
HAL Id: lirmm-01421148
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01421148

Submitted on 21 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Performance of a Smartphone based Star Tracker
Andrey Khorev, Lionel Torres, Eric Nativel

To cite this version:
Andrey Khorev, Lionel Torres, Eric Nativel. Performance of a Smartphone based Star Tracker. iCube-
Sat: Interplanetary CubeSat, 2015, Londres, United Kingdom. �lirmm-01421148�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01421148
https://hal.archives-ouvertes.fr

 1

Performance of a Smartphone based Star Tracker

Andrey Khorev, Lionel Torres
University of Montpellier, LIRMM UMR CNRS

France

Eric Nativel
University of Montpellier, IES UMR CNRS

France

Abstract—Nowadays, CubeSat missions grow more and
more complicated. Such tasks as telecommunication, Earth
observation and astronomy attract attention of
nanosatellite developers. One of the main requirements for
the success of a complex mission is the precision and
reliability of satellite’s attitude determination and control
system. Better pointing accuracy and better stabilization
may be achieved by using a star tracker (ST) as a main
attitude sensor. Since it’s method of operation is based on
capturing images of stars, star tracker can provide a
pointing accuracy better than 1 angular minute.
In the last couple of years several laboratories and
companies performed huge work on star tracker
miniaturization, designing and delivering first prototypes
that comply with size, mass and power restrictions of 3U
CubeSats. Newly developed miniature star trackers while
preserving core functionality are noticeably different
compared to existing large-sized star trackers. The
differences might be found in their optics, image sensors,
algorithms and processing hardware.
Newly developed miniature star trackers have a set of
hardware similar to a modern smartphone. At the same
time fast improving application program interfaces (API)
of smartphone operating systems give developers today a
better control over the smartphone internals. It becomes
possible to implement a complete star tracker algorithm in
a form of a smartphone application. During the tests, even
with an expected overhead of OS stack, lost-in-space task
was solved in less than one second. That defined the choice
of a smartphone as a hardware platform for star tracker
performance study.
In this work we analyze the performance of a polestar
algorithm for autonomous attitude determination. By
changing capture parameters, such as sensitivity,
resolution etc. the flaws and bottlenecks of the algorithm
are exposed. Subsequently, algorithmic and hardware
solutions are proposed to mitigate discovered performance
losses.

Keywords—CubeSat; Star Tracker; lost-in-space; smartphone

I. INTRODUCTION
Star trackers have been around for more than 30 years.

With the evolution of image sensors, microprocessors and
algorithms their characteristics were changing, and their role
in the attitude control was changing too.

Since the very first implementations star tracker systems
were considered to be a source of the most accurate and precise
attitude data for a satellite’s ADCS [1]. But they were used
almost exclusively alongside with other sensors, such as sun
sensors, an infrared Earth sensor and gyroscopes. Not every ST
could be used autonomously, some required a priori
information about satellite’s attitude. Nowadays, it is expected
from a ST not only to be precise, but also fast, compact and
lightweight. Autonomous attitude determination in lost-in-
space mode and angular rate sensing mode have entered the list
of desired capabilities [8]. This is why such performance
aspects as initial attitude acquisition time and output rate are
extremely important for newly developed STs.

II. PLATFORM

A. Hardware
In the latest models of camera phones the imaging system is

represented by a camera module, which contains an image
sensor, optics with microactuators, and an image processor
(ISP) [5]. Tiny size of camera optics often brings various
geometrical and color distortions, so image processor plays an
important role of fixing those distortions as well as bringing the
noise level down to acceptable values [6]. In addition to that by
placing the frame scaling, re-coding and transformation
routines into the ISP, smartphone manufacturers lower the
power consumption and leave more resources of system
microcontroller available for user applications (see Fig. 1).

