
HAL Id: lirmm-01421143
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01421143

Submitted on 21 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Implementation of AES Using NVM Memories Based on
Comparison Function

Jérémie Clément, Bruno Mussard, David Naccache, Lionel Torres

To cite this version:
Jérémie Clément, Bruno Mussard, David Naccache, Lionel Torres. Implementation of AES Using NVM
Memories Based on Comparison Function. ISVLSI: International Symposium on Very Large Scale
Integration, Jul 2015, Montpellier, France. pp.356-361, �10.1109/ISVLSI.2015.37�. �lirmm-01421143�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01421143
https://hal.archives-ouvertes.fr

Implementation of AES Using NVM Memories Based on Comparison Function

Jeremie CLEMENT, Bruno MUSSARD

Crocus Technology
Rousset, France

Email: {jclement, bmussard}@crocus-technology.com

David NACCACHE

Ecole Normale Supérieure
Paris, France

Email: david.naccache@ens.fr

Lionel TORRES

LIRMM, UMR CNRS
Université de Montpellier, France

Email: lionel.torres@lirmm.fr

Abstract—Nowadays, cryptography is widely used in many
different devices (smartphones, tablets, computers, etc.). One
of the most used cryptographic algorithms is AES (Advanced
Encryption Standard). Crocus Technology is developing a
technology called Match-In-PlaceTM(MIP). This is a memory
based on comparison function. With this technology, data
stored in the memory can be compared to an input data.
The main expectation of this technology is that, during this
comparison, no information leaks from the memory, which
is interesting against side channel attacks. This assumption
has been verified by simulation but not in practice yet. This
paper proposes a new secure AES implementation based on the
MIP technology. The use of this particular technology allows to
protect the key in a secure environment to prevent attackers
from retrieving it. MIP also allows a very low silicon area
implementation of AES.

Keywords-Advanced Encryption Standard (AES), MRAM,
cryptography, security, memory

I. INTRODUCTION

In 2001, the National Institute of Standards and Tech-

nology (NIST) specified the Advanced Encryption Standard

(AES). AES is a symmetric block cipher designed by

Daemen and Rijmen in [1]. Nowadays, AES is widely used

in a variety of applications and devices. So, many works

were performed to secure AES against side-channel attacks

([2], [3], [4]).

Crocus Technology is a semiconductor company develop-

ing Magnetoresistive Random-Access Memories (MRAM).

They are currently developing a technology called Match-

In-Place (MIP). MIP is a memory which has an embedded

comparison function. It consists in comparing an input data,

given to the memory to a secret data stored in the memory.

The comparison operation itself takes place in the memory.

The advantage of MIP is that the sensitive data never leaves

the memory, so it is impossible for an attacker to intercept

this data during the comparison operation. Each MIP cell is

a non-volatile memory cell combined with a virtual XOR

gate. Multiple cells can be connected in series to form a

NAND chain acting as a linear MIP engine. This technology

can be used to secure user authentication (for example by

comparing passwords in a secure way). As all operations

take place in the memory, there is no data leakage, so it

is impossible to retrieve sensitive data (such as a key or

a password) using power analysis. Although this security

features have been proved by simulation, these assumptions

still have to be verified on actual MIP chips.

In this paper, a secure AES implementation is described,

using MIP to secure the key. In this implementation, MIP

cells are used in different ways :

• As a Content Addressable Memory (CAM) to replace

AES S-Boxes;

• As a bitwise XOR by processing bit-to-bit matching

operation;

By integrating MIP into AES operations, the key and the

processed intermediate data during the different operations

are secured. This algorithm was implemented in Verilog and

simulated using the Icarus Verilog simulator.

The rest of this paper is organized as follows. Section

2 recalls AES operations. Section 3 describes the MIP

technology. Section 4 explains how MIP is connected into

AES algorithm. Section 5 shows the simulation results of

the proposed implementation. Section 6 concludes.

II. AES OPERATION

AES encryption and decryption are based on four different

transformations which are repeated Nr times. AES has a

fixed 128 bits data block and a key size of 128, 192 or 256

bits. For the sake of simplicity, only the 128-bit key variant

was implemented, so the rest of this paper only refers to

AES-128. For this variant the number of rounds is Nr = 10.

Fig. 1 describes the flow of operations for AES encryption.

Encryption and decryption flows are slightly different as,

compared to encryption, decryption executes the reverse

transformations in the reverse order.

AES considers a 128-bit block data as a 4×4 byte state.

