
HAL Id: lirmm-01415582
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582v1

Submitted on 13 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Benchmarking Polystores: the CloudMdsQL Experience
Boyan Kolev, Raquel Pau, Oleksandra Levchenko, Patrick Valduriez, Ricardo

Jiménez-Peris, José Pereira

To cite this version:
Boyan Kolev, Raquel Pau, Oleksandra Levchenko, Patrick Valduriez, Ricardo Jiménez-Peris, et al..
Benchmarking Polystores: the CloudMdsQL Experience. Workshop on Methods to Manage Heteroge-
neous Big Data and Polystore Databases @BigData 2016, Dec 2016, Washington, DC, United States.
pp.2574-2579, �10.1109/BigData.2016.7840899�. �lirmm-01415582�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01415582v1
https://hal.archives-ouvertes.fr

Benchmarking Polystores: the CloudMdsQL
Experience

Boyan Kolev1,2, Raquel Pau3, Oleksandra Levchenko1, Patrick Valduriez1, Ricardo Jiménez-Peris2,4, José Pereira2,5

1 Inria & LIRMM, Montpellier, France
2 LeanXcale, Madrid, Spain

3 Sparsity Technologies, Barcelona, Spain
4 UPM, Madrid, Spain

5 INESC TEC & U. Minho, Braga, Portugal

Abstract—The CloudMdsQL polystore provides integrated
access to multiple heterogeneous data stores, such as RDBMS,
NoSQL or even HDFS through a big data analytics framework
such as MapReduce or Spark. The CloudMdsQL language is a
functional SQL-like query language with a flexible nested data
model. A major capability is to exploit the full power of each of
the underlying data stores by allowing native queries to be
expressed as functions and involved in SQL statements. The
CloudMdsQL polystore has been validated with a good number
of different data stores: HDFS, key-value, document, graph,
RDBMS and OLAP engine. In this paper, we introduce the
benchmarking of the CloudMdsQL polystore and evaluate the
performance benefits of important features enabled by the query
language and engine.

Keywords—benchmark; cloud; heterogeneous data; polystore

I. INTRODUCTION
The blooming of different cloud data management

infrastructures, specialized for different kinds of data and tasks,
has led to a wide diversification of DBMS interfaces and the
loss of a common programming paradigm. This makes it very
hard for a user to integrate and analyze her data sitting in
different data stores, e.g. RDBMS, NoSQL, and HDFS. The
CoherentPaaS project [1] addresses this problem, by providing
a rich platform integrating different data management systems
specialized for particular tasks, data and workloads. The
platform is designed to provide a common programming model
and language to query multiple data stores.

The problem of accessing heterogeneous data sources has
long been studied in the context of multidatabase and data
integration systems [7]. More recently, with the advent of cloud
databases and big data processing frameworks, the solution has
evolved towards polystores (also called multistore systems)
that provide integrated access to a number of RDBMS, NoSQL
and HDFS data stores through a common query engine. Data
mediation SQL engines, such as Apache Drill, Spark SQL, and
SQL++ provide common interfaces that allow different data

sources to be plugged in (through the use of wrappers) and
queried using SQL. The BigDAWG polystore [3] goes farther
by enabling queries across “islands of information”, where
each island corresponds to a specific data model and its
language and provides transparent access to a subset of the
underlying data stores through the island’s data model. Another
family of multistore systems [2,6] has been introduced with the
goal of tightly integrating big data analytics frameworks (e.g.
MapReduce or Spark) with traditional RDBMS, by sacrificing
the extensibility with other data sources. However, since none
of these approaches supports the ad-hoc usage of native
queries, they do not preserve the full expressivity of an
arbitrary data store’s query language. But what we want to give
the user is the ability to express powerful ad-hoc queries that
exploit the full power of the different data store languages, e.g.
directly express a path traversal in a graph database.

The Cloud Multidatastore Query Language (CloudMdsQL)
is a functional SQL-like query language, designed to serve the
querying capabilities of the CoherentPaaS platform. A
CloudMdsQL query can address multiple heterogeneous
databases by means of nested subqueries [5]. Each subquery
addresses directly a particular data store and may contain
embedded invocations to the data store’s native query interface.
Thus, the major innovation is that a CloudMdsQL query can
exploit the full power of local data stores, by simply allowing
some local data store native queries (e.g. a breadth-first search
query against a graph database) to be called as functions, and at
the same time be optimized, e.g. by pushing down select
predicates, using bind join, etc.

