
HAL Id: lirmm-01419118
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01419118

Submitted on 18 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Trading-off System Load and Communication in
Mapping Heuristics for Improving NoC-Based MPSoCs

Reliability
Marcelo Mandelli, Luciano Ost, Gilles Sassatelli, Fernando Gehm Moraes

To cite this version:
Marcelo Mandelli, Luciano Ost, Gilles Sassatelli, Fernando Gehm Moraes. Trading-off System Load
and Communication in Mapping Heuristics for Improving NoC-Based MPSoCs Reliability. ISQED
2015 - 16th International Symposium on Quality Electronic Design, Mar 2015, Santa Clara, United
States. pp.392-396, �10.1109/ISQED.2015.7085457�. �lirmm-01419118�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01419118
https://hal.archives-ouvertes.fr

Trading-off System Load and Communication in Mapping Heuristics for Improving
NoC-Based MPSoCs Reliability

Marcelo Mandelli1,2, Luciano Ost3, Gilles Sassatelli2 and Fernando Moraes1
1FACIN - PUCRS – Av. Ipiranga 6681, 90619-900, Porto Alegre, Brazil

2 LIRMM – 161 rue Ada, Cedex 05, 34095 Montpellier, France
3 University of Leicester - University Rd, Leicester LE1 7RH, United Kingdom

mandelli@ieee.org, luciano.ost@leicester.ac.uk, sassatelli@lirmm.fr, moraes@pucrs.br

Abstract
Improving embedded systems lifetime and reliability

become a major concern for the semiconductor industry.
Imbalanced mapping of applications may considerably impact
on system lifetime since processors and NoC links located in
hotspot zones may age faster than others, compromising the
overall system performance. This work proposes a dynamic
mapping heuristic that makes a trade-off between processors’
load and NoC communication volume, aiming to increase
system reliability. Results show the proposed heuristic
provides a well-balanced workload distribution while reducing
communication volume. Results showed that proposed
mapping reduces application execution time (average 10%)
and hotspots zones when compared to conventional mapping
approaches.

Keywords
MPSoC, NoC, dynamic mapping, lifetime, reliability.

1. Introduction and Related Work
Semiconductor technology evolution has enabled to reduce

transistors’ size and, consequently, to integrate multiple cores
in the same chip. MPSoCs are expected to integrate thousands
of cores by the end of the decade [1], providing a high
computational performance. However, such systems became
more susceptible to failures due to transistor shrinking, which
can result in high power density and temperature [2][3][4]. In
NoC-based MPSoCs, it is also important to consider the NoC
links reliability. A higher data volume transferred through the
NoC may induce links to fail, which may make processors
unusable. Unusable processors induce mapping of applications
onto other system processors, increasing their workload and,
consequently, reducing their lifetime. Furthermore, links
failures compromise system performance by increasing NoC
congestion, latency and routing algorithm computation.

Such systems are likely to execute several applications in
parallel. The workload imposed by such applications and its
distribution impact considerably on system reliability [5][6].
Workload imbalance can generate hotspots zones (i.e. peaks of
power dissipation) and consequent thermal implications,
leading to unreliable system operation. Thus, task mapping has
to consider the wear state of processors to better balance
applications workload over the system [6].

The literature presents different task mapping heuristics to
improve system lifetime reliability. Huang et al. [6] propose a
task mapping allied to scheduling strategies based on simulated
annealing, which also considers applications deadlines.

Hartman et al. [7] present a run-time task mapping that uses
sensors to capture wear patterns in the system, aiming
balancing the processors’ loads. Das et al. [8] propose a wear-
based task mapping technique that generates mapping
solutions at design-time, aiming to satisfy application
deadlines and to maximize lifetime of cores and NoC links.
This solution is improved in [9] by including an offline DVFS
technique defining voltage and frequency levels of all cores.
Bolchini et al. [10] present a run-time task mapping technique
aiming to improve system reliability under energy and
performance constraints. For this purpose, this work combines
the technique of Das et al. [8] with a remap strategy. Chantem
et al. [3] propose both dynamic task mapping and scheduling.
Authors adopt the LTF-based algorithm [11] for dynamic task
mapping. A scheduling technique is executed periodically,
depending on system wear state conditions, trying to
compensate uneven core wear states.

