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Abstract—With technological advances, significant changes oc-
cur in automotive domain. Modern automobile combines various
functionalities, ranging from safety critical functions, e.g. control
systems for engine and break, to navigation and infotainment.
The latter ones are especially performance-demanding. To meet
their requirements, automotive industry is increasingly turning
to multi-core systems. As a result, the design complexity gets
increased. This paper presents a design exploration framework
relying on an automotive-specific design environment named
Amalthea. Applications are modeled in Amalthea as annotated
hierarchical task graphs. Their simulation on multi-core plat-
forms considers instruction-level core models interconnected by
a packet-based communication network. The effectiveness of our
framework is demonstrated on a representative case study.

Keywords—Automotive applications, design methodology, mul-
ticore processing

I. INTRODUCTION

The increasing use of electronic systems in automotive
industry is making automobiles safer, light weight, secure and
comfortable. The key driving factors for evolution of electronic
systems in automobiles are the demand for advanced driver
assistance systems, active and passive safety systems and the
fulfillment of environmental and relevant legal requirements.
This evolution has turned the automobiles into very complex
high-technology products in recent years, and the trend does
not seem to decline in the same way with time [5].

In modern automobiles, computing functionalities can be
roughly classified as: soft real-time (fuel, and power indica-
tors), hard real-time (airbags and breaks), and infotainment.
The immediate challenge for designing a system, which can
fulfill such diverse requirements, is to find an optimal com-
bination of design tradeoffs regarding resource allocation, job
scheduling, and communication interconnection that fit well
the application performance and real-time requirements [9].
Additionally, due to the computational limitations of single-
core systems, automotive industry is increasingly turning to
multi-core systems for the deployment of its electronic control
units [1], and thus increasing the hardware/software partition-
ing, resource allocation and scheduling complexity.

This requires an approach where thorough design space
exploration can be quickly achieved to decide between differ-
ent design alternatives. Then, overall design productivity is in-
creased dramatically. Usual performance estimation techniques
often employ two types of models, namely simulation-based
and analytical [10]. The inherent complexity of modern plat-
forms boosts the simulation time of simulation-based models

which makes it unfeasible for vast design space exploration.
This motivates the use of computationally simple models
which incorporate the system structure to obtain mathemat-
ically solvable models. Analytical models have adopted this
approach to address the aforementioned issues.

At earlier design stage, it is not possible to test all design
combinations with high accuracy, because the detailed simula-
tions are very slow. Thus, it is an immediate requirement by the
designers to have a fast yet reasonably accurate simulation and
evaluation platform, specifically for automotive domain. There
are several frameworks devoted to multicore system design
exploration [7] [6] [11] sharing similar goals as our proposal.
They provide different trade-offs between simulation speed and
accuracy. However, our approach is specifically well-adapted
to automotive applications designed within the model-based
open-source development environment devoted to automotive
multicore systems, named Amalthea [1].

Contributions of this paper. We address the simulation
speed and accuracy issues to evaluate resource allocation
techniques for automotive multicore systems. The novelty here
consists of the implementation of a framework tailored for
automotive applications via a seamless integration of Amalthea
design environment to a fast multi-core simulation platform.
The resulting framework is an open-source and flexible en-
vironment, which supports a rich set of modeling features
for automotive domain and enables the investigation of new
scheduling and mapping policies beyond existing ones. It relies
on instruction-level core models interconnected by a packet-
based communication network [8]. As an example of design
analysis, an automotive application is considered in the paper.

II. DESIGN CONCEPTS

We present the background information on the design
concepts, including both application modeling and execution
platform design, which form the basis of our framework.

A. Automotive Application Modeling

Existing application modeling techniques capture the char-
acteristics which are critical to their dedicated domains. For
automotive domain, the modeling techniques are expected to
address performance, reliability, assistance to develop vehicu-
lar software, and interaction with cross-domain systems.