One of the major challenges in front of the CloudMdsQL
language/engine is to allow joins across heterogeneous data
stores and to be able to perform them in an efficient way. For
this reason, we pay special attention to the use of bind joins [4]
and we apply this technique even when native queries are used.
In this paper, we introduce the benchmarking of the
CloudMdsQL system, which evaluates the ability to run
optimized queries across heterogeneous data stores, as well as
the functional and performance benefits of the usage of native
queries in combination with SQL statements.

The rest of the paper is organized as follows. Section 2
gives an overview of the CloudMdsQL language and engine.
Section 3 presents the benchmark environment and the results
of the performance evaluation. Section 4 concludes.

This research has been partially funded by the European Commission
under projects CoherentPaaS, LeanBigData, and CloudDBAppliance (grants
FP7-611068, FP7-619606, and H2020-732051), the Madrid Regional Council,
FSE and FEDER, project Cloud4BigData (grant S2013TIC-2894), the Spanish
Research Agency MICIN project BigDataPaaS (grant TIN2013-46883), and
the Spanish CDTI/MEC NEOTEC program (grant SNEO-20151285).

II. CLOUDMDSQL OVERVIEW
The CloudMdsQL language is SQL-based with the

extended capabilities for embedding subqueries expressed in
terms of each data store’s native query interface. The common
data model respectively is table-based, with support of rich
datatypes that can capture a wide range of the underlying data
stores’ datatypes, such as arrays and JSON objects, in order to
handle non-flat and nested data, with basic operators over such
composite datatypes.

The query engine follows a mediator/wrapper architecture,
where data stores are accessed through wrappers, which
implement a common interface. The query compiler
decomposes the query into a query execution plan, which
appears as a directed acyclic graph of relational operators
where leaf nodes correspond to subqueries for the wrappers to
execute directly against the data stores.

A. Query Language
Queries that integrate data from several data stores usually

consist of subqueries and an integration SELECT statement. A
subquery is defined as a named table expression, i.e. an
expression that returns a table and has a name and signature.
The signature defines the names and types of the columns of
the returned relation. Thus, each query, although agnostic to the
underlying data stores’ schemas, is executed in the context of
an ad-hoc schema, formed by all named table expressions
within the query. A named table expression can be defined by
means of either an SQL SELECT statement (that the query
compiler is able to analyze and possibly rewrite) or a native
expression (that the query engine considers as a black box and
delegates its processing directly to the data store). For example,
the following simple CloudMdsQL query contains two
subqueries, defined by the named table expressions T1 and T2,
and addressed respectively against the data stores rdb (an SQL
database) and mongo (a MongoDB database):
T1(x int, y int)@rdb = (SELECT x, y FROM A)
T2(x int, z array)@mongo = {*
 db.B.find({$lt: {x, 10}}, {x:1, z:1, _id:0})
*}
SELECT T1.x, T2.z
FROM T1, T2

WHERE T1.x = T2.x AND T1.y <= 3

The purpose of this query is to perform relational algebra
operations (expressed in the main SELECT statement) on two
datasets retrieved from a relational and a document database.
The two subqueries are sent independently for execution
against their data stores in order the retrieved relations to be
joined by the CloudMdsQL query engine. The SQL table
expression T1 is defined by an SQL subquery, while T2 is a
native expression (identified by the special bracket symbols {*
*}) expressed as a native MongoDB call. Note that subqueries
to some NoSQL data stores can also be expressed as SQL
statements; in such cases, the wrapper must provide the
mapping from relational operators to native calls. Within our
evaluation, unlike in the example above, we use an SQL
wrapper to query MongoDB, which also benefits from
subquery rewriting.