Most reviewed works use static mapping techniques
[6][8][9][10], which are not suitable to deal with the dynamic
aspects of the system. Among fully dynamic mapping
heuristics [3][7], only [7] considers NoC links in the mapping
decision. Embedded silicon sensors are used in [7], while our
approach is software-based, which makes our system more
flexible while consuming less energy and area when compared
to Hartman's approach.

The main contribution of this work is a fully dynamic
mapping heuristic that makes a trade-off between processors’
workload and NoC communication volume, improving
systems reliability.

2. MPSoC Architecture
This work adopts a homogeneous MPSoC architecture

divided into clusters [12] as presented in Figure 1. The
processing elements (PEs) are interconnected through a NoC.
A PE contains a processor, a local memory (scratchpad
memory, without caches), a DMA module and a router. The
NoC assumes a 2D-mesh topology, credit-based flow control,
round-robin arbitration, and XY routing algorithm. An external
memory, called task repository, stores all applications, which
are loaded into the system at runtime.

PEs may act as: Global Manager Processor (GMP), Local
Manager Processor (LMP) and Slave Processor (SP). SPs are
responsible for executing user’s applications, running a simple
operating system (OS) that allows task communication and
multitask execution. An SP local memory is divided into k
pages, also called resources. A task executing in the system is
mapped in one resource. Therefore, an SP may execute k

https://www.researchgate.net/publication/271553942_Quantifying_workload_dependent_reliability_in_embedded_processors?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/267307262_Cost-effective_Lifetime_and_Yield_Optimization_for_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/261110361_Enhancing_performance_of_MPSoCs_through_distributed_resource_management?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==

simultaneous tasks. If a resource does not have a task mapped
on it, it is considered free or available. LMPs are responsible
for cluster control, such as executing task mapping and
reclustering. GMP is a single processor in the system that
accumulates the functions of an LMP and the overall system
management functions, including application-to-cluster
mapping, external devices access (e.g. task repository).

SP

SP

SP

SP

SP

SP

SP

SP

LMP2

SP

SP

SP

SP

SP

SP

SP

GMP

SP SP SP

SP SP

LMP3 SP SP

SP SP SP

SP SP SP

LMP1 SP SP

SP

SP

Ta
sk

R

ep
os

ito
ry

Figure 1: 6x6 MPSoC instance, with four 3x3 clusters [12].

All clusters have a fixed size, defined at design-time. At
runtime, a reclustering process may modify the cluster size,
according to the application mapping. When an application is
mapped in a given cluster, its LMP checks the availability of
SPs, and if necessary, SPs are borrowed from neighbor
clusters. When the application finishes its execution, the
borrowed SPs are released to the original cluster.

3. Mapping Heuristics
This work models an application as a directed graph

GApp = (T, E), where each vertex ti ∈ T represents an
application task and each directed weighted edge eij ∈ E
represents a communication dependence between tasks ti and tj.
The weight of an edge eij is denoted by commij, representing
the total data communication volume transferred between
application tasks ti and tj. The set T is divided in two subsets iT
and niT, where (iT U niT) = T. The subset iT contains the
application initial tasks, which are those without dependences
to other tasks; and the subset niT contains non-initial tasks. A
task ti ∈ T contains:
• a set called communicating task list, defined as

Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each
element is a tuple containing a task tj that communicates
with ti and the volume commij transferred between ti and
this task.

• a load value Ldi, which represents the energy consumption
[13] related to the execution of this task on an SP.
Each application is stored in the task repository with a

header called application description. The application
description defines the application size, the application initial
tasks and information about application tasks, such as tasks’
communicating task list and load.

This work adopts a mapping process divided into three
steps, which may vary according to the employed mapping
heuristic:
• cluster selection: whenever a new application is required

to be mapped, the system alerts the GMP, which verifies if
the system has available resources to map the entire
application. In not, the application is scheduled to be

mapped later. Otherwise, the GMP selects a cluster to map
the required application, according to the employed
heuristic. Then, the required application description is
sent to the LMP of the selected cluster.

• initial task mapping: the LMP of the selected cluster
receives the application description. Then, the LMP maps
the application initial tasks inside the cluster, according to
the used heuristic. The mapping of initial tasks will start
the application execution.

• non-initial task mapping: the mapping of non-initial tasks
occurs whenever a given task ti needs to communicate
with a non-mapped task tj. In this situation, the mapping of
tj is requested by ti to the LMP of the cluster. LMP maps
the task tj on the SP selected by the adopted heuristic.

