
HAL Id: lirmm-01418745
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01418745

Submitted on 16 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Full-System Simulation of big.LITTLE Multicore
Architecture for Performance and Energy Exploration
Anastasiia Butko, Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli,

David Novo, Lionel Torres, Michel Robert

To cite this version:
Anastasiia Butko, Florent Bruguier, Abdoulaye Gamatié, Gilles Sassatelli, David Novo, et al.. Full-
System Simulation of big.LITTLE Multicore Architecture for Performance and Energy Exploration.
MCSoC: Embedded Multicore/Many-core Systems-on-Chip, Sep 2016, Lyon, France. pp.201-208,
�10.1109/MCSoC.2016.20�. �lirmm-01418745�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01418745
https://hal.archives-ouvertes.fr

Full-System Simulation of big.LITTLE Multicore
Architecture for Performance and Energy

Exploration
Anastasiia Butko, Florent Bruguier, Abdoulaye Gamatié,

Gilles Sassatelli, David Novo, Lionel Torres and Michel Robert
LIRMM (CNRS and University of Montpellier)

Montpellier, France
Email: {firstname.lastname}@lirmm.fr

Abstract—Single-ISA heterogeneous multicore processors have
gained increasing popularity with the introduction of recent
technologies such as ARM big.LITTLE. These processors offer
increased energy efficiency through combining low power in-
order cores with high performance out-of-order cores. Efficiently
exploiting this attractive feature requires careful management so
as to meet the demands of targeted applications. In this paper,
we explore the design of those architectures based on the ARM
big.LITTLE technology by modeling performance and power in
gem5 and McPAT frameworks. Our models are validated w.r.t.
the Samsung Exynos 5 Octa (5422) chip. We show average errors
of 20% in execution time, 13% for power consumption and 24%
for energy-to-solution.

Keywords—Full-system simulation, single-ISA heterogeneous,
multicore, gem5, McPAT, performance, energy, accuracy, ARM
big.LITTLE.

I. INTRODUCTION

To meet rapidly growing demands, future computing sys-
tems will need to be increasingly scalable and energy-efficient.
To build architectures providing the required compromise in
terms of performance and power dissipation, heterogeneous
systems have become a promising direction. Such architectures
usually consist of various processors/cores that differ from
each other from their instruction set architectures (ISAs),
their execution paradigms, e.g. in-order and out-of-order, their
cache size and other fundamental characteristics. Particularly,
single-ISA heterogeneous multicore processors [1] are made
of multiple sets of cores that at the same time share a common
ISA. Thereby they can run a unique standard operating system
taking advantage of load-balancing features for fine control
over performance and power consumption.

There are three software execution modes, which aim
to explore the provided heterogeneity: (i) cluster migration,
(ii) core migration and (iii) heterogeneous multiprocessing
(HMP) [2]. Among other modes that imply only partial use
of available resources, HMP mode allows using all of the
cores simultaneously and enables fine-grained control for task
scheduling.

In the mobile market, several system-on-chips (SoCs) oper-
ating on that principle exist. Nvidia Tegra 3/4 SoC [3] repre-
sents Variable Symmetric Multiprocessing (vSMP) technology

that combines four faster power-hungry cores together with
one ‘companion’ core dedicated to background tasks. All five
cores have similar architecture, but the main cores are built in
a standard silicon process to reach higher frequencies and the
‘companion’ core is built using a special low power silicon
process that executes tasks at a low frequency [4].

ARM big.LITTLE technology integrated into Samsung
Exynos 5/7 Octa SoC [5] combines two different types of
cores. Developers reported over 50% in energy savings for
popular activities such as web browsing and music playback
with the duo Cortex-A7/Cortex-A15 configuration [6].

The design choice of architecture parameters such as
the core types, the symmetric/asymmetric configurations, the
cache size, is crucial for system energy efficiency. In [7]
authors aim at providing some fundamental design insights
based on a high-level analytical model analysis. Particularly,
they claim two cores type being the most beneficial con-
figuration and the task-to-core scheduling policy importance.
Unlike analytical model-based estimation techniques [8] [9],
full-system (FS) simulators provide a broad range of archi-
tecture configurations for detailed design exploration. They
enable realistic software execution including operating system,
runtime scheduling and parallel workloads.

Our contributions. In this work, we evaluate performance
and power models of ARM big.LITTLE architecture for per-
formance and energy trade-offs exploration. Models are imple-
mented in gem5 [10] and McPAT [11] simulation frameworks.
The accuracy in both performance and power estimations is
assessed by comparing with a reference Exynos 5 Octa (5422)
SoC integrated in the Odroid-XU3 computer board. This study
is conducted using the Rodinia benchmark suite through its
OpenMP implementation [12].

The main contributions of the present paper can be summa-
rized as follows:

• Cycle-approximate performance and power models of
ARM big.LITTLE heterogeneous processor are defined
and implemented. These models are validated w.r.t. the
real Exynos 5 Octa (5422) system-on-chip and show
average errors around 20% for performance, 13% for

power consumption and 24% for EtoS. They are aimed
to be freely available online 1.