CloudMdsQL allows named table expressions to be defined
as Python functions, which is useful for querying data stores
that have only API-based query interface. A Python expression
yields tuples to its result set much like a user-defined table
function. It can also use as input the result of other subqueries.
Furthermore, named table expressions can be parameterized by
declaring parameters in the expression’s signature. For
example, the following Python expression uses the
intermediate data retrieved by T2 to return another table
containing the number of occurrences of the parameter v in the
array T2.z.
T3(x int, c int WITHPARAMS v string)@python = {*
 for (x, z) in CloudMdsQL.T2:
 yield(x, z.count(v))
*}

A (parameterized) named table can then be instantiated by
passing actual parameter values from another native/Python
expression, as a table function in a FROM clause, or even as a
scalar function (e.g. in the SELECT list). Calling a named table
as a scalar function is useful e.g. to express direct lookups into
a key-value data store. In fact, in the current benchmark, we
evaluate the usage of scalar lookups as an efficient alternative
to the usage of expensive joins.

Note that parametrization and nesting is also available in
SQL and native named tables. Within our evaluation, we give
an example that involves the Sparksee graph database and we
use its Python API to express subqueries that benefit from all
of the features described above. In fact, our initial query engine
implementation enables Python integration; however support
for other languages (e.g. JavaScript) for user-defined
operations can be easily added.

B. Bind Join
CloudMdsQL uses bind join as an efficient method for

performing semi-joins across heterogeneous data stores that
uses subquery rewriting to push the join conditions. For
example, the list of distinct values of the join attribute(s),
retrieved from the left-hand side subquery, is passed as a filter
to the right-hand side subquery. To illustrate it, let us consider
the following CloudMdsQL query:
A(id int, x int)@DB1 = (SELECT a.id, a.x FROM a)
B(id int, y int)@DB2 = (SELECT b.id, b.y FROM b)
SELECT a.x, b.y FROM b JOIN a ON b.id = a.id

Let us assume that the optimizer has decided to use the bind
join method and that the join condition will be bound to the
right-hand side of the equi-join operation. First, the relation B is
retrieved from the corresponding data store using its query
mechanism. Then, the distinct values of B.id are used as a
filter condition in the query that retrieves the relation A from its
data store. Assuming that the distinct values of B.id are b1 …
bn, the query to retrieve the right-hand side relation of the bind
join uses the following SQL approach (or its equivalent
according to the data store’s query language), thus retrieving
from A only the rows that match the join criteria:
SELECT a.id, a.x FROM a WHERE a.id IN (b1, …, bn)

In the above example, using bind join will be reasonable
only in the presence of an index on the column a.id in data

store DB1, because such a presence will make the pushed down
IN operator avoid an expensive table scan.

The way to do the bind join analogue for native/Python
queries is through the use of a JOINED ON clause in the named
table signature. For example, if A is defined as the Python
function below, as A.id participates in an equi-join, the values
b1 … bn will be provided to the Python code through the
iterator b_keys (in this context, we refer to the table B as the
“outer” table, and b_keys as the outer keys):
A(id int, x int JOINED ON id
 REFERENCING OUTER AS b_keys)@DB1 =
{*
 for id in CloudMdsQL.b_keys:
 yield (id, db.get_x(id))
*}

In fact, each wrapper may provide different mechanisms for
the programmer to consume the values of the outer keys. In this
example, as the native query is expressed in an imperative
language, the set of outer keys is represented by an iterator
object; however, for declarative native queries, more
appropriate will be to define a placeholder, which the wrapper
will substitute with the textual representation of the set of
values.

C. Query Engine
For the current implementation of the query engine, we

modified the open source Apache Derby database to accept
CloudMdsQL queries and transform the corresponding
execution plan into Derby SQL operations. We developed the
query planner and the query execution controller and linked
them to the Derby core, which we use as the operator engine.
Derby allows extending the set of SQL operations by means of
CREATE FUNCTION statements. This type of statements creates
an alias, with an optional set of parameters, to invoke a specific
Java component as part of an execution plan. Thus, for each
named table expression in a query, a table function is created
dynamically, which invokes the corresponding wrapper as a
Java class. Thus, Derby handles global execution, delegating
local optimization and execution to the underlying data stores.
As a second step, the query engine evaluates which named
expressions are queried more than once and must be cached
into the temporary table storage, which will be always queried
and updated from the specified Java functions to reduce the
query execution time. Finally, the last step consists of
translating all operation nodes that appear in the execution plan
into a Derby specific SQL execution plan.

