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Abstract 
Improving embedded systems lifetime and reliability 

become a major concern for the semiconductor industry. 
Imbalanced mapping of applications may considerably impact 
on system lifetime since processors and NoC links located in 
hotspot zones may age faster than others, compromising the 
overall system performance. This work proposes a dynamic 
mapping heuristic that makes a trade-off between processors’ 
load and NoC communication volume, aiming to increase 
system reliability. Results show the proposed heuristic 
provides a well-balanced workload distribution while reducing 
communication volume. Results showed that proposed 
mapping reduces application execution time (average 10%) 
and hotspots zones when compared to conventional mapping 
approaches. 
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1. Introduction and Related Work 
Semiconductor technology evolution has enabled to reduce 

transistors’ size and, consequently, to integrate multiple cores 
in the same chip. MPSoCs are expected to integrate thousands 
of cores by the end of the decade [1], providing a high 
computational performance. However, such systems became 
more susceptible to failures due to transistor shrinking, which 
can result in high power density and temperature [2][3][4]. In 
NoC-based MPSoCs, it is also important to consider the NoC 
links reliability. A higher data volume transferred through the 
NoC may induce links to fail, which may make processors 
unusable. Unusable processors induce mapping of applications 
onto other system processors, increasing their workload and, 
consequently, reducing their lifetime. Furthermore, links 
failures compromise system performance by increasing NoC 
congestion, latency and routing algorithm computation. 

Such systems are likely to execute several applications in 
parallel. The workload imposed by such applications and its 
distribution impact considerably on system reliability [5][6]. 
Workload imbalance can generate hotspots zones (i.e. peaks of 
power dissipation) and consequent thermal implications, 
leading to unreliable system operation. Thus, task mapping has 
to consider the wear state of processors to better balance 
applications workload over the system [6].   

The literature presents different task mapping heuristics to 
improve system lifetime reliability. Huang et al. [6] propose a 
task mapping allied to scheduling strategies based on simulated 
annealing, which also considers applications deadlines. 

Hartman et al. [7] present a run-time task mapping that uses 
sensors to capture wear patterns in the system, aiming 
balancing the processors’ loads. Das et al. [8] propose a wear-
based task mapping technique that generates mapping 
solutions at design-time, aiming to satisfy application 
deadlines and to maximize lifetime of cores and NoC links. 
This solution is improved in [9] by including an offline DVFS 
technique defining voltage and frequency levels of all cores. 
Bolchini et al. [10] present a run-time task mapping technique 
aiming to improve system reliability under energy and 
performance constraints. For this purpose, this work combines 
the technique of Das et al. [8] with a remap strategy. Chantem 
et al. [3] propose both dynamic task mapping and scheduling. 
Authors adopt the LTF-based algorithm [11] for dynamic task 
mapping. A scheduling technique is executed periodically, 
depending on system wear state conditions, trying to 
compensate uneven core wear states.   

Most reviewed works use static mapping techniques 
[6][8][9][10], which are not suitable to deal with the dynamic 
aspects of the system. Among fully dynamic mapping 
heuristics [3][7], only [7] considers NoC links in the mapping 
decision. Embedded silicon sensors are used in [7], while our 
approach is software-based, which makes our system more 
flexible while consuming less energy and area when compared 
to Hartman's approach.  

The main contribution of this work is a fully dynamic 
mapping heuristic that makes a trade-off between processors’ 
workload and NoC communication volume, improving 
systems reliability. 

2. MPSoC Architecture 
This work adopts a homogeneous MPSoC architecture 

divided into clusters [12] as presented in Figure 1. The 
processing elements (PEs) are interconnected through a NoC. 
A PE contains a processor, a local memory (scratchpad 
memory, without caches), a DMA module and a router. The 
NoC assumes a 2D-mesh topology, credit-based flow control, 
round-robin arbitration, and XY routing algorithm. An external 
memory, called task repository, stores all applications, which 
are loaded into the system at runtime. 