• Based on the detailed analysis of above models, we report
some useful insights about major simulation error sources
and their associated impact on performance assessment.
Despite the observed average error, we argue that our
modeling is largely able to undertake the architecture
exploration.

The rest of the paper is organized as follows: Section II
presents related work on heterogeneous multicore architecture
modeling and evaluation. In Section III the implementation
of architecture and power models is described. The accuracy
assessment of these models is discussed in Section IV. Section
V brings our insights regarding the error sources of our mod-
eling approach. Finally, Section VI gives concluding remarks
and perspectives.

II. RELATED WORK

A large part of studies on single-ISA heterogeneous mul-
ticores focuses on design space exploration, efficient task
scheduling and performance/power evaluation.

In [7] authors use an analytical modeling for a large design
space exploration of single-ISA heterogeneous architectures.
Sarma et al. in [13] present a cross-layer exploration of hetero-
geneous multicore processor configurations. They demonstrate
some predictive models for task allocation, performance-power
models for different core types and workloads.

In [14] the authors propose a hierarchical power manage-
ment framework for asymmetric multicores, in particular for
ARM big.LITTLE architecture, in order to minimize energy
consumption within the thermal design power constraint. Yu
et al. in [15] evaluate ARM big.LITTLE power-aware task
scheduling, via power saving techniques such as dynamic
voltage and frequency scaling (DVFS) and dynamic hot plug.
Tan et al. in [16] implement a computation approximation-
aware scheduling framework in order to minimize energy
consumption and maximize quality of service, while preserv-
ing performance and thermal design power constraints. They
validate their framework on the Versatile Express Develop-
ment Platform that includes a prototype version of the ARM
big.LITTLE chip containing 3 Cortex-A7 cores and 2 Cortex-
A15 cores. In [9], authors propose a performance/power model
based on profiling information collected from the considered
hardware platform. Hardware-based estimation often proves
challenging compared to simulation-based investigations as it
requires hardware counters for information collection and is
hardly adaptable to the variety of core/memory configurations.

Endo et al. [17] show the micro-architectural simulation
of ARM Cortex-A cores of the big.LITTLE processor by
using the gem5/McPAT frameworks and validate area and
energy/performance trade-offs against the published datasheet
information. Their work does not focus on the multicore evalu-
ation and only demonstrates the difference between Cortex-A7
and A15 single-cores running single-threaded applications. In

1http://www.lirmm.fr/ADAC

[18] the authors design a gem5 model of CoreTile Express SoC
and estimate the accuracy of Cortex-A15 core, memory system
and interconnect. They deeply explore the micro-architectural
simulation for the homogeneous dual-core system. Authors
report the runtime error of the SPEC benchmark being within
40%.

Our work advances state-of-the-art by addressing the per-
formance and power simulation of the heterogeneous ARM
big.LITTLE multicore architecture. Models are shown to have
sufficient accuracy compared to an actual SoC for enabling
architectural investigations, and are further made freely avail-
able.

III. PERFORMANCE AND POWER MODELS

The gem5 simulator [10] is a powerful cycle-approximate
simulation framework [19] supporting multiple ISAs, CPU
models, detailed memory systems including cache coherent
protocols, interconnects and memory controllers. It further
produces statistical information enabling to estimate power
consumption and footprint area with the Multicore Power,
Area, and Timing (McPAT) modeling framework [11].

A. Architecture modeling

The Odroid XU3 computer board built around the Exynos
5 Octa (5422) chip is used as reference platform. The gen-
eral architecture parameters are taken from publicly available
sources [5] reported in Table I.

1) Overview of the Exynos 5 Octa (5422) SoC: The
Exynos 5 Octa (5422) chip shown in Figure 1 features two
clusters, “big” and “LITTLE”, each of which consists of
quad Cortex-A15 and quad Cortex-A7 cores respectively.
Clusters operate at independent frequencies, from 200MHz up
to 1.4GHz for the LITTLE and up to 2GHz for the big.

Each core has its private L1 instruction (I) and data (D)
caches. And each of both clusters has its own L2 cache shared
among all cluster cores. The L2 sizes differ, the Cortex-A7
cluster has a smaller 512kB L2 cache whereas the Cortex-A15

��������	
����

������

��	

�������

������

��	

�������

������

��	

�������

������

��	

�������

����������	

�������������

������

����	

�������

������

����	

�������

������

����	

�������

������

����	

�������

�����������	

����������	
���	
�
������
�����
������

������������� ����������	���
!" ���#�$�%"

������������ ���������������

Fig. 1: ARM big.LITTLE technology.

TABLE I: Exynos 5 Octa (5422) SoC specification.