III. BECNHMARKING AND PERFORMANCE EVALUATION
The goal is to assess the ability of the query engine to

perform optimized CloudMdsQL queries across data stores. To
evaluate the performance improvements, we compare the
execution times (with and without optimization) of queries that
involve a quite diverse set of data stores. We divide the
performed test cases in two groups that focus on the
performance benefits thanks to: (1) bind joins and (2) the
support of native queries.

A. Data Stores
We performed the experiments on 5 different data stores,

each having different interfaces and data models, in order to
have a representative data store in each of the categories:
relational, key-value, document, graph databases, and an OLAP
engine. They are summarized in this subsection, detailing the
aspects that are important for the evaluation, namely: (1) the
data model, (2) the query language, (3) whether SQL or native
queries are used for subquerying, and (4) how the wrapper
handles the set of outer keys to provide bind join support.

MonetDB is a column-store database with an SQL engine
atop. It follows a relational data model and is queried by SQL
through CloudMdsQL subqueries. To handle the outer keys for
bind join, the wrapper creates a temporary table (say
outer_keys) in the MonetDB database and populates it with
the values of the outer keys; then it rewrites the subquery by
adding the predicate IN (SELECT * FROM outer_keys). If
the bind join is on multiple keys, the generated predicate is
different and uses the EXISTS operator.

MongoDB is a document database that has a Java based
query interface, where the chain of operations is specified
through the use of API calls with JSON documents as
parameters that typically return document collections. Since in
some particular but very common cases (e.g. collections of flat
documents with fixed field names), the document data model
can be considered as a subset of the relational model, it is
possible to map simple SQL commands to native MongoDB
queries. For this reason, our MongoDB wrapper provides a
translation from relational operations to native API calls, so
that MongoDB can be subqueried by SQL statements. In
addition, it also supports native MongoDB queries. When
consuming the outer keys for bind join, the wrapper
dynamically builds a filter condition using the MongoDB $in
operator and applies it through a call to the find() function.

Apache HBase is a key-value data store with a very simple
interface mostly consisting of primitives to scan a whole table
or to get the value for a particular key. Within CloudMdsQL,
subqueries to HBase are expressed with native statements that
can be of the form of either (1) scan '<table_name>' or (2)
get '<table_name>', <key>. Therefore, there is no way
to directly apply an equivalent of an IN operator to HBase
subqueries, but the optimized functionality of a bind join can
be achieved through the use of scalar lookups.

Sparksee is a graph database that has a Python API and a
declarative notation for graph algebra expressions. Within
CloudMdsQL, subqueries to Sparksee are expressed in Python
code. When handling the outer keys for bind join, the wrapper
provides to the Python code an iterator object that the
programmer can use to get the values of the outer keys and use
them in native API calls to apply the filter.

ActivePivot is an OLAP engine where data are organized in
cubes and queried through MDX statements. Subqueries within
CloudMdsQL are expressed as native MDX commands. To
handle the outer keys for bind join, the programmer uses a
special placeholder in the MDX expression, which the wrapper
identifies and dynamically replaces with the textual
representation of the set of values of the outer keys.

B. Experimental Setup
We performed our experiments using data based on the

TPC-H benchmark schema (www.tpc.org/tpch). Each data
store contains the same 8 datasets, generated by the TPC-H
generator, stored in tables or in the corresponding for the data
store structures, as follows. In MonetDB the TPC-H datasets
are stored as relational tables, in MongoDB – as document
collections. In HBase they are organized in HBase tables,
where each key-value pair corresponds to a row from the
dataset; in particular, the key corresponds to the value(s) of the
key column(s), while the value contains the serialization of the
entire row. In Sparksee, each of the TPC-H datasets is loaded
into a set of graph nodes of the same type, while relationships
between them are mapped to graph edges, i.e., a join between
two datasets is expressed as a graph neighborship query. In
ActivePivot, all the generated TPC-H data are loaded in one
single cube.

