
HAL Id: lirmm-01444948
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01444948

Submitted on 24 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards Model Driven Design of Crypto Primitives and
Processes

Alberto Carelli, Giorgio Di Natale, Pascal Trotta, Tiziana Margaria

To cite this version:
Alberto Carelli, Giorgio Di Natale, Pascal Trotta, Tiziana Margaria. Towards Model Driven Design of
Crypto Primitives and Processes. SAM: Sensor Array and Multichannel Signal Processing, Jul 2016,
Rio de Janeiro, Brazil. pp.152-158. �lirmm-01444948�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01444948
https://hal.archives-ouvertes.fr

Towards Model Driven Design
of Crypto Primitives and Processes

Alberto CARELLI∗, Giorgio DI NATALE†, Pascal TROTTA‡, Tiziana MARGARIA‡
∗CINI Cyber Security National Lab, Rome, Italy - alberto.carelli@Consorzio-CINI.it

†LIRMM, CNRS, Montpellier, France - giorgio.dinatale@lirmm.fr
‡University of Limerick Lero - The Irish Software Research Centre, Limerick, Ireland - tiziana.margaria@lero.ie

Abstract—To be understandable and reusable at large scale,
also by non-experts in security, Crypto primitives must be
implemented in a modular way, and come with well organized
and well described processes to help understanding, foster
adoption, and ensure a proper embedding in the applications
they must protect. In this paper, we reap the benefits of the
modular hardware and software architecture of the SEcube,
and lift the issue of crypto-primitives management from the
traditional code level to a model driven approach. On small
examples, we illustrate the essential features of the approach
concerning the modelling of cryptography primitives as SIBs
and their organization in domain-specific SIB palettes. We also
sketch how to use multifaceted taxonomies to provide compact
yet expressive classifications, amounting to a semantic description
of the security domain. We address in the issue of workflows
by using models that ease the expression, analysis, control, and
formal verification of inter- and intra-model control and data
flow, though the adoption of the XMDD approach implemented in
the DIME integrated modelling environment. A brief description
of a home banking application sketches how in reality many of
these security mechanisms need to work together in a safe and
secure orchestration.

I. INTRODUCTION

Cryptographic and security systems are the basis for guar-

anteeing properties like confidentiality, privacy, authentication

and data integrity in several critical aspects of our society, like

communications, banking, commerce, government, defence,

and national security. These systems rely on the use of security

primitives that allow the implementation of such properties.

Security primitives are low-level cryptographic hardware

modules and algorithms used to guarantee security for com-

puter systems. Even though security systems are widely

distributed and used in all digital applications, their actual

implementation remains still a challenging task, since the

designer has to meet applications constrains (in terms of speed,

throughput, costs) and at the same time to cope with the hectic

market rules that do not give enough time for full validation

and testing of such products.

Veracode an application security testing company, surveyed

in 2015 the difficulties software developers declare in imple-

menting cryptographic algorithms [1]. Analyzing the code Ve-

racode customers submitted to its platform over an 18 month

period along the OWASP[2] top10 vulnerability categories,

cryptographic issues of application across all industries ranked

second behind overall code quality, with information leakage

as overall third. As shown in Fig. 1, these three categories were

Fig. 1. Top 3 vulnerability categories by industry vertical - from [1] p.11

found to be the top 3 in 5 (Financial Services, Healthcare,

Retail and Hospitality, Technology, and Others) of the 7

verticals surveyed, while in Government cryptographic issues

ranked 5th with 51% prevalence and 4th in Manufacturing

with 45% prevalence.1

Along this analysis, we see that the top 3 issues concern

code in general, cryptography mastery, and information flows.

In our SEcubeTM platform, we propose to

• reap the benefits of model driven design, and lift the

issue of application design and management mastery from

the exclusive code level to a model driven approach, as

described in [3] and applied in [4],

• provide a set of predefined, high cryptography primitives,

as described exemplarily in Section II, making them

available for use within the modelling environment as

a domain specific palette of primitives, as described in

Section III, and subsequently as a library of generated

code,

• profile these functionalities according to relevant descrip-

tion facets and make them available in a semantically ac-

cessible model driven fashion, as described in Section IV,

• address in the issue of flows by using models that ease

the expression, analysis, control, and formal verification

of inter- and intra-model control and data flow, though

the adoption of the XMDD approach [5] implemented in

the DIME integrated modelling environment [3], [6],

• support the domain-specific and (security) aspect analysis

via properties that express the guarantees needed to

enforce well behaved, secure execution. These properties,

as discussed in [4], can often be enforced at design time,

1As shown in the same report, with an overall flaw density of 352 flaws/MB
and a very high or high severity density of 54 flaws/MB, Manufacturing
appears to be the sector in most need of improvement, in comparison to
Technology (83 resp. 29 flaws/MB) and Government (62 resp. 7 flaws/MB)

152 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

on the models, this way helping to reduce the amount of

costly and slow code-level analysis or testing otherwise

unavoidable.