Parameters LITTLE big
Architecture model

Core type Cortex-A7 Cortex-A15
(in-order) (out-of-order)

Number of cores 4 4
Core clocks 200 MHz - 1.4 GHz 200 MHz - 2 GHz
L1 Size 32 kB 32 kB

Assoc. 2-way 2-way
Latency 3 cycles 4 cycles

L2 Size 512 kB 2 MB
Assoc. 8-way 16-way
Latency 15 cycles 21 cycles

Interconnect CCI-400 64-bit
Memory 2 GB LPDDR3 RAM

933 MHz, 14.9 GB/s, 32-bit, 2 channels

has 2MB L2 cache. L2 caches are connected to the DRAM
memory via the 64-bit Cache Coherent Interconnect (CCI) 400
[20]. The SoC incorporates its own system memory in the
form of 2GB LPDDR3 RAM. It runs at 933MHz frequency
and with 2x32 bit bus achieves 14.9GB/s memory bandwidth.

2) big.LITTLE model implementation in gem5: Follow-
ing the reference Exynos 5 Octa (5422) SoC specification,
we configure the simulation system. The gem5 framework
provides a set of CPU models including in-order and out-
of-order models. The fine-tuning of the micro-architectural
parameters of the in-order Cortex-A7 and out-of-order Cortex-
A15 cores are performed according to published recommen-
dations [18][21][17][22]. This concerns features comprising
the execution stage configuration, functional units, branch
predictor, physical registers, etc.

To overcome the limitations of gem5 full-system mode, we
implemented a set of enhancements:

• Support for 8 ARM cores: the first limitation is related
to actually available ARM MPCore processor model
which contains maximum 4 ARM v7 cores. To run 8
ARM-cores system we modify the description of the
Snoop Control Unit (SCU) register [23]. The SCU count
therefore contains no masked number of cores.

• Heterogeneous multicore: to build the clustered system,
e.g. quad-core ARM Cortex-A15 with quad-core ARM
Cortex-A7, the creation script has been enriched by the
possibility to include various CPU models.

• Multiple frequency domains: to enable the big and
LITTLE clusters operations at different frequencies we
supplied full-system simulation mode with the ability to
assign distinct clocks to individual cores.

• Multiple shared L2 caches: we add the option to identify
the L2 cache number to full-system simulation mode.
The big.LITTLE technology assumes cache coherency
even when all eight cores are working simultaneously.
This sophisticated task is performed at hardware level by
means of coherent interconnect. Due to the fact that the
particular ARM CCI-400 is not implemented in gem5,
we use the CoherentXBar component. It can be used as

TABLE II: Exynos 5 Octa (5422) SoC technology.

Parameters LITTLE big
Power model

Technology 28 nm CMOS
Vdd@200/200MHz 0.91 V 0.91 V
Vdd@1.4/2GHz 1.24 V 1.3 V
Temperature @200/200MHz 310-320 K 310-320 K
Temperature @1.4/2GHz 310-320 K 320-330 K

a template for modeling coherent buses and is typically
used for the L1-to-L2 buses and as the main system
interconnect [10].

Some modifications were performed in the Linux kernel
source code so as to enable gem5 full-system support:

• Ability to boot 8 cores simultaneously. This modifica-
tion relates to that described in Section III-A aimed at
enabling a higher core count in the hardware model, at
the SCU-level. The corresponding function fetching the
number of available cores from the hardware register has
been modified accordingly.

• Global Interrupt Controller support: The
cpu logical map function presented in Linux kernel 3.10
does not allow to use it in gem5, the former implemen-
tation (Linux kernel 3.7) is here used.

B. Power estimation

The McPAT framework allows estimating power consump-
tion based on the statistics collected during gem5 simulation.
We configure the general architecture parameters and McPAT
parameters according to Table II.

The Exynos 5 Octa (5422) SoC is built using a 28nm CMOS
process. The supply voltage, Vdd and operating temperature,
T , are experimentally measured on the Odroid XU3 board
by means of querying internal sensors. Vdd values depend on
the Linux kernel configuration and are related to the Adaptive
Supply Voltage (ASV) technique used in Samsung SoCs.

The operating temperature strongly depends on the cluster
architecture and application nature. For the Cortex-A7 cluster
the temperature always remains below 323K and the board
fan stays off. For the Cortex-A15 cluster the temperature rises
above 323K and the board fan is quickly triggered so as to
ensure proper cooling.

gem5 does not generate statistics concerning operating
temperature. So that we analyzed benchmark execution on
the board and explicitly specified an averaged temperature per
application execution.

IV. ACCURACY ASSESSMENT

A. Experimental setup

1) System configurations: The reference Odroid XU3
board runs Ubuntu 14.04 OS on Linux kernel LTS 3.10.
For a better power saving, the Linux kernel offers a set of
CPU frequency scaling features. The general frequency scaling
policy for CPU is defined by the scaling governor thanks to
a dedicated power scheme [24].