B. Software
For the software part a simple autonomous star

identification algorithm for lost-in-space (LIS) mode was
implemented, which is in many ways similar to a polestar
algorithm described in [2, 3]. Algorithm flow, as it was
implemented in the Android application, used for this study,
may be described by a sequence of four steps with
corresponding subroutines:

This study was performed as a part of the project “Development and
evaluation of miniature star tracker system for nanosatellite application”
financed by the Van Allen Foundation

 2

• Capture

o Capture request

o Integration

o Readout into memory

• Extract

o Threshold

o Clustering

o Centroid calculation

o Pattern extraction

• Match

o Database search

o Candidate verification

• Calculate

o Attitude estimation

o Propagation, residual calculation

III. EXPERIMENTS
In order to locate the bottleneck within the algorithm a

number of tests were carried out using a commercial off-the-
shelf smartphone Samsung GT-I9505. First test gave a rough
picture of a time distribution between algorithm steps (see
Table 1).

TABLE I. TIME DISTRIBUTION BETWEEN STEPS OF ST ALGORITHM

Measurements Capture Extract Match Calculate

Execution time, % 5% 50% 44% 1%

Spread, % ± 0.1% ± 8% ± 12% ± 0.1%

Capturing images of a real night sky using a smartphone
camera, although feasible, requires integration time close to
one second [7], so during all tests celestial sphere were
simulated on a PC and random regions were displayed on an
LCD screen. This ensured that the integration time fixed at
1/14th of a second was sufficient to detect 8÷30 spots, required

for stable algorithm operation. Delivery of pixel data into the
algorithm is performed using smartphone’s out-of-the box
hardware and software solutions. Android API (since version
21) allows allocation of buffer in system memory, and gives
applications access to this buffer for the purpose of further
processing [4]. OS camera service introduced in Lollipop and
dedicated ISP ensures that image data will be available without
any noticeable delay for any of supported image resolutions.
All that makes the influence of capture step on algorithm
execution time very small and predictable. The same may be
said about calculate step, its duration is negligible and since it
uses strictly defined sequence of mathematical operations, it
will always complete in the same finite amount of time. With
that in mind, subsequent experiments were carried out with the
main attention given to extract and match steps.

Subroutines that take the most time to complete are
thresholding and database search (see Fig.2). One way to
reduce computation time is to reduce number of pixels to
which thresholding is applied. This approach can be easily
tested by simply changing ISP’s output resolution settings (see
Fig.3). Another way to increase the performance is to limit
number of spots (possible stars) handled by the algorithm (see
Fig.4). But of course spot count will directly affect the success
rate of star identification and star tracker sky coverage so this
method should be used with caution.

A noticeable difference between implemented algorithm
and a polestar algorithm described in [2] lies in the match
candidate verification subroutine. Our approach was to simply

Fig. 1. Hardware structure of and paths of data transfer

Fig. 2. Algorithm execution time and number of detected spots

 3

filter the results based on a complex confidence value,
calculated with respect to match statistics and database
irregularities. In this case verification is reduced to simple
sorting routine of 10÷100 match candidate records. In addition
to that, as validation subroutine only handles one spot object at
a time as opposed to verification based on cross-check, voting
or sub-graph search, so verification may be considered as an
additional operation in database search subroutine and may be
executed for each spot independently. Bearing this in mind, we
can further improve the performance if we take advantage of
microcontroller’s multicore architecture and process the spots
in parallel threads, distributed over available microprocessor
cores (4 cores in our case). Ideally, since during match step
every spot object can be treated separately, algorithm should be
executed in N+1 parallel threads, where N is amount of
centroids. But even smaller amount of threads will give a good
boost in performance to the match step (see Fig.5) cutting up to
62% of execution time (up to 28% for the complete algorithm,
running on 1Mpx image with 14 spots).

IV. DISCUSSION

A. Performance improvements and related drawbacks
Tests show that both limiting amount of pixels and limiting

amount of spots may help improve execution time of a lost-in-
space algorithm. Both approaches may be combined, as they
affect different parts of the algorithm. Optimized for multi-
threaded execution this implementation can deliver up to 8-10
successive runs per second.

Needless to say, limiting resolution of image or decreasing
sensitivity will have side-effects, like worse sky coverage,
lower success rate of star identification and increased number
of false positives. So in order to balance this either the
algorithm or the star database (or both) might have to be
adapted. In the end it all depends on ADCS and its ability to
cope with noisy measurements.