In parallel to encryption or decryption, the 128-bit key

is processed by a key schedule operation to generate Nr

round subkeys. Each round subkey and the cipher key are

considered as a 4×4 byte state. A full round is decomposed

into four steps.

A. The SubBytes step

In the SubBytes step, each byte ai,j in the state matrix is

replaced with another byte S(ai,j) using an 8-bit substitution

box (called S-box). This operation provides the non-linearity

of the cipher. Many works on improving S-Boxes have been

realized. Composite field S-Boxes are widely used, as they

2015 IEEE Computer Society Annual Symposium on VLSI

978-1-4799-8719-1/15 $31.00 © 2015 IEEE

DOI 10.1109/ISVLSI.2015.37

356

Plain Text

AddRoundKey

SubBytes

MixColumns

ShiftRows

AddRoundKey

Cipher key

Repeat 9 times

SubBytes

ShiftRows

AddRoundKeyFinal subkey

Cipher Text

Round subkey

Figure 1. AES encryption flow

allow to minimize the gate count and improve performances

on S-Box calculation. Many works on composite fields focus

on the tower field F((22)2)2 ([5], [6], [7]).

B. The ShiftRows step

The ShiftRows step cyclically shifts the bytes in each row

of the state by a certain offset. The first row of the state is

left unchanged. Then, the row n is shifted left circularly by

n− 1 bytes. For decryption, the bytes are shifted circularly

the same number of positions but to the right.

C. The MixColumns step

In this step, each column of the 4×4 byte state is treated

as a polynomial over GF (28). It is then multiplied with the

polynomial c(x) = 3x3+x2+x+2 modulo x4+1. Usually,

the MixColumns step is merged with the ShiftRows step, as

these two steps provide diffusion of the cipher. This step is

not present in the final round.

D. The AddRoundKey step

In this step, each byte of the state is simply XORed

(exclusive OR operation) with the corresponding byte of the

current round subkey.

E. The key schedule operation

Executed in parallel to the main AES operation, this

operation derives the main key into Nr round subkeys. This

operation creates a 176 byte array called the expanded key.

Several operations are performed to generate 4-byte words

Wi where i > Nk and Nk is the number of 4-byte words in

the cipher key, Nk = 4 for a 128-bit key:

• Wi = Ki for 0 ≤ i < Nk, where Ki is the ith 4-byte

word from the cipher key,

• Wi = Wi−1⊕Wi−Nk
for i > Nk and i is not a multiple

of Nk,

• If i is a multiple of Nk, the word Wi−1 is first rotated

circularly 8 bits to the left. Then it is transformed using

the S-Box. Finally the leftmost byte of the result is

XORed with a round-dependent constant Rcon = 2r−1

in GF (28), where r is the current round number.

Once all the expanded key array is filled, it is divided into

Nr +1 128-bit round subkeys. In the 128-bit key version of

AES, 11 round subkeys are generated in this way, the first

round subkey being the cipher key.

To improve the security of this algorithm, a technology

called MIP was used.

III. THE MATCH-IN-PLACE TECHNOLOGY

A. Description of MIP technology

MIP [8] is a device developed by Crocus Technology,

based on its Magnetic Logic Unit (MLU) [9], to authenticate

users without exposing any confidential data to external

attackers. The MLU technology is an evolution of the

Thermally Assisted Switching MRAM described in [10]. In

a TAS-MRAM, each Magnetic Tunnel Junction (MTJ) is

composed of a storage layer and a fixed reference layer. In

the MLU, the fixed reference layer of the MTJs is replaced

with a ferromagnetic free layer, referred as the sense layer.

By doing so, this self-reference MRAM has the particularity

to perform logic comparisons. Considering the storage layer

and the sense layer as two different inputs, it can perform a

XOR operation by measuring the resistance of the memory

cells. By connecting the self-referenced MRAM cells to

form a NAND chain, it is possible to create a MIP engine,

comparing the data stored into the memory, which is a

sensitive data (passwords for example) and the data given as

input. A mismatch between the two data results in a higher

resistance than a match. Fig. 2 shows an example of a MIP

engine composed of four MLU cells connected as a NAND

chain. In this example, the stored data is ”1010” and the

input data is ”1100”. As the stored data and the input data

Figure 2. MIP composed of 4 chained MLU cells

357

are different, the total resistance of the chain will be higher

than the minimum resistance. If the input data match the

stored data, all the cells would have a low resistance, then

the total resistance of the chain would be minimal.