��������	
��
�����������������

��������	
�����	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

%&
	'& 	(& �&)& �*&

�	& '�&
'&

+
��
�
��
�&
�

+
��
,
��

-�

)
�)
))
�)
)))
	�)

�./���"�������	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

�& ''& �	&
(�&

	(&
	& ��& & 	(&

+
��
�
��
�&
�

+
��
,
��

-�

)
�)
))
�)
)))
	�)

01220+���"����������))����

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

�&
��& '%& �(& 	'&

()&
	�& 	& �'&

+
��
�
��
�&
�

+
��
,
��

-�

)

))

�))

'))

�))

�����������������������������

��������	
�����	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

'& 		& �)& 	& 	& & 		& %& '&

+
��
�
��
�&
�

�
�
�
�
��
�
3
�

)

�)))

�)))

()))

���������������������������

��������	
�����	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

�&
	&

'	&
�&

'�& �(& �(& ��& *&

+
��
�
��
�&
�

+
4�
�
"
�.
�
!
��
.
�
��

��

)

))

�))

'))

�./���"�������	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

(& 	(& 	�& ''& 	'& �& %& & 	(&

+
��
�
��
�&
�

�
�
�
�
��
�
3
�

)

�)))

�)))

()))

�./���"�������	������

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

%&
	%& '%& �'& 	&

��& 	(& 	& �&

+
��
�
��
�&
�

+
4�
�
"
�.
�
!
��
.
�
��

��

)

))

�))

'))

01220+���"����������))����

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

& 	�& %& '& 		& 	�& ')& �	& �&

+
��
�
��
�&
�

�
�
�
�
��
�
3
�

)
)
�)
')
�)
)
()
�)

01220+���"����������))����

+45!������ /� �6�����2

�
�
�
�
�
��
�

�
��

�
�
�
��
�
�
��

�
�
��
�
�
�

�

�
�
!
� �

�

�"
#

!
!

!
�

��
�
#
$
	

)&
'%& �(& �*& �&

�)& 	%& 	�& �'&

+
��
�
��
�&
�

+
4�
�
"
�.
�
!
��
.
�
��

��

)

)))

�)))

')))

�)))

)))

Fig. 2: Execution time and power consumption comparison (gem5/McPAT versus Exynos 5 Octa).

The ondemand and the conservative governors dynamically
set CPU frequencies depending on the current usage and
according to the specified thresholds. While the ondemand
governor jumps from the maximum to the minimum frequency,
the conservative governor increases and decreases the CPU
speed gracefully.

The performance and the powersave governors set the
CPU statically to the highest and to the lowest fre-
quency respectively denoted by scaling_min_freq and
scaling_max_freq values.

For our experiments, we statically set the CPU frequency by
means of the performance governor. So, the DVFS is disabled.
In order to evaluate the impact of different CPU frequencies on
the simulation error, we consider three different frequencies:
minimum, medium and maximum. Due to the fact that the
LITTLE and the big clusters have different clock limits (see
Table I), the chosen frequency sets are 200MHz, 800MHz and
1.4GHz for the LITTLE cluster and 200MHz, 1.1GHz and
2GHz for the big cluster.

In addition to CPU frequency scaling, the Linux kernel

includes support for CPU and core migration. We do not
consider these features in our work. However, we use the
provided functionality to activate and deactivate the big and
LITTLE clusters. Indeed, when only one cluster is activated
the workloads are executed in SMP mode. In such way,
we isolate a specific part of the system to separately assess
simulation accuracy.

Note that throughout all experiments we do not use the
embedded GPU.

Thereby, the following three scenarios are investigated:
• Scenario I: Cortex-A7 cluster, LITTLE, only running in

SMP mode at 200MHz, 800MHz and 1.4GHz,
• Scenario II: Cortex-A15 cluster, big, only running in

SMP mode at 200MHz, 1.1GHz and 2GHz,
• Scenario III: Cortex-A7 and Cortex-A15, big.LITTLE,

running in HMP mode at 200/200MHz, 200MHz/2GHz,
1.4GHz/200MHz and 1.4/2GHz respectively.

2) Benchmarks: The study is conducted using the
Rodinia benchmark suite and lmbench micro-benchmark.

The Rodinia benchmark [12] is used throughout the rest

������ ��	
���

�����������������
�	����������������
�	�������

������

�!"#� �

�#�

����� �

�����

�!"#� �

��#�

����� �

�
��
$
��
�%

�

&'�

&"�

&��

�

��

"�

'�

����� (���� �!"#� ����� �!�#� �#�

(a) Execution time error distribution

��������	
���������������
���������
��

���
�����������
�������
������ !!�"
�������
����

#$$��%

�&'(�%�

#(�%

#$$��%�#$$��% �&'(�% #$$��% #(�%

"
��
�
�

�)

�

*'$

*#$

$

#$

'$

+$

(b) Power error distribution

Fig. 3: Error distribution.

TABLE III: Benchmark parameters.