1) AUTOSAR: AUTOSAR (AUTomotive Open System
ARchitecture) is an open and standardized software architec-
ture which has been devised to manage the growing complexity



of automotive electronic systems while paving the way for
further improvement in performance, safety and environmental
friendliness [2]. In AUTOSAR, runnable entities are the small-
est code-fragments which can be scheduled by the operating
system. The software implementing the automotive function-
ality is encapsulated in software components (SC). The SCs
can encapsulate runnables and can be defined by specifying
interfaces, execution rates and timing constraints. However, the
AUTOSAR SC is an atomic component, which means that each
instance of SC is statically assigned to one electronic control
unit. Thus, dynamic allocation of runnable entities on different
control units is not allowed. On the other hand, in AUTOSAR
all cores share a single uniform address space to access the
memory and other peripherals. This can be a limitation for
distributed-memory multicore system design.

2) Beyond AUTOSAR: Amalthea: Amalthea is another
model-driven open source platform targeting the development
of multi-core embedded-systems for the automotive domain
[1]. In addition to the support for multi-core systems, fea-
tures of Amalthea are: AUTOSAR compatibility, support for
product-line engineering and high level of variability found
in modern motor vehicles. The Amalthea application model
is based on three main entities, which are listed as follows:
label: representing data element (memory access); runnable:
the smallest unit of code that can be scheduled by OS and
performs calculations and read/write accesses to labels; and
task: is a cluster of runnables.

In Amalthea, an application model is a directed task graph,
where vertices represent tasks, while directed edges represent
either inter-task activation or communication. Figure 1 repre-
sents an arbitrary Amalthea application model with seven tasks
and three labels. To specify the inter-task communication, it
can be observed that task T1 communicates with task T3 via
label L3. For this purpose, T1 will perform a write operation
on L3 while T3 will perform the read operation on L3. The
size of L3 represents the exchanged data volume between T1
and T3. At lower granularity level, a task is composed of
runnables as illustrated in Figure 1. Task T4 is composed of
eight runnables. The runnable graph also provides information
about precedence relationship between runnables.
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Fig. 1. Example of Amalthea application model.

Beyond the aforementioned Amalthea basic concepts, all
the configuration and specification data/information are stored
within a model environment for standardization purposes.
In addition to basic concepts, software, hardware, operating
system, stimulation, constraints, mapping and component con-
cepts are parts of an Amalthea model [1].

B. Simulation Platform

Modern embedded and high-performance computing re-
quirements, including power consumption, cost, and design
time are the key parameters, which are leading the integrated

circuit technology road map from single-core to multi- and
many-core systems. Automotive industry has also adopted
these advancements accordingly and modern automobiles are
equipped with complex systems like navigator, infotainment
system, inter- and intra-vehicle communicator, and dozens of
sensors for safety and security. A multi-core system, address-
ing the computational requirements of these devices needs an
interconnection platform for inter-core communications.

To minimize the simulation time for real-time automotive
applications, we opted for the transaction level model of
Network-on-Chip (NoC) proposed by [8]. This model can
achieve fast and accurate simulation of on-chip communica-
tions. Its authors have minimized the total number of simu-
lation events by modeling the resource arbitration mechanism
at time granularities, which are greater than a clock cycle or
a time for a flit transmission, namely a priority preemptive
wormhole NoC with virtual channel arbitration.

Different core models have already been proposed with dif-
ferent abstraction levels. Each abstraction level targets different
simulation requirements such as simulation speed and accuracy
[3]. Here the critical question is: what abstraction level is
suitable for our framework? For fast simulation and real-time
analysis for automotive applications, we opted for the core
model, where computation part of the core performs accurate
computation instruction analysis while the communication part
of the core is event based to speedup the simulations.

Considering the above core and NoC models, we imple-
mented in SystemC (around 10k lines of code) a multicore
platform capable of executing Amalthea application models
and providing a number of simulation results. Among these re-
sults are value change dump (vcd) format files that the designer
can display with gtkwave environment1 for a convenient fine-
grain analysis of system temporal behavior. Further computed
results are shown later in the case study.