Three mapping heuristics are evaluated in this work.
Section 3.1 presents the reference mapping heuristic proposed
in [14], which main cost function is to reduce communication
volume transferred through the NoC. Section 3.2 proposes a
heuristic aiming to balance processors’ load in the system, and
3.3 proposes a heuristic that aims to make a trade-off between
communication volume reduction and processor load balance.
All heuristics are detailed according to the three-step mapping
process previously discussed.

3.1 Premap-DN
The Premap-DN heuristic reduces the communication

energy through the NoC by approximating communicating
tasks that exchange a high communication volume. This
heuristic acts as follows in the three mapping steps:
• cluster selection: selects the cluster selected_cluster with

the large number of available resources to map an
application.

• initial task mapping: this heuristic evaluates the SPs inside
the selected_cluster, selecting the SP with the largest
region_free. The function region_free(spi, n_hops) returns
the total number of available resources of the set containing
spi and all SPs up to n_hops hops from spi, as detailed in
Figure 2.

 2
 0 1 1

1 2 2 3 3
 2 3 2
 3

Figure 2: Hypothetical example of region_free(sp2,2, 2) in a
5x5 cluster, being spi the central SP. The numbers inside at
each SP corresponds to the number of available resources.
The region load(sp2,2, 2) is then 25.

• non-initial task mapping: when a task ti is required to be
mapped, the heuristic creates a list with all communicating
tasks with ti already mapped onto the SPs within the
cluster. Next, a bounding box rectangle is defined,
containing all mapped communicating tasks. When there
are more than one mapped communicating tasks, the
bounding box is increased by one hop offering a larger
search space to map ti. Figure 3 illustrates the mapping
search space when one (a) or more communicating tasks
(b) are mapped in the cluster. The adoption of a bounding

https://www.researchgate.net/publication/269099676_Fast_energy_evaluation_of_embedded_applications_for_many-core_systems?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/228420361_Multi-task_dynamic_mapping_onto_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==

box aims to reduce the distance among communicating
tasks. In the case of just one mapped communicating task tj,
this heuristic will map ti on a SP as close as possible to the
one where tj is mapped. Otherwise, the heuristic will map tj
onto the SP with the lowest communication energy cost
according to the volume based energy model proposed by
Hu et al [15]. In both cases, if there are no available SPs
inside the bounding box, it is increased by one hop.

•

 t1
 t1 t2

 (a) (b)
Figure 3: (a) search space when one communicating tasks is
already mapped (t1); (b) search space when more than one
communicating task is already mapped (t1 and t2). Thicker
lines correspond to the original bounding box, dashed lines to
the bounding box increased by one hop.

This heuristic also uses a premap method with the goal to
group tasks that exchanges a high volume of communication in
the same SP. The premap defines tasks’ addresses before the
request to map them. The premap is invoked when the SP is
available, and a task ti is assigned to it. In such a case, the non-
mapped tasks communicating with ti are assigned to the same
processor, according to the communication volume.

3.2 Proposed Load (L) heuristic
This heuristic uses the task load Ld to distribute tasks and

balance processor load of the system. For this purpose, this
heuristic assumes that each spi ∈ SP has a total computational
load (TLi), which corresponds to the sum of loads (Ld) of all
executed tasks and the tasks that are currently being executed
on this processor. Whenever a task is mapped onto spi, the TLi
is updated. The three steps of the mapping process for this
heuristic are:
• cluster selection: this heuristic first computes the total

computational load load(ci) of each cluster ci by summing
the TL of each SP inside the cluster. Then, the cluster with
the smallest load(ci) is selected.

• initial task mapping: this heuristic evaluates all SPs inside
the cluster and maps an initial task on the SP with lowest
load Ld.

• Non-initial task mapping: in this step, this heuristic acts as
in the initial task mapping, choosing a SP inside the cluster
with the lowest Ld.

3.3 Proposed Load-Communication (LC) heuristic
This heuristic makes a trade-off between processor load

and reduction of communication volume. Thus, this heuristic
also assumes each spi ∈ SP has a total computational load
(TLi).
• cluster selection: this heuristic selects the cluster with the

smallest load(ci), as the previous heuristic.
• initial task mapping: this heuristic divides the initial task

process into two phases. The first phase selects the SP

selected_sp with the smallest region_load to map an initial
task. The region_load(spi, n_hops) returns the average TL
from the set containing an spi and all SPs up to n_hops
hops from spi, as detailed in Figure 4. If there is more than
one initial task, it is created a set with all SPs up to n_hops
from the selected_sp, selecting the SP of this set with the
smallest load.