Application Acronym Problem size
Rodinia benchmark

Back Propagation backprop 65 536
Breadth-First Search bfs 4096
Heart Wall heartwall test.avi, 1 frame
HotSpot hotspot 64x64
Kmeans kmeans openmp 100
LU Decomposition lud 256
k-Nearest Neighbors nn 42760
Needleman-Wunsch nw 1024
SRAD srad v1 1x502x458

srad v2 512x512
Lmbench benchmark

Memory read latency lat mem rd 64M 512 stide
Memory bandwidth STREAM 2.000.000
CPU operations latency lat ops 11 repetitions

of the paper. It is composed of applications and kernels from
different domains such as bioinformatics, image processing,
data mining, medical imaging and physics simulation. It
also includes simpler compute-intensive kernels such as LU
decomposition and graph traversal. Rodinia targets per-
formance benchmarking of heterogeneous systems, for that
reason CUDA, OpenMP and OpenCL implementations are
available. Here, the OpenMP implementation is chosen, with
four threads per cluster, i.e., one thread per core. We use static
loop scheduling policy. Threads are bound to specific CPU
cores by using GOMP_CPU_AFFINITY environment variable.
This ensures a similar workload execution on the real SoC and
our gem5 model.

Out of the Rodinia benchmark suite we select the follow-
ing subset of benchmarks: backprop, bfs, heartwall, hotspot,
kmeans openmp, lud, nn, nw and srad v1/v2. Based on dwarves
classification proposed in [25], the chosen subset contains
Structured Grid (heartwall, hotspot, srad), Unstructured Grid
(backprop), Dynamic Programming (nw), Dense Linear Alge-
bra (kmeans, lud, nn) and Graph Traversal (bfs) dwarves.

The selected problem size is presented in Table III.
The lmbench micro-benchmark [26] is used to evaluate

the latencies provided by our performance model and compare
them to the Exynos 5 Octa SoC. The selected application
subset is presented in Table III and includes lat mem rd,

STREAM and lat ops.
• lat mem rd provides the latency of the entire memory

hierarchy including data cache, L2 cache and main mem-
ory. It measures the time to do about 1.000.000 loads
varying two parameters, array size and array stride. The
reported time represents only memory latency and does
not include load instruction execution time. It is assumed
that all cores can do a load instruction in one cycle.
The benchmark has been validated by logic analyzer
measurements on an SGI Indy [26].

• STREAM is a synthetic program that measures the mem-
ory bandwidth (in MB/s) and calculates the corresponding
rate for simple vector kernels, such as copy, scale, add
and triad [27]. To measure the bandwidth from the main
memory each array must be at least 4x the size of the
sum of all the last-level caches used in the run. For the
chosen platform with two L2 caches of 512kB and 2MB,
we use 2.000.000 array size, which meets the condition.

• lat ops measures the latency of basic CPU operations,
such as integer ADD, float MUL, uint64 XOR, etc. The
benchmark is configured to use interlocking operations,
so it measures the time of an individual operation.
In addition, it uses relatively short vectors thus the
operations should be going to/from L1 or L2 caches,
rather than main memory, which reduces the memory
overheads. Authors however affirm that the benchmark
is experimental and may give erroneous results [28].

B. Results

Running the Rodinia benchmark, we evaluate perfor-
mance, power and energy metrics, i.e. application execution
time, power consumption and energy-to-solution (EtoS). The
values given by the gem5 and McPAT models are compared
with the measured on the Odroid XU3 board. Compari-
son results for three configurations, e.g. LITTLE cluster at
200MHz, big cluster at 2GHz and big.LITTLE at 1.4/2GHz,
are presented in Figure 2.

1) Performance comparison: The execution time values
reported in Figure 2 a) are averaged over 5 subsequent
runs for ensuring the consistency. The absolute error varies
significantly depending on the configuration and application,
ranging from 1% to 57%. For the most applications, LITTLE

�����������	����
�����	

�

�

�

�

�

�
�
�
�

�
�
�
�

�

�
�

�
�
�
�

�
�
�

�
�
�
�

�
�

�
�

�

�
�

�
�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��������	����
�����	���������	

����������������
	
������������������ 	

!"�����������
	
!"������������� 	

�
#
$�
�
�
�
�%
&
�
�
'�
 (

�

�

�

�

�

�

�
�

�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�

�
�

�
�
�

�
�

�
�

Fig. 4: Memory hierarchy latency measurements.

cluster model provides slower execution time compared to the
reference SoC. Similarly, big cluster model shows an important
slowdown for more than a half of given applications. In HMP
mode, big.LITTLE model provides more variety, e.g. lud and
nw run faster on the model than on the SoC.

Figure 3 a) shows a box-plot reporting observed mean
error between the model and the board. The average absolute
error percentage throughout all applications for the LITTLE
cluster is 18.8%, 20.1% for the big cluster and 22.9% for the
big.LITTLE system. On an average, the gem5 model predicts
performance with a 20% error.