For AES implementation, instead of matching, two modified

applications of the MIP were used. First it was used to

perform a XOR operation between two data words. MIP

XOR blocks contain 32 MTJs. Each MTJ performs a match-

ing operation on one bit, and is not connected to the other

MTJs of the block. In the end of the matching operation, 32

resistance values are obtained. Each value is then interpreted

as bits, ’0’ for a low resistance (if the stored data and the

input data are identical), ’1’ for a high resistance (if the

stored data and the input data are different). So, a 32-bit

value is obtained, result of the XOR operation between the

stored data word and the input data word. Four of these

blocks are used for the AddRoundKey operation (which

performs a XOR operation between a 128-bit key and a 128-

bit data). Four other blocks are used for the MixColumns

operation, and another one for the key schedule operation.

The MIP can also be used as a fast associative memory

like a Content Addressable Memory (CAM) used in routers

and search engines for example. By placing many MIP

engines in parallel, it makes the search faster. The input

data is compared to all the entries of the CAM, handled by

MIP. All the comparisons are made in parallel. When this is

done, only one engine will return a perfect match notified

by the chain which has the minimum resistance. With this

the incoming packet can be directly routed to the recipient

address. Fig.3 describes an example of CAM using MIP

technology. In this example, there are 4 MIP engines. The

input pattern ”1010” is then compared to the memory. For

AES implementation, two CAM blocks are used :

• The SBox block : It contains 2048 MTJs divided into

256 engines, each one composed of 8 MTJs. This block

is used for the SubBytes step and the key schedule

operation. The input of this block is the current byte

processed from the state.

• The Rcon block : It is used to determine the round

constant used in the key schedule. It contains 10 MIP

engines. Each engine is a NAND chain of 8 MTJs. In

each engine is stored a possible round number (from 1

to 10). The input of each of these MIP engines is the

current round number.

This technology has two advantages. First, the comparison

operation is performed into the memory. The secret data

stored into the memory never leaves it during this operation.

The second advantage is that it provides a protection against

side-channel attacks.

B. Side channel attack on MIP technology

In order to demonstrate the security features provided

by MIP, a Differential Power Analysis (DPA) have been

simulated based on the MIP netlists. This attack focused

Figure 3. Example of a CAM using MIP

on the matching of two 32-bit words using MIP. The MIP

matching operation was simulated using Spectre in order to

obtain simulated power traces. Using these traces, a DPA

attack was conducted in order to try to retrieve the stored

key. To perform this attack, a random 8-bit key has been

stored in MIP memory. This key is unknown to the attacker.

The size of the key (8-bits) has been chosen because it

fits the size of the matching used for the S-Boxes. Then

all the possibilities for 8-bits were proposed as input of

the MIP. Only one of these inputs results as a match. The

attack has then been realized using these 256 power traces.

But, whatever the input of the MIP operation was, the

power traces were all similar, which led the attack to fail.

Thus, if a DPA attack fails on a 32-bit matching operation

performed by MIP, the proposed AES implementation can

be also considered secure against these attacks as it uses the

same principles. The MIP technology is still in development.

Differential Fault Analysis (DFA) attacks have not been

tested on MIP as no functional test chips are available yet.

IV. INTEGRATING MIP IN AES IMPLEMENTATION

In order to make use of the protection offered by MIP

against side channel attacks, AES algorithm was imple-

mented using this technology. The proposed implementation

was made using the Verilog Hardware Description Lan-

guage. At every step of the algorithm, the integration of

MIP provides additional security features, preventing an

attacker from reading the cipher key or the internal state.

Another advantage is that these operations can be executed

directly into the MIP memory. In other words, the cipher

key and data (plaintext or ciphertext) are stored into the

memory, which triggers AES operation. Once it is finished,

the memory outputs the result of the operation.

A. The AddRoundKey step : A secure Xor operation

The AddRoundKey step is just a Xor between two 128

bits values (the key and the data). To do this, 4 blocks of MIP

XOR are used. Each block is composed of 32 bit cells. Each

cell is not connected to the others and acts as a XOR gate.

The round subkey is stored into the MIP memory as soon as

it is generated, so it is kept safe during the entire operation.