PEs may act as: Global Manager Processor (GMP), Local 
Manager Processor (LMP) and Slave Processor (SP). SPs are 
responsible for executing user’s applications, running a simple 
operating system (OS) that allows task communication and 
multitask execution. An SP local memory is divided into k 
pages, also called resources. A task executing in the system is 
mapped in one resource. Therefore, an SP may execute k 
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simultaneous tasks. If a resource does not have a task mapped 
on it, it is considered free or available. LMPs are responsible 
for cluster control, such as executing task mapping and 
reclustering. GMP is a single processor in the system that 
accumulates the functions of an LMP and the overall system 
management functions, including application-to-cluster 
mapping, external devices access (e.g. task repository).  
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Figure 1: 6x6 MPSoC instance, with four 3x3 clusters [12]. 

All clusters have a fixed size, defined at design-time. At 
runtime, a reclustering process may modify the cluster size, 
according to the application mapping. When an application is 
mapped in a given cluster, its LMP checks the availability of 
SPs, and if necessary, SPs are borrowed from neighbor 
clusters. When the application finishes its execution, the 
borrowed SPs are released to the original cluster. 

3. Mapping Heuristics 
This work models an application as a directed graph  

GApp = (T, E), where each vertex ti ∈ T represents an 
application task and each directed weighted edge eij ∈ E 
represents a communication dependence between tasks ti and tj. 
The weight of an edge eij is denoted by commij, representing 
the total data communication volume transferred between 
application tasks ti and tj. The set T is divided in two subsets iT 
and niT, where (iT U niT) = T. The subset iT contains the 
application initial tasks, which are those without dependences 
to other tasks; and the subset niT contains non-initial tasks. A 
task ti ∈ T contains: 
• a set called communicating task list, defined as 

Ci = {(tj, commij); (tk, commik); … (tn, commin)}, where each 
element is a tuple containing a task tj that communicates 
with ti and the volume commij transferred between ti and 
this task. 

• a load value Ldi, which represents the energy consumption 
[13] related to the execution of this task on an SP. 
Each application is stored in the task repository with a 

header called application description. The application 
description defines the application size, the application initial 
tasks and information about application tasks, such as tasks’ 
communicating task list and load. 

This work adopts a mapping process divided into three 
steps, which may vary according to the employed mapping 
heuristic: 
• cluster selection: whenever a new application is required 

to be mapped, the system alerts the GMP, which verifies if 
the system has available resources to map the entire 
application. In not, the application is scheduled to be 

mapped later. Otherwise, the GMP selects a cluster to map 
the required application, according to the employed 
heuristic. Then, the required application description is 
sent to the LMP of the selected cluster.  

• initial task mapping: the LMP of the selected cluster 
receives the application description. Then, the LMP maps 
the application initial tasks inside the cluster, according to 
the used heuristic.  The mapping of initial tasks will start 
the application execution.  

• non-initial task mapping: the mapping of non-initial tasks 
occurs whenever a given task ti needs to communicate 
with a non-mapped task tj. In this situation, the mapping of 
tj is requested by ti to the LMP of the cluster. LMP maps 
the task tj on the SP selected by the adopted heuristic. 

Three mapping heuristics are evaluated in this work. 
Section 3.1 presents the reference mapping heuristic proposed 
in [14], which main cost function is to reduce communication 
volume transferred through the NoC. Section 3.2 proposes a 
heuristic aiming to balance processors’ load in the system, and 
3.3 proposes a heuristic that aims to make a trade-off between 
communication volume reduction and processor load balance. 
All heuristics are detailed according to the three-step mapping 
process previously discussed. 

3.1 Premap-DN  
The Premap-DN heuristic reduces the communication 

energy through the NoC by approximating communicating 
tasks that exchange a high communication volume. This 
heuristic acts as follows in the three mapping steps: 
• cluster selection: selects the cluster selected_cluster with 

the large number of available resources to map an 
application.  