2) Power comparison: The power consumption values
estimated with the McPAT framework account for runtime
dynamic power and leakage power. The reported total power
consumption contains the Cortex-A7 cluster power, Cortex-
A15 cluster power and memory controller power. Other pe-
ripherals such as storage, network and cooling are therefore
here not considered. The Exynos 5 Octa SoC values are
measured over 5 subsequent runs and represent average power
consumption per application. It does not introduce power
variation during an execution.

Comparison results are shown in Figure 2 b). The corre-
sponding absolute error percentage of total power is averaged
throughout all given applications. It is 12.7%, 11.7% and
10.8% for the LITTLE cluster, big cluster and big.LITTLE
HMP respectively.

The error percentage distribution is shown in Figure 3
b) in form of a box-plot. It presents the error separately
for LITTLE cluster, big cluster and memory controller. The
average absolute error percentage throughout all applications
for the LITTLE cluster is 14.9%, 11% for the big cluster and
28.5% for the memory.

The largest error relates to the memory controller. The
external memory controller error is likely that most influenced
by cache and interconnect modeling inaccuracy. Nevertheless,
these results allow estimating SoC power consumption ranging
from tens of mW to several W.

3) Energy comparison: Based on the simulated execution
time and the above total power results we calculate the EtoS
and compared it with the values measured on the board. Com-
parison results for all applications are shown in Figure 2 c).
Observed average absolute error is 21.9%, 27.9% and 22.1%

���

�
�
�
�
�

	�

�

�
�

�
��

�

���

����

���

�
�
�
�

��
�
��

�
�
�

�
	�

����

�������������������
���������������!"

#	��������������
#	����������!"

�
�

�

�
�
�
�
�
��

�

��

���

�
�
�
�

��
�
��

�
�
�

�
	�

�

Fig. 5: Latency and bandwidth of the main memory controller.

for the LITTLE cluster, big cluster and HMP big.LITTLE
respectively.

The EtoS error percentage includes both, gem5 execution
time error and McPAT power consumption error. Therefore,
such scenarios as Cortex-A7 cluster running at 200MHz and
Cortex-A15 cluster running at 2GHz cumulates the error and
shows higher mismatch.

4) Latency comparison: Figure 4 shows the results from
the lmbench lat mem rd latency measurements plotted as
a series of data sets. Each data set represents a stride size,
with the array size varying from 512 bytes up to 64M. The
horizontal plateaus represent different levels in the memory
hierarchy, i.e. data L1 cache, L2 caches and main memory. The
point where each plateau ends shows the end of that portion
of the memory hierarchy.

The LITTLE and the big cores have the same 32 kB size
of L1 cache. The L1 data cache latency of the Exynos 5
Octa (5422) SoC is 3 and 4 cycles for LITTLE and big
cores respectively. These values correspond to the parameters
specified in the model and presented in Table I. However,
the benchmark measures 4 and 6 cycles for LITTLE and big
cores in our gem5 model. L2 caches and main memory also
show higher latency in our gem5 model compared to the real
SoC. A significant mismatch is observed at the transition point
between L2 cache and main memory of LITTLE core.

Figure 5 shows the results of STREAM execution on our
model and on the Exynos 5 Octa SoC. All operations running
on the model provide significant slowdown and consequently
lower memory bandwidth. These results correspond to the
measurements of the memory hierarchy latency shown in
Figure 4.

Figure 6 shows the results of lat ops execution and reports
latency of the following basic CPU operations:

• interger BIT, ADD, MUL, DIV, MOD;
• (u)int64 BIT, ADD, MUL, DIV, MOD;
• float ADD, MUL, DIV, bogomflops;
• double ADD, MUL, DIV, bogomflops.
The LITTLE core model shows divergent latency mis-

matches. Operations such as integer BIT, MUL, DIV, MOD
and int64 ADD, DIV, MOD provide up to 46% higher latency
compared to the ARM Cortex-A7 core in the real SoC. All
other operations show an opposite behaviour and provides

���

�������	�
��������� �������	�
�������� ����	�
��������� ����	�
��������

�
�
��
�
	
�
��
�
��

�

��

���

����

��
��
�
�

�
�
��

��
��
�
�

�
�
�
�

��
��
�
�

�
�
�
�

��
��
�
�

�
�
��

��
��
�
�

�
�
�
�

��
��

��
��

�
��
��

��
�
�

��
��

��

�
�

��
��

��
��

��
��

��

�
�

!�
�
�
��
�
�
�

!�
�
�
��
�
�
�

!�
�
�
��
�
��

�
�
�
�
��
��
�
�

�
�
�
�
��
��

�
�

�
�
�
�
��
��
��

!�
�
�
��
�
�
�
�
�
!�
�
"
�

�
�
�
�
��
��
�
�
�
�
!�
�
"
�

Fig. 6: Latency of basic CPU operations.

faster operation execution time. In some cases, e.g. float DIV
and double DIV, gem5 model operates almost 10 times faster
than the real SoC. In average, the absolute error percentage
for all CPU operations compared to the Exynos 5 Octa (5422)
SoC is around 30%.