For the experiments, we use a cluster of 6 identical
machines (8GB RAM, 4 CPU cores @2.4GHz), of which one
node is dedicated to the CloudMdsQL engine and one node per
each of the data stores. Each data store node contains data
generated as per the TPC-H schema, with scale factor 1. Our
queries use the datasets LINEITEM and ORDERS, where the
columns L_ORDERKEY, L_PARTKEY, O_ORDERKEY,
O_ORDERSTATUS and O_ORDERPRIORITY are indexed.

Our queries use the datasets LINEITEM and ORDERS, where
the columns L_ORDERKEY, L_PARTKEY, O_ORDERKEY,
O_ORDERSTATUS and O_ORDERPRIORITY are indexed.

C. Evaluation of Bind Joins
With this set of test cases, we focus on the evaluation of

performance benefits thanks to the use of bind joins, which is
an efficient technique to apply semi-joins between datasets
from different data stores by allowing the output of one of the
subqueries to be used by the other subquery to filter out the
unnecessary for the join rows. As we apply this technique to a
quite diverse set of data stores, even if they do not natively
support SQL querying, we consider this evaluation very
important for the benchmarking of the CloudMdsQL system.

We consider the following query, assuming that the column
O_ORDERKEY is indexed. The selection predicate L_PARTKEY
= 10 results in retrieving only 24 rows from the LINEITEM
table which are then supposed to be joined with the ORDERS
table, which contains 1.5 million rows. The non-optimized
execution of this query implies that the entire ORDERS table is
retrieved at the common query engine before being joined with
the small table. In the optimized variant, the T2 subquery is
rewritten by adding the predicate O_ORDERKEY IN (k1, k2,
…, k24), where ki are the values of the column L_ORDERKEY,
taken from the small table T1. Thus, only the rows that match
the join condition (24 instead of 1.5 million) will be retrieved
from the ORDERS table.
T1(L_ORDERKEY long, L_PARTKEY long, L_SUPPKEY long,
 L_LINENUMBER int, L_QUANTITY float,
 L_EXTENDEDPRICE float, L_DISCOUNT float,
 L_TAX float, L_RETURNFLAG string,
 L_LINESTATUS string, L_SHIPDATE date,
 L_COMMITDATE date, L_RECEIPTDATE date,

 L_SHIPINSTRUCT string, L_SHIPMODE string,
 L_COMMENT string)@datastore1 =
(
 SELECT L_ORDERKEY, L_PARTKEY, L_SUPPKEY,
 L_LINENUMBER, L_QUANTITY, L_EXTENDEDPRICE,
 L_DISCOUNT, L_TAX, L_RETURNFLAG, L_LINESTATUS,
 L_SHIPDATE, L_COMMITDATE, L_RECEIPTDATE,
 L_SHIPINSTRUCT, L_SHIPMODE, L_COMMENT
 FROM LINEITEM
 WHERE L_PARTKEY = 10
)

T2(O_ORDERKEY long, O_CUSTKEY long,
 O_ORDERSTATUS string, O_TOTALPRICE float,
 O_ORDERDATE date, O_ORDERPRIORITY string,
 O_CLERK string, O_SHIPPRIORITY int,
 O_COMMENT string)@datastore2 =
(
 SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
 O_TOTALPRICE, O_ORDERDATE, O_ORDERPRIORITY,
 O_CLERK, O_SHIPPRIORITY, O_COMMENT
 FROM ORDERS
)

SELECT T1.*,
 T2.O_CUSTKEY, T2.O_ORDERSTATUS, T2.O_TOTALPRICE,
 T2.O_ORDERDATE, T2.O_ORDERPRIORITY, T2.O_CLERK,
 T2.O_SHIPPRIORITY, T2.O_COMMENT
FROM T1 JOIN T2 ON L_ORDERKEY = O_ORDERKEY

The above query, as specified, is applicable only if both
datastore1 and datastore2 support SQL subquerying
(MonetDB and MongoDB). To apply the bind join method, the
query compiler takes care of doing subquery rewriting by
pushing down to the subquery for T2 a predicate condition
containing an IN operator that takes the values from an
intermediate named table, containing the set of outer keys. As
described in the previous subsection, the wrappers for
MonetDB and MongoDB use different approaches to achieve
the goal.