III. A SEAMLESS DESIGN FLOW
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Fig. 2. Simulation Flow

The connection of the implemented platform to Amalthea
environment is concretely exploited by a designer via a seam-
less flow shown in Figure 2, through the following steps:

1) The application specifications are modeled in
Amalthea. The Amalthea environment is an Eclipse

1http://gtkwave.sourceforge.net



integrated plugin. It supports a variety of modeling
features and characteristics which have already been
introduced in section II-A. For a complete descrip-
tion, one can refer to [1].

2) The Amalthea model is fed to a parser, which trans-
lates this model to an intermediate format in C++ that
can then be executed on further platforms.

3) The mapper performs mapping algorithms for the
previous application format, generated by the parser,
to generate task and communication mapping onto the
multicore platform. At this stage, it is necessary to
provide mapping methods for multicore architectures
which are scalable and able to deal with the real-time
dynamics of applications.

4) During executions, cores support scheduling tech-
niques, such as Earlier Deadline First, Rate Mono-
tonic or Application Inherited-Prioritization. Remote
communication between cores is achieved by NoC.

5) The Goodness of the mapping and scheduling tech-
niques is jointly evaluated in terms of volume of
remote access traffic, APL, deadline miss rate, link
load variance, task completion time and platform size.
It is the task of the application designer to define
the Goodness criteria according to the application
and performance requirements, and ensure that the
performance requirements are satisfied without vio-
lating important constraints like deadline miss rate
for safety critical systems.

If the Goodness satisfies the design constraints, system
configurations are finalized. Otherwise, mapper is reported
with unsatisfied constraints to regenerate a new mapping in
the third step and the flow follows the subsequent steps.

IV. CASE STUDY: DEMOCAR APPLICATION

The DemoCar is a test application for the proposed frame-
work which is composed of three kinds of runnable entities
as shown in Figure 3. The runnables with high activation rate
have 5 ms period, and the ones with low activation rate have
100 ms period. Runnables with event based activation start on
event occurrence. Such events are notified either on message-
reception or at start of the system. The activation messages can
be either the input messages or the output messages (feedback).
The input messages are the typical automobile attributes such
as engine speed, temperature or the battery voltage. Similarly
the output messages are triggered cylinder number, ignition
time or the desired throttle position.
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Fig. 3. DemoCar Application overview.

A. Setup information

To evaluate the proposed framework, simulations were
performed on an Intel Quad Core i5-4670 at 3.40GHz host
with 64-bit Ubuntu OS and 8GB RAM. The applications are

simulated for different NoC sizes with 2D-mesh topology,
fixed packet length of 32 flits, each flit of 8 bits, router input
ports with eight virtual channels and two-position buffers each,
and XY routing.

The reported results are for one application iteration.
For each configuration, the simulation time, execution time,
deadline miss rate, communication traffic load, average packet
latency and network level load balancing in terms of standard
deviation (STD) are reported. On the basis of these evaluation
parameters, designer can select a suitable NoC size, network
level mapping approach and core level scheduling technique
to fulfill the the application requirements.

Here we present two arbitrary runnable mapping strategies
to evaluate the proposed design flow: zigzag and heuristic-
local-maximized. On the one hand for zigzag, considering a
2D mesh organization of cores, runnables are mapped one-
by-one, globally from top-left to bottom-right. Typically, in a
4 × 4-mesh NoC, when the mapper maps a runnable at the
last node (bottom-right, (3,3)) during the mapping process,
next runnable is mapped at first node (top-left, (0,0)). This
mechanism repeats till the mapping of last runnable. On the
other hand for heuristic-local-maximized, the runnables are
mapped onto the nodes, where they can have maximum local-
label-accesses to minimize the network load, which in-turn
minimizes the Average Packet Latency (APL). However, in
this case, some nodes can be overloaded for computation. APL
and load balancing are some of the key evaluation parameters
for application mapping techniques onto NoC architectures.

