for the 
5 different data stores. Since the retrieval of the T1 table is 
quite trivial and its retrieval time is similar for all data stores, 
we do not focus on various data stores for the T1 subquery and 
performed all the experiments with MongoDB as 
datastore1, varying datastore2 among all the 5 data 
stores.  

We also experimented with 5 different selectivity factors of 
the bind join condition by changing the T1 filter predicate 
(initially L_PARTKEY = 10), thus varying the number of rows 
returned by T1, which results in different cardinalities of the set 
of outer keys. The different filter predicates we used and their 
corresponding selectivity factors (SF) are detailed in Table 1. 

TABLE I.  BIND JOIN SELECTIVITIES 

Filter predicate Rows 
(approx.) 

SF 
Rows / 1.5M 

L_PARTKEY = 10 24 0.002% 
L_PARTKEY <= 10 300 0.02% 
L_PARTKEY <= 100 3000 0.2% 
L_PARTKEY <= 1000 30000 2% 
L_PARTKEY <= 10000 300000 20% 

Thus, the results of the current or similar benchmark can 
serve as a statistical base to determine the profitability of bind 
join compared to traditional join for each data store as a 
function of the join selectivity, as well as to determine a 
selectivity threshold, below which using bind join will be 
considered reasonable. Since each data store and wrapper uses 
different mechanisms to handle the outer keys, these metrics 
are quite different for each of the 5 data stores. 

Table 2 summarizes the results of the performed evaluation 
on the bind join test cases with the 5 data stores and the 5 
different selectivity factors. For each test case, the summary 
includes the execution times (in milliseconds) for performing 
traditional join (TJ) compared to bind join (BJ) and the 
performance improvement (PI = TJ/BJ). The test cases, for 
which there is no performance improvement, are omitted. 

TABLE II.  BIND JOIN PERFORMANCE BENEFITS 

Data Store 
Selectivity factor 

0.002% 0.02% 0.2% 2% 20% 

MonetDB 
TJ 56582 58113 59294 62027 67509 
BJ 953 1120 1982 8938 68757 
PI 59.4 51.9 29.9 6.9 1.0 

MongoDB 
TJ 63783 65654 67807 75218 81146 
BJ 233 363 1124 6126 40908 
PI 273.7 180.9 60.3 12.3 2.0 

HBase 
TJ 100576 102218 103340 105123  
BJ 1520 2711 10582 75886  
PI 66.2 37.7 9.8 1.4  

Sparksee 
TJ 149694 151239 152116   
BJ 1480 7409 57739   
PI 101.1 20.4 2.6   

ActivePivot 
TJ 205071 206803 207944   
BJ 1739 14409 145788   
PI 117.9 14.4 1.4   

 

Bind join produces an overhead, which is why for high 
values of the selectivity factor its usage is not advisable. First, 
when using bind join, the query engine cannot retrieve both 
tables in parallel, as it must wait for the outer table to be fully 
retrieved in order to get the set of distinct values of the outer 
keys. Second, it requires that this set of values be pushed into 
the subquery, which is handled differently by each data store, 
which explains the variability of performance improvements. 
The MonetDB wrapper makes a modification of the schema to 
create and populate a temporary table. MongoDB is doing 



faster, as it simply creates a filter out of the outer keys. With 
HBase, the process is much slower, as a native query is 
initiated by the query engine for each row of the outer table. 
The case of Sparksee is similar, as the Python code requests 
that a graph query be evaluated for each of the outer keys. And 
for ActivePivot, query rewriting takes place, however it brings 
a significant textual overhead, as the values of the outer keys 
must be specified with full dimension path. 

D. Evaluation of Native Query Support 
The support of native queries in CloudMdsQL allows the 

user to write powerful subqueries to the data stores that 
efficiently perform specific for the data store operations with 
native statements, rather than to express them in SQL and 
handle at the common query engine. This requires deeper 
expertise and knowledge about the specifics of the queried data 
stores; however, the added value is that the programmer can 
still request efficient operations at the data store, thanks to the 
support of native queries, and combine the results with other 
data store queries. 