Next, we will explore the performance of this approach
when using native subqueries, especially when T2 is native, as
it requires the native query to access intermediate data from the
table storage of the common query engine. This is done with
the help of the programmer by adding to the signature of T2 the
following clause:
JOINED ON O_ORDERKEY REFERENCING OUTER AS t1_keys

Thus, whenever T2 is used for a bind join, the join key
values of the other side of the join (the outer keys, taken from
T1) are provided in the intermediate table t1_keys and the
native query for T2 needs to use the corresponding mechanism
that its wrapper provides to access these join keys and use them
to return only rows that match the join criteria. Sparksee and
ActivePivot wrappers provide different mechanisms for
expressing this, as illustrated in the corresponding
implementations of T2 below (for simplicity, the full signature
of T2 is not repeated and some notations are shortened):
T2(... JOINED ON O_ORDERKEY
 REFERENCING OUTER AS t1_keys)@sparksee =
{*
 rs = CloudMdsQL.t1_keys()
 while rs.next():
 rs2 = graph.compute(\
 "GRAPH::SELECT('ORDERS'.'O_ORDERKEY' = " + \
 rs[1] + ")")

 while rs2.next():
 yield(rs2[1], rs2[2], ..., rs2[9])
 rs2.close();
 rs.close()
*}

The above Python code for Sparksee iterates through the
outer keys and for each key finds the corresponding graph node
and yields a tuple with its attributes, which correspond to the
columns of the ORDERS dataset.
T2(... JOINED ON O_ORDERKEY
 REFERENCING OUTER AS t1_keys)@activepivot =
{*
 SELECT NON EMPTY CROSSJOIN(
 [Orders].[O_ORDERKEY].Members,
 [Orders].[O_CUSTKEY].Members,
 ,
 [Orders].[O_COMMENT].Members)
 ON ROWS FROM
 (SELECT {$§£[Orders].[O_ORDERKEY].£t1_keys§$}
 ON COLUMNS FROM [TPCHCube])
*}

The above MDX query contains the special placeholder
$§£[Orders].[O_ORDERKEY].£t1_keys§$, which the
ActivePivot wrapper uses as a template to dynamically
generate the list of the outer keys and hence substitute the
placeholder with a list of values like:
[Orders].[O_ORDERKEY].[36341], ...

The above approaches allow for the native query to filter
out rows by applying an analogue of the IN operator. This is
possible, because Sparksee and ActivePivot provide powerful
query mechanisms. However, for simpler query notations, such
as the one for the key-value data store HBase, this approach is
not applicable, as HBase has only primitives either to retrieve a
whole table (scan) or to make a lookup for the value for a
particular key (get) or ranges of keys. That is why, to achieve
the same benefits of bind join as above, when T2 is an HBase
query, we take advantage of scalar lookups, that allow a
parameterized named table (T2) to be used as a scalar function
and evaluated for every value of a column from another table
(T1). So, T2 is defined as a parameterized function that gets all
the values of ORDERS for a particular key. Then, T2 is called in
the SELECT list of the main SELECT statement of the query,
instead of being joined with T1. The implementation of T2 for
HBase and the main SELECT statement for this case are as
follows:
T2(... WITHPARAMS orderkey long)@hbase =	{*	
 get 'orders', orderkey	
*}	
SELECT T1.*,	T2(L_ORDERKEY).O_CUSTKEY,	
 T2(L_ORDERKEY).O_ORDERSTATUS,
 ,	
 T2(L_ORDERKEY).O_COMMENT	
FROM T1

We performed our experiments in the context of the above
query and its variations with respect to the T2 subquery for the
5 different data stores. Since the retrieval of the T1 table is
quite trivial and its retrieval time is similar for all data stores,
we do not focus on various data stores for the T1 subquery and
performed all the experiments with MongoDB as
datastore1, varying datastore2 among all the 5 data
stores.

We also experimented with 5 different selectivity factors of
the bind join condition by changing the T1 filter predicate
(initially L_PARTKEY = 10), thus varying the number of rows
returned by T1, which results in different cardinalities of the set
of outer keys. The different filter predicates we used and their
corresponding selectivity factors (SF) are detailed in Table 1.