• 123
 66 178 280
 114 200 80 109 77

120 210 120 200 110 350 327
 124 156 85 413 95
 149 123 189
 102

Figure 4: Hypothetical example of region load in a 7x7
cluster, being spi the central SP, and n_hops=3 (the number of
SPs inside the region is 25): region load(sp3,3, 3) =
4100/25=164. The numbers inside at each SP corresponds to
the processor load.

• Non-initial task mapping: this heuristic uses a similar
bounding box search method used in the Premap-DN. The
only difference is that the bounding box is increased by one
hop in both cases: when there is one and when there are
more than one communicating tasks mapped in the cluster.
Figure 5 illustrates the mapping search space in the cluster.
In both cases, this heuristic selects the SP inside the
bounding box with the lowest TL.

•

 t1
 t1 t2

 (a) (b)
Figure 5: (a) search space when one communicating tasks is
already mapped (t1); (b) search space when more than one
communicating task is already mapped (t1 and t2). Thicker
lines correspond to the original bounding box, dashed lines to
the bounding box increased by one hop.

4. Results
This Section employs an OVP [16] NoC-based MPSoC

platform model to compare the mapping heuristics in terms of
processor load distribution, communication volume, and total
execution time. For this, purpose, five applications are used as
benchmarks:
• DTW - Digital Time Warping (DTW), with 10 tasks;
• MPEG decoder, with 5 tasks;
• DJK - Dijkstra, with 6 tasks;
• SYN1, synthetic application, with 12 tasks, which emulates

the communication behavior of an MPEG4 full decoder;
• SYN2, synthetic application, with 12 tasks, that emulates

the communication behavior of VOP (Video Object Plane)
decoder application.
Six different scenarios are evaluated, varying the number of

applications and using an 8x8 MPSoC instance with 4x4
cluster size, as shown in Table 1.

Table 1: Evaluated scenarios.

Scenario Applications Number of
Applications

Number
of tasks

1 8 x DTW, 8 x MPEG, 8 x DJK, 8 x SYN1, 8
x SYN2 40 360

2 8 x DJK, 11 x SYN1, 11 x SYN2 30 312

3 21 x MPEG, 12 x DJK, 5 x SYN1,
12 x SYN2 50 381

4 4 x DTW, 6 x MPEG, 14 x DJK, 7 x SYN1,
13 x SYN2 44 394

5 8 x DTW, 11 x MPEG, 10 x DJK,
11 x SYN1, 9 x SYN2 49 435

6 12 x DTW, 5 x MPEG, 8 x DJK,
13 x SYN1, 12 x SYN2 50 493

4.1 Load Distribution
Figure 6 presents the number of instructions executed by

each SP, for the three heuristics. Note Figure 6(a) illustrates
the presence of hotspots (yellow squares), i.e., some PEs
execute a larger number of instructions, while others execute a
small number of instructions. Figure 6(b) and Figure 6(c)
present a uniform load distribution for the LC and L heuristics.
Such different behavior highlights the benefits of using
heuristics that consider the load in the mapping process to
avoid hotspots, therefore increasing the system lifetime.

Table 2 presents the average number of instructions
executed per SP and its standard deviation for all evaluated
scenarios. Results show that the average number of executed
instructions per SP, for the same scenario, has small variations
for the different heuristics. This is an expected result, since the
workload is the same.

Most relevant result in Table 2 is the standard deviation
value. A small standard deviation value represents a better load
distribution among the SPs. The L and LC heuristics reduces
the standard deviation in average 68% and 72% respectively
when compared to the PREMAP-DN heuristic. The reason
explaining this result is the fact that the PREMAP-DN
heuristic does not take into account the tasks’ load in the
mapping decision. In addition, the PREMAP-DN heuristic
tends to group tasks together in the same SP, eliminating
communication through the NoC. Furthermore, the L heuristic
has an average reduction of 13% compared to LC, since it has
a larger search space searching inside the whole cluster.

Table 2: Average number of instructions per SP and standard
deviation on the number of executed instructions per SP
(thousands of instructions).

 PREMAP-DN LC L

Scenario Avg./SP Std. Dev. Avg./SP Std. Dev. Avg./SP Std. Dev.