• initial task mapping: this heuristic evaluates the SPs inside 
the selected_cluster, selecting the SP with the largest 
region_free. The function region_free(spi, n_hops) returns 
the total number of available resources of the set containing 
spi and all SPs up to n_hops hops from spi, as detailed in 
Figure 2.  
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Figure 2: Hypothetical example of region_free(sp2,2, 2) in a 
5x5 cluster, being spi the central SP. The numbers inside at 
each SP corresponds to the number of available resources. 
The region load(sp2,2, 2) is then 25. 

• non-initial task mapping: when a task ti is required to be 
mapped, the heuristic creates a list with all communicating 
tasks with ti already mapped onto the SPs within the 
cluster. Next, a bounding box rectangle is defined, 
containing all mapped communicating tasks. When there 
are more than one mapped communicating tasks, the 
bounding box is increased by one hop offering a larger 
search space to map ti. Figure 3 illustrates the mapping 
search space when one (a) or more communicating tasks 
(b) are mapped in the cluster. The adoption of a bounding 
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box aims to reduce the distance among communicating 
tasks. In the case of just one mapped communicating task tj, 
this heuristic will map ti on a SP as close as possible to the 
one where tj is mapped. Otherwise, the heuristic will map tj 
onto the SP with the lowest communication energy cost 
according to the volume based energy model proposed by 
Hu et al [15]. In both cases, if there are no available SPs 
inside the bounding box, it is increased by one hop.  
 

•      
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Figure 3: (a) search space when one communicating tasks is 
already mapped (t1); (b) search space when more than one 
communicating task is already mapped (t1 and t2). Thicker 
lines correspond to the original bounding box, dashed lines to 
the bounding box increased by one hop. 

This heuristic also uses a premap method with the goal to 
group tasks that exchanges a high volume of communication in 
the same SP. The premap defines tasks’ addresses before the 
request to map them. The premap is invoked when the SP is 
available, and a task ti is assigned to it. In such a case, the non-
mapped tasks communicating with ti are assigned to the same 
processor, according to the communication volume. 

3.2 Proposed Load (L) heuristic 
This heuristic uses the task load Ld to distribute tasks and 

balance processor load of the system. For this purpose, this 
heuristic assumes that each spi ∈  SP  has  a  total computational 
load (TLi), which corresponds to the sum of loads (Ld) of all 
executed tasks and the tasks that are currently being executed 
on this processor. Whenever a task is mapped onto spi, the TLi 
is updated. The three steps of the mapping process for this 
heuristic are: 
• cluster selection: this heuristic first computes the total 

computational load load(ci) of each cluster ci by summing 
the TL of each SP inside the cluster. Then, the cluster with 
the smallest load(ci) is selected. 

• initial task mapping: this heuristic evaluates all SPs inside 
the cluster and maps an initial task on the SP with lowest 
load Ld. 

• Non-initial task mapping: in this step, this heuristic acts as 
in the initial task mapping, choosing a SP inside the cluster 
with the lowest Ld. 

3.3 Proposed Load-Communication (LC) heuristic 
This heuristic makes a trade-off between processor load 

and reduction of communication volume. Thus, this heuristic 
also assumes each spi ∈   SP has a total computational load 
(TLi). 
• cluster selection: this heuristic selects the cluster with the 

smallest load(ci), as the previous heuristic. 
• initial task mapping: this heuristic divides the initial task 

process into two phases. The first phase selects the SP 

selected_sp with the smallest region_load to map an initial 
task. The region_load(spi, n_hops) returns the average TL 
from the set containing an spi and all SPs up to n_hops 
hops from spi, as detailed in Figure 4. If there is more than 
one initial task, it is created a set with all SPs up to n_hops 
from the selected_sp, selecting the SP of this set with the 
smallest load.  
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Figure 4: Hypothetical example of region load in a 7x7 
cluster, being spi the central SP, and n_hops=3 (the number of 
SPs inside the region is 25): region load(sp3,3, 3) = 
4100/25=164. The numbers inside at each SP corresponds to 
the processor load. 