In the following, we concentrate on a few exemplary

security primitives (Section II), then sketch how a security

primitives palette looks like in DIME (Section III), and in

its semantic description by means of layered taxonomies

(Section IV). We then describe how model driven design

of Security Processes is made possible in DIME thanks

to its support of variability, aspect orientation, and loose

programming (Section V), and lightly analyze the interplay

of different techniques for the security of a home banking

example (Section VI).

II. SECURITY PRIMITIVES

Security primitives are low-level functions, modules, and

algorithms that allow adding security capabilities to digital

devices, protocols, and applications. In the following we

briefly describe the most important primitives: encryption

algorithms (both symmetric and asymmetric), Physically Un-

clonable Functions, and True Random Number Generators. For

a systematic introduction to applied cryptography refer to [7].

A. Encryption Algorithms

Encryption algorithms are used when is needed to preserve

the confidentiality and the privacy of data when this is stored

or transferred. Security is ensured altering the information

message to be exchanged or saved. The information to be pro-

cessed, the plaintext, passes through a series of mathematical

operations (e.g., transposition, substitutions, etc) depending on

the encryption algorithm, in order to be encrypted. The result

obtained is an encoded information, the cyphertext, where

the data is no longer clear and only authorized parties are

able to read it. During both encoding and decoding processes,

the cryptographic key is used as a parameter to specify the

transformations of the input data. Moreover, the length of key

has to be long “enough” so that exhaustive malicious attacks

become unfeasible or too costly.

Depending on the key, encryption algorithms can be classi-

fied in symmetric and asymmetric. In symmetric encryption al-

gorithms the key is common to both encryption and decryption

stage. This requirements is one of the main drawbacks. Exam-

ples of symmetric encryption algorithms are: Blowfish, DES

(Data Encryption Standard), 3DES (Triple DES), AES (Ad-

vanced Encryption Standard, also known as Rijndael), IDEA

(International Data Encryption Algorithm), RC5. Conversely,

for asymmetric cryptography (or public-key cryptography) a

pair of keys is used to encrypt/decrypt data. Every user owns

a pair of key, one public and the other one private. The

message is encrypted with the public key, but decrypted with

the private one. Public-key algorithms include RSA (Rivest

- Shamir - Adleman), DSA (Digital Signature Algorithm),

Diffie-Hellman, and ECC (Elliptic Curves Cryptography).

B. Physically Unclonable Functions

Physically Unclonable Functions (PUFs) exploit intrinsic

manufacturing variability existing during the fabrication pro-

cess of integrated circuits in order to generate a signature,

unique to each single device. PUFs are a replacement of exist-

ing solutions based on Read-Only Memories (programmed at

manufacturing time) or non-volatile One-Time Programmable

memories. These existing solutions are shown to be vulnerable

to reverse-engineering attacks and thus they cannot guarantee

high security.

The produced signature must be unique from device to de-

vice, unclonable, and, for a same device, it must be robust with

respect to ageing and environmental variations (reproducible).

The adopted underlying mechanism is a challenge-response

generator. A PUF needs an input, i.e., the challenge, to produce

an output, i.e., the response. The challenge-response pairs

(CRPs) set must be unique for a single device.

PUFs can be used either to generate secret keys used in

encryption algorithms, or to generate a set of CRPs used to

authenticate the physical device itself. As for the authentica-

tion, the PUF is first queried in order to obtain a significant

subset of CRPs to save in a secure server. Once deployed,

the PUF will be queried with that set of challenges. If the

signatures generated by the device are equal to those stored in

the server, the device is authenticated. PUFs with a significant

amount of CRPs, such that is unfeasible for an attacker to

exhaustively stimulate the PUF with all the allowed challenges,

are classified as strong PUFs. On the other side, PUFs with

small amount of CRPs are defined weak. Furthermore, some

PUFs are designed to retrieve only one response, as a single

signature. Typically they are adopted for key generation and

storing.