B. Other influencing factors
One of the aspects that influence matching performance

that was intentionally left out of the conversation is the
database size and search algorithm. In fact, database size (in
records) will depend on magnitude cut-off value, star tracker
field of view (FOV), exposure and desired success rate. For
this study database was intentionally kept small, just enough
to produce a valid 3D Quaternion solution for the most parts
of the celestial sphere. Only stars with apparent magnitude
below 5.5 were used to create the database. That in most cases
is enough for a star tracker with effective FOV around 20˚ so
it is for a smartphone, which has a significantly larger field of
view. But if we are forced to use smaller FOV and/or we need
to identify less bright stars, database size will grow
significantly and both search and validation will require
significant optimization, which may in turn make processing
in parallel no longer possible.

C. Real star sky operation
For this study a sky simulator was used and a LCD screen

that produced star images that were much brighter than they
would appear on the night sky. That was made to avoid the
camera’s light sensitivity limitation.

Main reasons for poor light sensitivity of a smartphone
camera are small aperture size, presence of color filters and
digital noise on higher pixel gain values. Even for a ST based
on a smartphone with the most recent sensor, advanced ISPs
and the widest aperture on the market, exposure time will be
the limiting factor of performance. Still even for integration
time around 1/10th of a second and relatively safe ISO 1000
there’s good probability of capturing two-three bright stars
thanks to a wide 52˚ FOV of a smartphone camera. And
although that number of spots is clearly not enough to solve
lost-in-space task, it may be sufficient for operation in tracking
or angular rate sensor modes.

Fig. 3. Pattern extraction time for different resolutions

Fig. 4. Execution time of match step for different mumber of spots

(centroids)

Fig. 5. Execution time of match step for different number of threads

 4

V. CONCLUSIONS
In the searching for ready off-the-shelf solutions that could

be used as the star tracker development platform a study of a
typical modern smartphone (camera phone) has been
performed. Both its hardware and software capabilities
allowed successful porting of a complete star tracker
algorithm to a regular Android smartphone in a form of a user
application. After several rounds of optimization, its
performance measured in a hardware-in-the-loop laboratory
setup proved to be comparable to existing specialized star
tracker solutions. And despite of the limitations imposed by
miniature imaging system, it can be used as a reference
platform for future studies, focused both on software and
hardware aspects of star tracker design.

ACKNOWLEDGMENT
I would like to thank Laurent Dusseau and Gilles Sassatelli

for the attention they paid to my work, all the ideas and
constructive critics expressed during numerous meetings.

REFERENCES
[1] Liebe, C. C.

Pattern Recognition of Star Constellations for Spacecraft Applications
IEEE AES Magazine, 7, 6 (Jan. 1993), 31

[2] Silani E., Rovera M.
Star Identification Algorithms: Novel Approach & Comparison Study
IEEE Transactions on Aerospace and Electronic systems, 42, 4 (Oct.
2006), 1279-1282

[3] Jonas, M.
Performance Analysis of Mars Express Star Trackers
Luleå University of Technology Department of Computer Science,
Electrical and Space Engineering, Master Thesis, Jul. 2011, 68-70

[4] Android’s camera Hardware Abstraction Layer (HAL)
Internet: https://source.android.com/devices/camera/index.html, [May
20, 2015]

[5] Wu J.J.
Qualcomm Snapdragon 600-based SmartPhone
Internet: http://www.slideshare.net/jjwu6266/qualcomm-snapdragon-
600-smartphone, May 16, 2013 [May 20, 2015]

[6] Milbeaut image signal processor (ISP)
Internet:
http://www.fujitsu.com/cn/en/products/devices/semiconductor/fsp/imagi
ng/milbeaut/ [May 20, 2015]

[7] Nexus 5 astrophotography
Internet: http://imgur.com/a/BXMGu#0 Dec. 17, 2014 [May 20, 2015]

[8] J.Enright et al.
Towards star tracker only attitude estimation
24th Annual AIAA/USU Conference on Small Satellites, 2010, 3