TABLE I. BIND JOIN SELECTIVITIES

Filter predicate Rows
(approx.)

SF
Rows / 1.5M

L_PARTKEY = 10 24 0.002%
L_PARTKEY <= 10 300 0.02%
L_PARTKEY <= 100 3000 0.2%
L_PARTKEY <= 1000 30000 2%
L_PARTKEY <= 10000 300000 20%

Thus, the results of the current or similar benchmark can
serve as a statistical base to determine the profitability of bind
join compared to traditional join for each data store as a
function of the join selectivity, as well as to determine a
selectivity threshold, below which using bind join will be
considered reasonable. Since each data store and wrapper uses
different mechanisms to handle the outer keys, these metrics
are quite different for each of the 5 data stores.

Table 2 summarizes the results of the performed evaluation
on the bind join test cases with the 5 data stores and the 5
different selectivity factors. For each test case, the summary
includes the execution times (in milliseconds) for performing
traditional join (TJ) compared to bind join (BJ) and the
performance improvement (PI = TJ/BJ). The test cases, for
which there is no performance improvement, are omitted.

TABLE II. BIND JOIN PERFORMANCE BENEFITS

Data Store
Selectivity factor

0.002% 0.02% 0.2% 2% 20%

MonetDB
TJ 56582 58113 59294 62027 67509
BJ 953 1120 1982 8938 68757
PI 59.4 51.9 29.9 6.9 1.0

MongoDB
TJ 63783 65654 67807 75218 81146
BJ 233 363 1124 6126 40908
PI 273.7 180.9 60.3 12.3 2.0

HBase
TJ 100576 102218 103340 105123
BJ 1520 2711 10582 75886
PI 66.2 37.7 9.8 1.4

Sparksee
TJ 149694 151239 152116
BJ 1480 7409 57739
PI 101.1 20.4 2.6

ActivePivot
TJ 205071 206803 207944
BJ 1739 14409 145788
PI 117.9 14.4 1.4

Bind join produces an overhead, which is why for high
values of the selectivity factor its usage is not advisable. First,
when using bind join, the query engine cannot retrieve both
tables in parallel, as it must wait for the outer table to be fully
retrieved in order to get the set of distinct values of the outer
keys. Second, it requires that this set of values be pushed into
the subquery, which is handled differently by each data store,
which explains the variability of performance improvements.
The MonetDB wrapper makes a modification of the schema to
create and populate a temporary table. MongoDB is doing

faster, as it simply creates a filter out of the outer keys. With
HBase, the process is much slower, as a native query is
initiated by the query engine for each row of the outer table.
The case of Sparksee is similar, as the Python code requests
that a graph query be evaluated for each of the outer keys. And
for ActivePivot, query rewriting takes place, however it brings
a significant textual overhead, as the values of the outer keys
must be specified with full dimension path.

D. Evaluation of Native Query Support
The support of native queries in CloudMdsQL allows the

user to write powerful subqueries to the data stores that
efficiently perform specific for the data store operations with
native statements, rather than to express them in SQL and
handle at the common query engine. This requires deeper
expertise and knowledge about the specifics of the queried data
stores; however, the added value is that the programmer can
still request efficient operations at the data store, thanks to the
support of native queries, and combine the results with other
data store queries.

Let us consider the following queries, which request
different operations to a data store, expressed in SQL. The
queries focus on selection, aggregation, grouping, sorting and
join operations.
Q_SEL: SELECT L_ORDERKEY FROM LINEITEM
 WHERE L_PARTKEY = 10

Q_AGG: SELECT COUNT(*) FROM LINEITEM
 WHERE L_QUANTITY < 5

Q_GRP: SELECT O_ORDERSTATUS, O_ORDERPRIORITY,
 AVG (O_TOTALPRICE)
 FROM ORDERS
 GROUP BY O_ORDERSTATUS, O_ORDERPRIORITY

Q_ORD: SELECT O_ORDERSTATUS, O_ORDERPRIORITY,
 AVG (O_TOTALPRICE)
 FROM ORDERS
 GROUP BY O_ORDERSTATUS, O_ORDERPRIORITY
 ORDER BY O_ORDERSTATUS, O_ORDERPRIORITY