One of the most investigated solutions uses SRAMs, since

they provide high security (i.e., high inter-chip variation)

and high stability (i.e., low intra-chip variation). Commercial

devices and state-of-the-art studies exist for current SRAM

CMOS technologies.

In the context of our work, we want to provide SEcube

users with an easy way to access the PUF, without the need of

understanding the underlying electrical and intrinsic physical

mechanisms exploited for the PUF to work. A weak PUF will

be seen as a constant from the programmer, whose value will

be always the same for a same device, and always different

for different devices. On the other side, a strong PUF will be

seen as an array of weak PUF, one for each challenge. The

parameters of the PUF will be the size of the generate response

and the number of possible challenges.

C. True Random Number Generators

True Random Number Generators (TRNGs) are used to

generate random numbers from a physical process, rather

than a fixed algorithm of a predictable computer program.

They are implemented by taking advantage from a physical

process, like thermal noise or any other quantum phenomena

and are expected to generate random bits with very high

entropy and zero correlation. An on-chip TRNG design should

Int'l Conf. Security and Management | SAM'16 | 153

ISBN: 1-60132-445-6, CSREA Press ©

occupy small area, give high bit rate, and have low power

consumption, while assuring un-biased bit streams with high

entropy per bit and low (no) correlation among them. In our

work, a TRNG will be seen as a function generating a random

number each time it is called. The parameters of the TRNG

will be the size of the generate number and the maximum

obtainable throughput.

III. SECURITY PRIMITIVES PALETTE IN DIME

Security primitives like those described in the previous

section could be employed in different domains of interest

at many levels of abstraction.

Due to the large quantity of primitives available, an efficient

organization is required in order to easily locate and use them

in the most appropriate way. As over time such collections

grow large and more diverse, their organization must be

easily understandable to different stakeholders: those how

use them, manage them, and maintain them. Also here, the

coarse granular model driven approach adopted in the DIME []

integrated modeling environment helps maintain the essential

information well represented at the surface, while hiding the

internal organization and more detailed traits of its description

and implementation, that can be accessed at need on demand.

At the level of individual primitives, every security primitive

becomes an atomic domain specific SIB (Service Independent
Building Block) of the Security domain. The SIBs for a

given domain offer what the domain experts consider to be n

appropriate and useful basic service, able to satisfy a specific

function.

As briefly introduced in [8] and illustrated in [3], DIME

has a number of model types and views that collectively form

a multifaceted yet coherent description of the system under

design. The DIME Diagram Editor provides the canvas to draw

the various graphical models, and additionally it provides also

the palettes with basic model components that are in use for the

of the model currently open and under design. These palettes

can be

• specific to the subject matter domain relevant for the
specific case study, like diabetic outpatient treatment as

in [9], bioinformatics as in [10], [11], geo-information

systems like in [12], but also home banking operations

as in the case study of Sect.VI, or computer vision and

robotics as in [13], but also

• other cross-sectoral palettes of functionalities needed,

e.g., for security or communication, that are themselves

domains, but find their use largely in combination with

and embedded within (any) application that, like the

above mentioned ones, would be primarily classified in

another domain.

Each SIB can be dragged on to the canvas and linked

with others in order to “draw” the workflow implementing a

larger service or process. Therefore, for each SIB, the essential

information at the model level concerns its correct use and

embedding in (potentially any) context. At a minimum, as for

APIs and Services in a service-oriented paradigm, this spans

their correct embedding inside

Fig. 2. SIB AES-256 in DIME: control flow and data flow

• Data models, that cover the design of domain models

based on common concepts like classes, attributes, and

uni- or bi-directional relations between elements, and

• Process models, whose types in DIME span the core

business logic, data retrieval (search queries) as well

as dynamic access control (security guards, particularly

interesting for the SEcubeTM platform).

Considering for example the SIB implementing the encryp-

tion function of AES shown in Figure 2, we see that

• its Icon denotes that it is itself a hierarchic model.

Accordingly, one finds it listed in the DIME Model

viewer, one could open the corresponding model and

inspect the Service Logic Graph of its logical internal

flow,

• its API expects as inputs a Key of type Text and

DataIn, input data of type Text as well, and its outputs

are an Output and an ErrorMessage, both of type

Text.