Then, the data is given to the blocks. For each block, the 32

358

Figure 4. Example of 4-bit XOR operation managed by MIP

bits will check separately if the given data bit match with

the corresponding key bit. These 32 operations are made in

parallel. At the end of this operation, 32 resistance values

were obtained, each value is then interpreted as bits, ’0’ for

a low resistance (if the key and the data are identical), ’1’ for

a high resistance (if the key and the data are different). So

a 32-bit match value per block is obtained, each bit of this

value corresponding to each 1-bit MIP operation. This match

value gives the result of a Xor operation between the key

and the data. Fig. 4 shows the XOR operation between two

4-bit data. The stored data (’1001’) is Xored with an input

data (’1100’). All the 1-bit matching operation are processed

in parallel and in the end, the result of the XOR operation

is obtained (’0101’).

B. The SubBytes step : The S-Box

In classical AES implementations, there are two ways to

calculate the output of the S-Box based on the inputs :

• Computation on-the-fly of the output value

• Use of a look-up table

For the proposed implementation, the look-up table approach

is chosen. Here the MIP SBox block is used. At the

beginning of AES operation, all the MIP NAND chains

are programmed with a single value, corresponding to the

different possible input values for the S-Box (from 0x01
to 0xFF). Then when the SubBytes operation starts, all

the NAND chains receive the same input byte which is the

input of the S-Box. Thus only one MIP engine will result

as a match between the the input of the S-Box and their

corresponding unique data. According to the number of the

matching instance and if it is an encryption of a decryption

process (due to the differences between the encryption and

decryption look-up tables), the output of the S-Box will be

different. In the proposed implementation the ShiftRows step

is merged with the SubBytes step. Indeed all the output

values of the S-Boxes, are written at their new location in

the state, according to the ShiftRows step.

C. The MixColumns step : Make Multiplications with Xors

This step consists in a polynomial multiplication of each

column of the internal state. But it can also be expressed

Figure 5. Multiplication by two using only XOR operations.

as the product between a fixed matrix and a column of the

state. The positions of the bytes into the state are shifted

according to the ShiftRows step described earlier. Hence,

the new positions of the bytes in the state are taken into

account to determine the inputs of the MixColumns step.

Here is described the matrix multiplication used for the

MixColumns step for the encryption process. A,B,C,D are

the input bytes of the current column of the state and Y1,

Y2, Y3, Y4 are the output bytes, constituting the new state

column.⎡
⎢⎢⎣

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

A
B
C
D

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Y1 = 2A⊕ 3B ⊕ C ⊕D
Y2 = A⊕ 2B ⊕ 3C ⊕D
Y3 = A⊕B ⊕ 2C ⊕ 3D
Y4 = 3A⊕B ⊕ C ⊕ 2D

⎤
⎥⎥⎦

Here, the XOR operations are made with the MIP by

using the same method than in the AddRoundKey step, in

order to preserve the inputs corresponding to the state from

attackers. To do the multiplication by 2, a technique that

only involves XORs is used as described in Fig. 5. In this

figure the input (X) and the output (X ′) are bytes with

X = X7X6X5X4X3X2X1X0 and X ′ = 2 ∗ X . As all

the operations are made in GF (28), the multiplication by 3

is just a multiplication by two combined with a XOR.

For the proposed implementation, four 32-bit XOR blocks

of MIP are used. Each of these blocks performs the Mix-

Columns operation on a different column of the state and

are executed in parallel.

There are two interests of doing that. The first one is the

security of the state, which will be protected against side-

channel attacks during this step. The second interest is that

this entire step can be implemented into a memory, which

means that one just need to give the state data to the memory

and it outputs the new state.

D. The key schedule operation: Different uses of MIP

For the key schedule operation, many different MIP

blocks are used:

• The main S-Box is reused as for the SubBytes step

described earlier.

• Another S-Box on the same principle than the SubBytes

S-Box is used. This one is called the Rcon S-Box and is

used to determine the round constants. This S-Box takes

359

as input the number of the current round, and outputs

the current round constant. There are 10 entries for this

S-Box, so 10 blocks of 8 chained-bits of MIP are used

to handle the inputs.

• A MIP block is used for the bitwise XOR operations

by having 32 bit cells, each one unconnected with the

others, as described earlier.

In this implementation, the key schedule operation executes

in parallel of the main AES operation. At each round of

AES operation, the next round subkey is generated.

Integrating MIP into this operation provides an additional

security feature, by preventing an attacker from extracting

a key during this operation. Another advantage of using

MIP for logical operations is that the entire key schedule

operation can be made by the MIP memory. To do this one

just need to store into the memory the current round subkey

and the round number. Once the operation is finished, it out-

puts the new round subkey at a predefined address into the

memory. This address can be reused in the AddRoundKey

step, the round subkey being stored into a MIP memory,

allowing to perform the XOR with the data without the

subkey being read by the processor and extracted from the

memory.