• Non-initial task mapping:  this heuristic uses a similar 
bounding box search method used in the Premap-DN. The 
only difference is that the bounding box is increased by one 
hop in both cases: when there is one and when there are 
more than one communicating tasks mapped in the cluster. 
Figure 5 illustrates the mapping search space in the cluster. 
In both cases, this heuristic selects the SP inside the 
bounding box with the lowest TL. 
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Figure 5: (a) search space when one communicating tasks is 
already mapped (t1); (b) search space when more than one 
communicating task is already mapped (t1 and t2). Thicker 
lines correspond to the original bounding box, dashed lines to 
the bounding box increased by one hop. 

4. Results 
This Section employs an OVP [16] NoC-based MPSoC 

platform model to compare the mapping heuristics in terms of 
processor load distribution, communication volume, and total 
execution time. For this, purpose, five applications are used as 
benchmarks:  
• DTW - Digital Time Warping (DTW), with 10 tasks;  
• MPEG decoder, with 5 tasks;  
• DJK - Dijkstra, with 6 tasks; 
• SYN1, synthetic application, with 12 tasks, which emulates 

the communication behavior of an MPEG4 full decoder;  
• SYN2, synthetic application, with 12 tasks, that emulates 

the communication behavior of VOP (Video Object Plane) 
decoder application.  
Six different scenarios are evaluated, varying the number of 

applications and using an 8x8 MPSoC instance with 4x4 
cluster size, as shown in Table 1.  



Table 1: Evaluated scenarios. 

Scenario Applications Number of 
Applications 

Number 
of tasks 

1 8 x DTW, 8 x MPEG, 8 x DJK, 8 x SYN1, 8 
x SYN2 40 360 

2 8 x DJK, 11 x SYN1, 11 x SYN2 30 312 

3 21 x MPEG, 12 x DJK, 5 x SYN1,  
12 x SYN2 50 381 

4 4 x DTW, 6 x MPEG, 14 x DJK, 7 x SYN1, 
13 x SYN2 44 394 

5 8 x DTW, 11 x MPEG, 10 x DJK,  
11 x SYN1, 9 x SYN2 49 435 

6 12 x DTW, 5 x MPEG, 8 x DJK,  
13 x SYN1, 12 x SYN2 50 493 

4.1 Load Distribution 
Figure 6 presents the number of instructions executed by 

each SP, for the three heuristics. Note Figure 6(a) illustrates 
the presence of hotspots (yellow squares), i.e., some PEs 
execute a larger number of instructions, while others execute a 
small number of instructions. Figure 6(b) and Figure 6(c) 
present a uniform load distribution for the LC and L heuristics. 
Such different behavior highlights the benefits of using 
heuristics that consider the load in the mapping process to 
avoid hotspots, therefore increasing the system lifetime. 

Table 2 presents the average number of instructions 
executed per SP and its standard deviation for all evaluated 
scenarios. Results show that the average number of executed 
instructions per SP, for the same scenario, has small variations 
for the different heuristics. This is an expected result, since the 
workload is the same. 

Most relevant result in Table 2 is the standard deviation 
value. A small standard deviation value represents a better load 
distribution among the SPs. The L and LC heuristics reduces 
the standard deviation in average 68% and 72% respectively 
when compared to the PREMAP-DN heuristic. The reason 
explaining this result is the fact that the PREMAP-DN 
heuristic does not take into account the tasks’ load in the 
mapping decision. In addition, the PREMAP-DN heuristic 
tends to group tasks together in the same SP, eliminating 
communication through the NoC. Furthermore, the L heuristic 
has an average reduction of 13% compared to LC, since it has 
a larger search space searching inside the whole cluster.  

Table 2: Average number of instructions per SP and standard 
deviation on the number of executed instructions per SP 
(thousands of instructions). 

 PREMAP-DN LC L 

Scenario Avg./SP Std. Dev. Avg./SP Std. Dev. Avg./SP Std. Dev. 