1 2,812 3,165 2,790 1,153 2,783 873

2 2,402 3,402 2,413 777 2,422 805

3 2,326 2,662 2,348 923 2,363 868

4 3,055 3,497 3,026 1,266 3,064 1,115

5 3,392 3,888 3,412 1,260 3,433 1,081

6 3,914 4,189 3,814 1,174 3,829 836

4.2 Communication Volume
Table 3 shows the total communication volume in flits

transferred through the NoC for each scenario. The PREMAP-
DN heuristic presents the large reduction in the
communication volume, being used as the reference mapping.
The LC and L heuristics increase the communication volume
in 81 and 154% (average values), respectively, when compared
to the PREMAP heuristic. This happens since these heuristics
have as main function to distribute tasks along the SPs,
inducing the use of the NoC. Otherwise, as explained before,
the PREMAP-DN heuristic tends to map tasks together in the
same SP. In this case, there is an intra-SP communication
between tasks. Moreover, the LC heuristic reduces the total
communication volume in average 29% compared to the L
heuristic. The LC heuristic considers the distance of the
communicating tasks in the mapping decision, explaining the
obtained results.

Table 3: Total communication volume (thousands of flits)
and the difference compared to the reference mapping.

Scenario PREMAP-DN LC L
 Reference Diff. % Diff. %

1 1,771 3,048 +72.15 4,128 +133.12
2 1,417 3,070 +73.34 4,134 +133.42
3 1,982 2,515 +42.05 3,444 +94.49
4 1,956 2,761 +55.91 4,043 +128.32
5 2,143 3,803 +114.78 5,637 +218.34
6 2,528 4,057 +129.08 5,688 +221.22

(a) PREMAP-DN (b) LC (c) L

Figure 6: Thousands of instructions executed by each PE, for the 3 heuristics, scenario 6. Black square are manager PEs, not
considered in the evaluation.

Overloaded processors

4.3 Execution Time
Table 4 compares the execution time of each scenario.

Results show the LC heuristic reduces the total execution time
by 13% and 8% (average values) when compared to the
PREMAP-DN and L heuristics. This result comes from the
load distribution and communication energy trade-off used by
the LC heuristic.

The PREMAP-DN increases the execution time because it
increases the processor sharing (communicating tasks are
mapped in the same SP). Distributing tasks and using as much
as possible SPs of the system at the same time reduces the
execution time, minimizing the processor sharing. The L
heuristic increases the total execution time for two reasons.
First, due to the larger search space, the heuristic takes longer
to execute. Second, by not considering the NoC traffic in the
mapping cost function, a large communication volume
transferred through the NoC induces congestion and increases
latency.

Table 4: Execution time (thousands of clock cycles).
Scenario PREMAP-DN LC L

1 18,520 16,514 18,854
2 18,939 16,893 18,230
3 17,083 14,866 17,409
4 23,923 18,933 18,977
5 21,139 18,927 20,322
6 25,998 22,382 24,008

4.4 Reliability
The reliability of a given system is proportional to its use

[5], i.e. processors with the highest usage have more
probability to suffer failures. The same happens with NoC
links: an increased use of a given link will reduce its lifetime.
The PREMAP-DN heuristic compromises processors
reliability due to its behavior that tries to group tasks at the
same SP to reduce communication energy. At the same way,
the L heuristic compromises links reliability by increasing
communication volume in 154% and 29% compared to the
PREMAP-DN and LC heuristics, respectively.

5. Conclusion and Future Work
This work proposed a task mapping heuristic that makes a

trade-off between processors load and communication volume
– LC heuristic. This heuristic is compared with two heuristics:
one reduces the communication volume and energy, and
another evenly distributes the system workload. Results show
the proposed heuristic reduces communication volume without
compromising processors workload balance. Further, the
proposed heuristic reduces the total execution time in average
10% compared to the other heuristics.

Future works aim to incorporate a reliability model in the
MPSoC architecture to estimate the system mean-time-to-
failure (MTTF).

6. Acknowledgements
The Authors would like to thank Imperas Software Ltd.

(www.imperas.com) and Open Virtual Platforms
(www.OVPworld.org) for their support and access to their
models and simulator. Fernando Moraes is supported by CNPq
projects 472126/2013-0 and 302625/2012-7, and CAPES
project CAPES-COFECUB 708/11.

7. References
[1] International Technology Roadmap for Semiconductors.

Available at: http://www.itrs.net/reports.html. February
2013.