Q_JOIN: SELECT O_ORDERKEY, O_CUSTKEY, O_ORDERSTATUS,
 L_QUANTITY
 FROM LINEITEM JOIN ORDERS
 ON L_ORDERKEY = O_ORDERKEY
 WHERE L_PARTKEY = 10

Let us assume that the programmer needs to request the
same operations to non-SQL data stores (Sparksee and
ActivePivot) that can natively support them. The naïve way to
achieve this is for the wrapper developer or DBA to provide a
static mapping of data store structures to relational tables and
let the programmer express her query in SQL at the common
query engine level. But now the programmer can take
advantage of the native queries support and express the
operations in native for the data store statements, which will
result in an optimal execution. Note that all the generated TPC-
H data for ActivePivot are stored in one single cube; so,
although ActivePivot does not natively support joins between
cubes, we categorize it as a join-capable data store only for this
test case, because in fact a conceptual join between LINEITEM
and ORDERS is handled by ActivePivot by dealing with
dimensions of the same cube.

TABLE III. NATIVE QUERY SUPPORT PERFORMANCE BENEFITS

Data Store Q_SEL Q_AGG Q_GRP Q_ORD Q_JOIN

Sparksee
SQ 19068 26893 36870 51075 69393
NQ 76 326 2654 2640 785
PI 250.9 82.5 13.9 19.3 88.4

Active
Pivot

SQ 20009 12592 10067 10907 193963
NQ 261 112 16 77 189
PI 76.7 112.4 629.2 141.6 1026.3

With this group of test cases, we compare the execution
times of the queries in two variants: when the requested
operations are expressed in native queries and done by the data
store (NQ), and when the operations are expressed in SQL
queries and executed by the query engine after the wrapper
simply delivers the entire table (SQ). Table 3 shows the
comparison between NQ and SQ execution times, as well as
the performance improvement (PI = SQ/NQ).

IV. CONCLUSION
This paper introduced the benchmarking of the

CloudMdsQL polystore and evaluated the performance benefits
in two specific categories of queries. First, the evaluation of
bind join shows the ability of the query engine to run efficient
queries across heterogeneous databases using both SQL and
native approaches. Moreover, the measurements of the current
or similar benchmark can be used as provision for a cost model
based on inferring the performance improvement of bind joins
for each particular data store. Second, the evaluation of the
native query support stresses on the performance benefits
provided by the high expressivity of the query language. With
this benchmark we focused mostly on relational operators and
their equivalents in non-SQL data stores. As a further work we
will concentrate on evaluating the performance benefits in the
context of data store specific operators, such as graph traversals
or queries on nested documents.

REFERENCES
[1] CoherentPaaS, http://coherentpaas.eu
[2] D. DeWitt, A. Halverson, R. Nehme, S. Shankar, J. Aguilar-Saborit, A.

Avanes, M. Flasza, J. Gramling, “Split query processing in Polybase”,
ACM SIGMOD. 2013, pp. 1255-1266.

[3] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J.
Kepner, S. Madden, D. Maier, T. Mattson, S. Zdonik, “The BigDAWG
polystore system”, SIGMOD Rec. 44, 2. 2015, pp. 11-16.

[4] L.M. Haas, D. Kossmann, E.L. Wimmers, and J. Yang, “Optimizing
queries across diverse data sources”, Int. Conf. on Very Large Databases
(VLDB). 1997, pp. 276-285.

[5] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, J.
Pereira, “CloudMdsQL: querying heterogeneous cloud data stores with a
common language”, Distributed and Parallel Databases, vol. 34.
Springer 2015, pp. 463-503.

[6] J. LeFevre, J. Sankaranarayanan, H. Hacıgümüs, J. Tatemura, N.
Polyzotis, M. Carey, “MISO: souping up big data query processing with
a multistore system”, ACM SIGMOD. 2014, pp. 1591-1602.

[7] T. Özsu and P. Valduriez, Principles of Distributed Database Systems,
3rd ed. Springer, 2011, 850 pages.