V. RESULTS AND FUTURE WORKS

A. Simulation Results
This architecture has been implemented in Verilog. A

Known Answer Test (KAT) vector has been used in order

to verify that the proposed implementation gives the same

result than a classical AES implementation.

Compared to classical Verilog AES implementations, the

described method protects the cipher key and the S-Box from

being collected by an attacker, due to the protection provided

by MIP. Besides, the main operations of this implementation

only uses the characteristics of the Magnetic Logic Unit

technology used by the MIP and can be entirely executed

into the memory, the processor is just interfacing with the

MIP memory without executing these operations. In return,

there is a lack of performances compared to other AES

implementations.
Table I describes the area and the delay taken by the

different steps of the proposed implementation. The delay

is the execution time for one round of the algorithm. Due

to the fact that all these operations are executed directly

into the MIP memory, the area expressed in this table is an

estimation based on the number of MTJs used for each step.
The proposed implementation only takes into account the

AES-128 variant.In the cases of AES-192 and AES-256

variants, the needed area would be increased due to the

increase on the key size, although performances decrease

due to the fact that the key schedule has more steps than in

the AES-128. However, the other steps of the algorithm are

unchanged, the only difference would be in the key schedule

part.

Table I
ESTIMATIONS ON AREA AND DELAY FOR EACH AES STEP

Step Number of MTJ Area

(μm2)

Delay per round

(ns)

AddRoundKey 128 3.7 100

SubBytes 2048 78.7 2410

MixColumns 512 14.74 780

KeySchedule 112 3.9 1200

Total 2416 101 4490

Table II
COMPARISON OF AES IMPLEMENTATIONS (*: ESTIMATIONS)

Implementation Throughput

(Mbps)

Area

(mm2)

Energy

(μW/MHz)

This paper 3.2 0.01* 261*

Verbauwhede et al. [11] 1600 3.96 432

Hwang et al. [12] 3840 2.45 4000

Hodjat et al. [13] 3840 0.79 1080

Sumanth et al. [14] 32820 0.74 534.30

Table II compares the proposed implementation with

other AES implementations on throughput, area and energy.

The values for the area and energy consumption for the

implementation proposed in this paper are estimated values.

The area presented in this table is the total area estimation of

the proposed implementation. As shown in Table II, the pro-

posed implementation suffers from a lack of performances

compared to other implementations, but compensates it by

having a very low area. The energy consumption estimation

is realized using the technique described in [15]. This

technique calculates the energy spent by a system during

the execution of an algorithm using the following formula

: E = I ∗ VDD ∗ N ∗ τ , where E is the energy consumed

by the implementation in Joules, I is the average current

consumption per clock cycle, VDD is the operating voltage

of the MIP, N is the number of clock cycles taken for

the execution of this algorithm and τ is the clock period.

According to this method, the proposed implementation

spends 1.440 μJ with a clock frequency at 40 MHz. When

E is obtained, it is divided by the execution time in order

to get the power consumption in W. In order to have a more

accurate comparison with the other implementations, the

power consumption in Table II is expressed in μW/MHz.

B. Future works

One of the possible future works will be making a

compromise between the loss of performances and the gain

of security. To do this, the use of MIP will be restrained to

only sensitive operations, the AddRoundKey and the S-Box.

The other AES operations will be executed by the processor.

The last step will be to test this implementation on actual

MIP chips.

360

VI. CONCLUSION

In this paper a new technology called Match-In-Place

(MIP), which will be used in secure functions, is introduced.

This technology, which is an evolution of MRAM memories,

allows secure matching operations such as password com-

parison, to be directly executed into a secure memory. This

way, sensitive data are never exposed to an external attacker.

A simulated DPA attack has been performed on MIP and

failed, proving that MIP is secure. But this assumption was

only observed on simulated power traces and is still to be

proven on actual MIP chips, which are not available yet.

MIP can also be used to secure look-up tables searching

operations and to execute a secure XOR operation. Here,

this technology has been integrated into a well-known and

very used cryptographic algorithm, AES. This algorithm

was implemented in Verilog and compared to a classical

implementation. The described method has the advantage

to perform the operations directly into the memory. Also

once the secret key is stored into the memory, it is locked

up and never leaves it, preserving it from eavesdropping.

This method is also low power and low area, based on

estimations. But the main drawback of this method is that it

suffers from a lack of performances, compared to classical

Verilog implementations of AES.