[2] Meyer, B; et al. “Cost-effective lifetime and yield
optimization for NoC-based MPSoCs”. In: ACM
Transactions on Design Automation Electronic Systems,
vol. 19(2), 2014.

[3] Chantem, T.; et al. “Enhancing multicore reliability
through wear compensation in online assignment and
scheduling”. In: DATE, 2013, pp. 1373 -1378.

[4] Wang, Z; et al. “System-level reliability exploration
framework for heterogeneous MPSoC”. In: GLSVLSI,
2014, pp 9-14.

[5] Chandra, V. “Quantifying workload dependent reliability
in embedded processors". In: ASP-DAC, 2014, pp. 474-
477.

[6] Huang, L.; et al. “Lifetime reliability-aware task
allocation and scheduling for MPSoC platforms”. In:
DATE, 2009, pp. 51-56.

[7] Hartman, A., et al. “Lifetime improvement through
runtime wear-based task mapping”. In: CODES+ISSS,
2012, pp. 13-22.

[8] Das, A.; et al. “Reliability-driven task mapping for
lifetime extension of networks-on-chip based
multiprocessor systems”. In: DATE, 2013, pp. 689–694.

[9] Das, A; et al. "Temperature aware energy-reliability
trade-offs for mapping of throughput-constrained
applications on multimedia MPSoCs". In: DATE, 2014,
6p.

[10] Bolchini, C.; et al. “Run-time mapping for reliable many-
cores based on energy/performance trade-offs”. In: DFT,
2013, pp. 58–64.

[11] Chen, J-J. et al. "Approximation Algorithms for
Multiprocessor Energy-Efficient Scheduling of Periodic
Real-Time Tasks with Uncertain Task Execution Time".
In: RTAS, 2008, pp. 13-23.

[12] Mandelli, M.; Castilhos, G.; Moraes, F. “Enhancing
Performance of MPSoCs through Distributed Resource
Management”. In: ICECS, 2012, pp. 544-547.

[13] Rosa, F.; Ost, L.; Rosa, T.; Moraes, F.; Reis, R. “Fast
Energy Evaluation of Embedded Applications for Many-
core Systems”. In: PATMOS, 2014, pp 1-6.

[14] Mandelli, M.; Ost, L.; Amory, A.; Moraes, F. “Multi-
Task Dynamic Mapping onto NoC-based MPSoCs”. In:
SBCCI, 2011, pp. 191-196.

[15] Hu, W.; et al. “An Efficient Power-Aware Optimization
for Task Scheduling on NoC-based Many-core System”.
In: CIT, 2010, pp. 171–178.

[16] OVP 2014, www.ovpworld.org/technology_ovpsim.php.

View publication statsView publication stats

https://www.researchgate.net/publication/269099676_Fast_energy_evaluation_of_embedded_applications_for_many-core_systems?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/269099676_Fast_energy_evaluation_of_embedded_applications_for_many-core_systems?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/269099676_Fast_energy_evaluation_of_embedded_applications_for_many-core_systems?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/228420361_Multi-task_dynamic_mapping_onto_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/228420361_Multi-task_dynamic_mapping_onto_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/228420361_Multi-task_dynamic_mapping_onto_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/271553942_Quantifying_workload_dependent_reliability_in_embedded_processors?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/271553942_Quantifying_workload_dependent_reliability_in_embedded_processors?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/271553942_Quantifying_workload_dependent_reliability_in_embedded_processors?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/271553942_Quantifying_workload_dependent_reliability_in_embedded_processors?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/267307262_Cost-effective_Lifetime_and_Yield_Optimization_for_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/267307262_Cost-effective_Lifetime_and_Yield_Optimization_for_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/267307262_Cost-effective_Lifetime_and_Yield_Optimization_for_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/267307262_Cost-effective_Lifetime_and_Yield_Optimization_for_NoC-based_MPSoCs?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/261110361_Enhancing_performance_of_MPSoCs_through_distributed_resource_management?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/261110361_Enhancing_performance_of_MPSoCs_through_distributed_resource_management?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/261110361_Enhancing_performance_of_MPSoCs_through_distributed_resource_management?el=1_x_8&enrichId=rgreq-6501d43c2323d5def9efdbc776ed65c8-XXX&enrichSource=Y292ZXJQYWdlOzI4MDQ4ODkxNTtBUzozMTE2MDcyNjE4OTI2MDhAMTQ1MTMwNDM2ODMyNA==
https://www.researchgate.net/publication/280488915