Let us consider the following queries, which request 
different operations to a data store, expressed in SQL. The 
queries focus on selection, aggregation, grouping, sorting and 
join operations. 
Q_SEL:  SELECT L_ORDERKEY FROM LINEITEM 
        WHERE L_PARTKEY = 10 

Q_AGG:  SELECT COUNT(*) FROM LINEITEM 
        WHERE L_QUANTITY < 5 

Q_GRP:  SELECT O_ORDERSTATUS, O_ORDERPRIORITY, 
          AVG (O_TOTALPRICE) 
        FROM ORDERS 
        GROUP BY O_ORDERSTATUS, O_ORDERPRIORITY 

Q_ORD:  SELECT O_ORDERSTATUS, O_ORDERPRIORITY, 
          AVG (O_TOTALPRICE) 
        FROM ORDERS 
        GROUP BY O_ORDERSTATUS, O_ORDERPRIORITY 
        ORDER BY O_ORDERSTATUS, O_ORDERPRIORITY 

Q_JOIN: SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS, 
          L_QUANTITY 
        FROM LINEITEM JOIN ORDERS 
          ON L_ORDERKEY = O_ORDERKEY 
        WHERE L_PARTKEY = 10 

Let us assume that the programmer needs to request the 
same operations to non-SQL data stores (Sparksee and 
ActivePivot) that can natively support them. The naïve way to 
achieve this is for the wrapper developer or DBA to provide a 
static mapping of data store structures to relational tables and 
let the programmer express her query in SQL at the common 
query engine level. But now the programmer can take 
advantage of the native queries support and express the 
operations in native for the data store statements, which will 
result in an optimal execution. Note that all the generated TPC-
H data for ActivePivot are stored in one single cube; so, 
although ActivePivot does not natively support joins between 
cubes, we categorize it as a join-capable data store only for this 
test case, because in fact a conceptual join between LINEITEM 
and ORDERS is handled by ActivePivot by dealing with 
dimensions of the same cube. 

TABLE III.  NATIVE QUERY SUPPORT PERFORMANCE BENEFITS 

Data Store Q_SEL Q_AGG Q_GRP Q_ORD Q_JOIN 

Sparksee 
SQ 19068 26893 36870 51075 69393 
NQ 76 326 2654 2640 785 
PI 250.9 82.5 13.9 19.3 88.4 

Active 
Pivot 

SQ 20009 12592 10067 10907 193963 
NQ 261 112 16 77 189 
PI 76.7 112.4 629.2 141.6 1026.3 

 

With this group of test cases, we compare the execution 
times of the queries in two variants: when the requested 
operations are expressed in native queries and done by the data 
store (NQ), and when the operations are expressed in SQL 
queries and executed by the query engine after the wrapper 
simply delivers the entire table (SQ). Table 3 shows the 
comparison between NQ and SQ execution times, as well as 
the performance improvement (PI = SQ/NQ). 

IV. CONCLUSION 
This paper introduced the benchmarking of the 

CloudMdsQL polystore and evaluated the performance benefits 
in two specific categories of queries. First, the evaluation of 
bind join shows the ability of the query engine to run efficient 
queries across heterogeneous databases using both SQL and 
native approaches. Moreover, the measurements of the current 
or similar benchmark can be used as provision for a cost model 
based on inferring the performance improvement of bind joins 
for each particular data store. Second, the evaluation of the 
native query support stresses on the performance benefits 
provided by the high expressivity of the query language. With 
this benchmark we focused mostly on relational operators and 
their equivalents in non-SQL data stores. As a further work we 
will concentrate on evaluating the performance benefits in the 
context of data store specific operators, such as graph traversals 
or queries on nested documents. 
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