This work is not finished yet, and many improvements can

be done on this implementation. Then it is possible to reduce

the use of MIP to critical functions in order to make a

compromise between the performance loss and the security.

Critical functions would be the AddRoundKey step, because

the key is directly used and combined to the message, and

the main S-Box, which introduces the confusion in the

algorithm. Finally, when actual MIP chips are functional,

tests must be made in order to validate the results of the

simulated DPA attack.

REFERENCES

[1] J. Daemen and V. Rijmen, “Aes proposal: Rijndael,” AES
submission, 1999.

[2] M.-L. Akkar and C. Giraud, “An implementation of DES
and AES, secure against some attacks,” in Cryptographic
Hardware and Embedded Systems CHES 2001, ser. Lecture
Notes in Computer Science, vol. 2162. Springer Berlin /
Heidelberg, 2001, pp. 309–318.

[3] R. K., K. W., P. M., and Y. K., “Fault-based side-channel
cryptanalysis tolerant rijndael symmetric block cipher archi-
tecture,” in 16th IEEE International Symposium on Defect
and Fault-Tolerance in VLSI Systems (DFT 2001), 2001, pp.
427–435.

[4] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, and V. Piuri,
“Error analysis and detection procedures for a hardware
implementation of the advanced encryption standard,” IEEE
Transactions on Computers, vol. 52, no. 4, pp. 492–505, April
2003.

[5] D. Canright, “A very compact s-box for aes,” in Crypto-
graphic Hardware and Embedded Systems CHES 2005,
ser. Lecture Notes in Computer Science. Springer Berlin
Heidelberg, 2005, vol. 3659, pp. 441–455.

[6] X. Zhang and K. Parhi, “On the optimum constructions of
composite field for the aes algorithm,” Circuits and Systems
II: Express Briefs, IEEE Transactions on, vol. 53, no. 10, pp.
1153–1157, Oct 2006.

[7] Y. Nogami, K. Nekado, T. Toyota, N. Hongo, and
Y. Morikawa, “Mixed bases for efficient inversion in f((22)2)2

and conversion matrices of subbytes of aes,” IEICE Transac-
tions, vol. 94-A, no. 6, pp. 1318–1327, 2011.

[8] B. Cambou, “Match-in-placeTM, a novel way to perform
secure and fast user authentication,” White Paper, 2012.

[9] Q. Stainer, L. Lombard, K. Mackay, R. C. Sous, I. L.
Prejbeanu, and B. Dieny, “Mram with soft reference layer:
In-stack combination of memory and logic functions,” IEEE
International Memory Workshop (IMW), pp. 84–87, 2013.

[10] I. L. Prejbeanu, M. Kerekes, R. C. Sousa, H. Sibuet, O. Re-
don, B. Dieny, and J. P. Nozires, “Thermally assisted mram,”
Journal of Physics: Condensed Matter, vol. 19, no. 16, p.
165218, 2007.

[11] I. Verbauwhede, P. Schaumont, and H. Kuo, “Design and
performance testing of a 2.29 gb/s rijndael processor,” IEEE
Journal of Solid-State Circuits, vol. 38, no. 3, pp. 569–572,
2003.

[12] D. Hwang, K. Tiri, A. Hodjat, B.-C. Lai, S. Yang, P. Schau-
mont, and I. Verbauwhede, “AES-based security coprocessor
IC in 0.18-μm CMOS with resistance to differential power
analysis side-channel attacks,” IEEE Journal of Solid-State
Circuits, vol. 41, no. 4, pp. 781–792, Apr 2006.

[13] A. Hodjat, D. Hwang, B. Lai, K. Tiri, and I. Verbauwhede, “A
3.84 gbits/s aes crypto coprocessor with modes of operation in
a 0.18um cmos technology,” in Proceedings of the 15th ACM
Great Lakes symposium on VLSI (GLSVLSI 2005), 2005, pp.
60–63.

[14] S. Sumanth Kumar Redy, R. Sakthivel, and P. Praneeth, “Vlsi
implementation of aes crypto processor for high throughput,”
International Journal of Advanced Engineering Sciences And
Technologies (IJAEST), vol. 6, no. 1, pp. 22–26, 2011.

[15] K. Naik and D. S. L. Wei, “Software implementation strate-
gies for power-conscious systems,” Mob. Netw. Appl., vol. 6,
no. 3, pp. 291–305, Jun. 2001.

361