1 2,812 3,165 2,790 1,153 2,783 873 

2 2,402 3,402 2,413 777 2,422 805 

3 2,326 2,662 2,348 923 2,363 868 

4 3,055 3,497 3,026 1,266 3,064 1,115 

5 3,392 3,888 3,412 1,260 3,433 1,081 

6 3,914 4,189 3,814 1,174 3,829 836 

4.2 Communication Volume 
Table 3 shows the total communication volume in flits 

transferred through the NoC for each scenario. The PREMAP-
DN heuristic presents the large reduction in the 
communication volume, being used as the reference mapping. 
The LC and L heuristics increase the communication volume 
in 81 and 154% (average values), respectively, when compared 
to the PREMAP heuristic. This happens since these heuristics 
have as main function to distribute tasks along the SPs, 
inducing the use of the NoC. Otherwise, as explained before, 
the PREMAP-DN heuristic tends to map tasks together in the 
same SP. In this case, there is an intra-SP communication 
between tasks. Moreover, the LC heuristic reduces the total 
communication volume in average 29% compared to the L 
heuristic. The LC heuristic considers the distance of the 
communicating tasks in the mapping decision, explaining the 
obtained results.    

Table 3: Total communication volume (thousands of flits) 
and the difference compared to the reference mapping. 

Scenario PREMAP-DN LC L 
 Reference  Diff. %  Diff. % 

1 1,771 3,048 +72.15 4,128 +133.12 
2 1,417 3,070 +73.34 4,134 +133.42 
3 1,982 2,515 +42.05 3,444 +94.49 
4 1,956 2,761 +55.91 4,043 +128.32 
5 2,143 3,803 +114.78 5,637 +218.34 
6 2,528 4,057 +129.08 5,688 +221.22 

 
(a) PREMAP-DN (b) LC (c) L 

Figure 6: Thousands of instructions executed by each PE, for the 3 heuristics, scenario 6. Black square are manager PEs, not 
considered in the evaluation. 

Overloaded processors 



4.3 Execution Time 
Table 4 compares the execution time of each scenario. 

Results show the LC heuristic reduces the total execution time 
by 13% and 8% (average values) when compared to the 
PREMAP-DN and L heuristics. This result comes from the 
load distribution and communication energy trade-off used by 
the LC heuristic.  

The PREMAP-DN increases the execution time because it 
increases the processor sharing (communicating tasks are 
mapped in the same SP). Distributing tasks and using as much 
as possible SPs of the system at the same time reduces the 
execution time, minimizing the processor sharing. The L 
heuristic increases the total execution time for two reasons. 
First, due to the larger search space, the heuristic takes longer 
to execute. Second, by not considering the NoC traffic in the 
mapping cost function, a large communication volume 
transferred through the NoC induces congestion and increases 
latency. 

Table 4: Execution time (thousands of clock cycles). 
Scenario PREMAP-DN LC L 

1 18,520 16,514 18,854 
2 18,939 16,893 18,230 
3 17,083 14,866 17,409 
4 23,923 18,933 18,977 
5 21,139 18,927 20,322 
6 25,998 22,382 24,008 

4.4 Reliability 
The reliability of a given system is proportional to its use 

[5], i.e. processors with the highest usage have more 
probability to suffer failures. The same happens with NoC 
links: an increased use of a given link will reduce its lifetime. 
The PREMAP-DN heuristic compromises processors 
reliability due to its behavior that tries to group tasks at the 
same SP to reduce communication energy. At the same way, 
the L heuristic compromises links reliability by increasing 
communication volume in 154% and 29% compared to the 
PREMAP-DN and LC heuristics, respectively.  

5. Conclusion and Future Work 
This work proposed a task mapping heuristic that makes a 

trade-off between processors load and communication volume 
– LC heuristic. This heuristic is compared with two heuristics: 
one reduces the communication volume and energy, and 
another evenly distributes the system workload. Results show 
the proposed heuristic reduces communication volume without 
compromising processors workload balance. Further, the 
proposed heuristic reduces the total execution time in average 
10% compared to the other heuristics.  

Future works aim to incorporate a reliability model in the 
MPSoC architecture to estimate the system mean-time-to-
failure (MTTF).  
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