The first group of CPU operations that are executed slower
includes integer ADD, DIV, MOD and int64 BIT, ADD,
DIV, MOD operations. Some of them are executed 3 times
slower compared to the real SoC. The remaining operations
are executed faster and show up to 10x speedup. Except
these operations that show peak mismatch, the absolute error
percentage of the big core model corresponding to the ARM
Cortex-A15 in the Exynos 5 Octa (5422) SoC is around 36%.

V. INSIGHTS ON SIMULATION ERROR SOURCES

Black and Shen [29] distinguished three separate categories
of error sources: (i) Modeling error occurs when the sim-
ulator functionality is implemented erroneously due to the
developer fault; (ii) Specification error occurs when the model
developer has untruthful information or has no access to the
relevant information; (iii) Abstraction error occurs when some
components are abstracted or simplified. Based on the above
classification, we discuss the sources of error related to our
modeling approach. We are mainly concerned by abstraction
and specification errors.

The first source of error relates to non-fully cycle-accurate
modeling of the processor microarchitecture. The modeling ap-
proach proposed in [21] has been validated for the Cortex-A8
processor and demonstrated the execution time error around
8%. It has not been validated for the Cortex-A7 core. In Figure
3 a) we observe that the error mean of Cortex-A7 cluster
is between 5% and 10% higher than that of the Cortex-A15
cluster. Thus the in-order implementation is less accurate than
the out-of-order model.

The second source of error is related to the specification
error. Namely, it includes the lack of information about
processor microarchitecture, which is confidential and cannot
be accessed by research community. This includes unknown
optimizations, such as DRAM controller or the proprietary
coherent interconnect, implemented by the chip manufacturer
and IP provider, i.e. Samsung and ARM in our case re-
spectively. Accordingly, we were forced to do a best effort

modeling of those components. Based on the results, we
conclude that these modeling and specification errors account
for a major part of the total modeling error.

The third source of error concerns simplistic implementation
of the cache coherent interconnect and coherency protocol, as
well as specific timings of the used DDR memory controller.
The lmbench latency measurements show delayed memory
hierarchy access that in case of communication intensive
applications may lead to significant slowdown.

In addition to the listed error sources, the variability of
the measurement process can provide an important impact on
the results. This introduces the fourth source of error, e.g.
observation or measurement error [30].

A statistical analysis of the values measured on the Odroid
XU3 board shows the average of the absolute deviation
between 0% and 5% among the considered set of Rodinia
benchmarks. In gem5 full-system simulation, a couple of OS
boot and single workload execution repeated multiple times
does not provide values variation. However, multiple workload
runs under a single OS simulation give significant deviation
between 0% and 22% showing a high mismatch for the first
run. Due to the cache hierarchy warm-up, the following runs
demonstrate negligible variation.

Based on the above analysis, we observe that the primary
efforts for more accurate modeling should be spent on the
memory system implementation. For that we will certainly
need standardization efforts that render the required informa-
tion public. This conclusion is also aligned with the work pre-
sented in [18], in which authors state that microarchitecture-
level variations do not lead to significant changes in execution
time as opposed to variations on memory architecture.

Despite the assumptions that had to be taken, measurements
show that our average modeling error is about 20%. Impor-
tantly, we observe that our model is able to largely track the
dynamics exposed in the execution of different benchmark
kernels. Therefore, we conclude its suitability to undertake
the architecture exploration.

VI. CONCLUSION

In this paper, we propose performance and power models of
the ARM big. LITTLE multicore architecture implemented in
gem5 and McPAT simulation frameworks. These models have

been calibrated and validated w.r.t. the Exynos 5 Octa (5422)
chip running the Rodinia benchmark suite and lmbench
synthetic micro-benchmark. The presented results have shown
average error around 20% for performance, 13% for power
consumption and 24% for energy-to-solution. We provide
some useful insights about major simulation error sources and
their associated impact on performance assessment.

Future work includes modeling of ARMv8 big.LITTLE
configurations, alongside with the use of more suitable pro-
gramming models that enable a better runtime assignment of
threads to cores depending on their respective nature.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Community’s Seventh Framework Pro-
gramme [FP7/2007-2015] under the Mont-blanc 2 Project
(www.montblanc-project.eu), grant agreement no 610402.

REFERENCES

[1] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi, and K. I. Farkas,
“Single-isa heterogeneous multi-core architectures for multithreaded
workload performance,” in Proceedings of the 31st Annual International
Symposium on Computer Architecture, ser. ISCA ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 64–.