B. Results

The modeled application contains 3 task entities with 43
runnable entities and 71 label entities. Out of 43 runnables, 22
runnables operate at high activation rate, 4 runnables operate at
low activation rate, and 17 runnables get activated on events.
There are 10 input message sources and 4 output message
sinks. The system operating frequency was 100 MHz. Our
parser takes around 3 millisec to generate the corresponding
intermediate representation. It can be observed from Table I
that different combinations of mapping and scheduling tech-
niques address different requirements of the application such
as heuristic-local-maximized mapping with inherited priority
based scheduling minimizes the deadline miss rate.

Figure 4 presents the link load for zigzag and heuristic-
local-maximized mappings of DemoCar application onto 4×4
2D-mesh NoC. The presented values have been normalized
with reference to the maximum link load value for fair compar-
ison. As mentioned above, heuristic-local-maximized mapping
minimizes the communication volume, however Figure 4(a)
shows the load is comparatively less balanced than the load
for zigzag mapping in Figure 4(b). For example, if the load
values of top and bottom edges are compared, the loads
are comparatively balanced for zigzag mapping while for
heuristic-local-maximized mapping, the top edge is heavily
loaded as compared to the bottom edge. Such overloading
on certain edge can become the performance bottleneck for
system performance. The load balancing has been evaluated
in terms of STD values.

In order to have a preliminary assessment of our design
flow, a realistic application consisting of engine control [4]



Mesh Simulation Execution #Deadline #Packets APL Link Load

#
Size Time (sec.) Time (µs) misses in NoC (ns) STD

Heu. ZZ Heu. ZZ Heu. ZZ Heu. ZZ Heu. ZZ Heu. ZZ
1 2×2 0.012 0.015 11.86 12.87 0 4 116 167 726.10 645.28 3.10 3.11
2 2×3 0.017 0.027 12.31 14.38 0 2 128 181 703.45 851.06 5.64 11.65
3 3×3 0.027 0.049 13.03 15.57 0 3 140 199 671.72 1030.54 3.02 3.59
4 3×4 0.036 0.070 13.68 15.99 0 1 132 194 847.28 1115.30 5.36 6.29
5 4×4 0.050 0.093 15.65 16.00 1 3 139 209 830.77 1208.63 3.75 3.63

TABLE I. SIMULATION RESULTS FOR DEMOCAR WITH ZIGZAG (ZZ) AND HEURISTIC-LOCAL-MAXIMIZED (HEU.) MAPPINGS.
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Fig. 4. Link Load for DemoCar Application (normalized w.r.t. the maximum link load value in the network).

has been addressed. The main purpose of this application is
to control the combustion process in the engine in order to
produce the torque according to the run-time requirements
invoked by a driver. The Amalthea model of the engine
control comprises 109 tasks, 1239 runnables and 10436 labels.
It has been designed in collaboration with a world-leading
automotive system manufacturer. For confidentiality reason,
the application details are deliberately omitted. This model
has been simulated at a clock speed of 1 GHz. The considered
NoC mesh size varies between 7× 7 to 10× 10. The longest
simulation time was around 50 sec. for zigzag mapping on
10 × 10 NoC size. Heuristic-local-maximized globally offers
better real-time results in terms of number of missed deadlines.

V. CONCLUSIONS

A framework for fast exploration of automotive application
design on multi-core systems was presented in this paper.
The proposed framework mainly addressed the evaluation of
mapping and scheduling techniques for automotive domain.
For demonstration, different mapping policies (zigzag and
heuristic-local-maximized) were assessed on a case study ap-
plication modeled in Amalthea, a modeling language recently
adopted in automotive industry. Simulation results showed the
impact of mapping on computation load for a core, inter-
core communication volume and network level spatial load
balancing (jointly with routing algorithm). This is, among
others, a very useful feedback to designer for selecting the
best decisions w.r.t. real-time and performance objectives.
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