[2] B. Jeff, “big.little technology moves towards fully heterogeneous global
task scheduling,” November 2013, White Paper. [Online]. Available:
http://www.arm.com/files/pdf/

[3] NVIDIA, “Tegra mobile processors,” http://www.nvidia.com, 2015.
[4] NVIDIAbCorporation, “The benefits of quad core CPUs in

mobile devices,” 2011, White Paper. [Online]. Available:
http://www.nvidia.com/object/white-papers.html

[5] Samsung, “Exynos Octa SoC,” https://http://www.samsung.com/, 2015.
[6] ARMbLtd., “big.little technology: The future of mobile,” 2013, White

Paper. [Online]. Available: https://www.arm.com/
[7] K. Van Craeynest and L. Eeckhout, “Understanding fundamental design

choices in single-isa heterogeneous multicore architectures,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 32:1–32:23, Jan. 2013.

[8] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling heterogeneous multi-cores through performance impact
estimation (pie),” in Proceedings of the 39th Annual International
Symposium on Computer Architecture, ser. ISCA ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 213–224.

[9] M. Pricopi, T. Muthukaruppan, V. Venkataramani, T. Mitra, and
S. Vishin, “Power-performance modeling on asymmetric multi-cores,” in
Compilers, Architecture and Synthesis for Embedded Systems (CASES),
2013 International Conference on, Sept 2013, pp. 1–10.

[10] “The gem5 Simulator,” http://www.gem5.org/docs/, 2015.
[11] Hewlett-Packard, “Mcpat,” http://www.hpl.hp.com/research/mcpat/,

2008.
[12] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S.-H. Lee, and

K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in Workload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, Oct 2009, pp. 44–54.

[13] S. Sarma and N. Dutt, “Cross-layer exploration of heterogeneous mul-
ticore processor configurations,” in VLSI Design (VLSID), 2015 28th
International Conference on, Jan 2015, pp. 147–152.

[14] T. Muthukaruppan, M. Pricopi, V. Venkataramani, T. Mitra, and
S. Vishin, “Hierarchical power management for asymmetric multi-core
in dark silicon era,” in Design Automation Conference (DAC), 2013 50th
ACM / EDAC / IEEE, May 2013, pp. 1–9.

[15] K. Yu, D. Han, C. Youn, S. Hwang, and J. Lee, “Power-aware task
scheduling for big.little mobile processor,” in SoC Design Conference
(ISOCC), 2013 International, Nov 2013, pp. 208–212.

[16] C. Tan, T. Muthukaruppan, T. Mitra, and L. Ju, “Approximation-
aware scheduling on heterogeneous multi-core architectures,” in Design
Automation Conference (ASP-DAC), 2015 20th Asia and South Pacific,
Jan 2015, pp. 618–623.

[17] F. A. Endo, D. Couroussé, and H.-P. Charles, “Micro-architectural
simulation of embedded core heterogeneity with gem5 and mcpat,” in
Proceedings of the 2015 Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, ser. RAPIDO ’15. New York,
NY, USA: ACM, 2015, pp. 7:1–7:6.

[18] A. Gutierrez, J. Pusdesris, R. Dreslinski, T. Mudge, C. Sudanthi,
C. Emmons, M. Hayenga, and N. Paver, “Sources of error in full-system
simulation,” in Performance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, March 2014, pp. 13–22.

[19] A. Butko, R. Garibotti, L. Ost, and G. Sassatelli, “Accuracy evaluation
of gem5 simulator system,” in Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2012 7th International Workshop on, July
2012, pp. 1–7.

[20] CoreLink CCI-400 Cache Coherent Interconnect Technical Reference
Manual, ARM, November 16 2012, revision r1p1.

[21] F. Endo, D. Courousse, and H.-P. Charles, “Micro-architectural simula-
tion of in-order and out-of-order arm microprocessors with gem5,” in
Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XIV), 2014 International Conference on, 2014, pp. 266–273.

[22] I. Pavlov, “7-zip lzma benchmark samsung exynos 5250 arm cortex-
a15,” http://7-cpu.com/cpu/Cortex-A15.html, 2015.

[23] Cortex-A9 MPCore, ARM, November 27 2009, revision r2p0.
[24] D. Brodowski and N. Goldeg, “Rodinia:accelerating compute-intensive

applications with accelerators,” http://lava.cs.virginia.edu/Rodinia/,
2014.

[25] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands,
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams,
and K. A. Yelick, “The landscape of parallel computing research: A
view from berkeley,” TECHNICAL REPORT, UC BERKELEY, Tech.
Rep., 2006.

[26] L. McVoy and C. Staelin, “Lmbench: Portable tools for performance
analysis,” in Proceedings of the 1996 Annual Conference on USENIX
Annual Technical Conference, ser. ATEC ’96. Berkeley, CA,
USA: USENIX Association, 1996, pp. 23–23. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1268299.1268322

[27] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19–25, Dec.
1995.

[28] C. Staelin and L. McVoy, “Lmbench - tools for performance analysis,”
http://lmbench.sourceforge.net.

[29] B. Black and J. Shen, “Calibration of microprocessor performance
models,” Computer, May 1998.

[30] M. M. Bland and D. G. Altman, “Statistics Notes: Measurement
error,” BMJ, vol. 313, no. 7059, 1996. [Online]. Available:
http://bmj.bmjjournals.com