In terms of a normal API description, as found in Architectural

DSLs, in WSDL description of services, in the SCA SOA

standard, and in the widely practiced component based design

in software engineering, this would be all the information

available on this component. It is sufficient from an architec-

tural point of view to describe its execution-independent I/O

potential, i.e. its static ”pluggability”, but it does not describe

its behaviour, essential to use it properly.

In DIME, however, we model also the contro flow:

• the control flow foresees two outgoing branches: if

no issue arose upon execution, the Output data is

produced and the execution continues with the SIB that

is connected to the outgoing branch labelled Ok. If

some error occurred, an ErrorMessage is prepared and

sent to the (exception handling) SIB connected with the

Error branch.

• all these labels are viewed by the checking algorithms,

that check both completeness (e.g, no dangling branches

in a Service Logic Graph), (type) correctness when com-

posing SIBs, and the correctness of the logical flow.

A large set of the properties expressed in Sect. 4 of [4] in fact

154 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

Fig. 3. Excerpt of the Security SIB Services in DIME

concerns morphologic and control flow matters, and needs the

information contained in these labels.

IV. SEMANTIC DESCRIPTION OF THE SECURITY DSL

The AES algorithm belongs to the Cryptography subdo-

main of the Security domain and it is a Block Cypher.

In DIME, a user can find it under these same headers browsing

the directory path as shown in Figure 3. To find it easily, one

needs either a consolidated knowledge of security, or a search

mechanism. However, we see that AES_256 appears twice:

once as a hardware and once as software implementation. All

the security primitives seen in the previous section, and all the

SEcube and the libraries relative to application domains, can

be organized in taxonomies, i.e., concept based classifications

with domain specific categories, whereby categories lower in

the taxonomy are specializations of the higher ones (formally

this is an is a relation). The SIBs are leaves of such a

taxonomy. The taxonomies we use are multifaceted: a tree

might not be flexible enough, since some SIBs might belong

simultaneously to multiple categories on different branches. In

our an example, the encryption primitive for AES_256 might

be available in both hardware and software implementations,

thus belonging to both HW_Impl and SW_Impl categories.

While specialists can leverage their knowledge of the do-

main and its terminology to find what they are looking for,

casual user are easily lost. For them, not knowing the domain

vocabulary, it is important to support a declarative, query-like

approach. Given a taxonomy, these users can navigate through

the linked concepts, and query this structure with questions

like

Which AES implementations are not Hardware based?

Referring to the strongly simplified taxonomy in Figure 4,

this query translates in a logical expression

256− bit ∧ ¬Hardware

that return the sets of SIBs that satisfy that property.

For our applications in the DIME based models, a suitably

expressive classification language is achieved through tax-

onomies that are DAGs (directed acyclic graphs). A taxonomy

is a special case of an ontology, more precisely a tree, like in

the phylogenetic trees of species in biology, or if multifaceted,

like in our case, a DAG. Fig.4 illustrates small fragments of

the Security and Implementation facets.

More generally, a domain ontology provides a shared vocab-

ulary, which can be used to model a particular domain, i.e., the

type of objects and/or concepts that exist, and their properties

and relations. The definitions of the representational primitives

include information about their meaning and constraints on

their logically consistent application.

The creation of ontologies is a large collective effort:

ontologies are a precious good that codifies the knowledge

and the language of a community of practice. The knowledge

expresses there is typically layered: upper ontologies define

general terms of the domain. In our simplified Fig. 4, the top

level terms are those likely to belong to an upper ontology.

The bulk of the general domain specific knowledge is defined

in middle ontologies, in the hands of domain experts in the

particular field of interest, who define its stable vocabulary.

Although formally defined ontologies and automatic reasoning

are still not widely adopted, a body of de-facto classifica-

tions, mostly in tree or matrix form has crystallized in most

communities. For example, Fig. 5 reproduces an informal

classification tree for System properties that distinguishes

among Functional and Non-functional ones, listing some at

the bottom. We see here one of the weaknesses of informally

expressed domain knowledge: where exactly is each of the

4 lists connected to? some have titles (seeming like a lower

ontology connection, eg, the ”-ilities” header), some not, and

certainly this depiction is not machine readable, thus cannot

be queried.

While upper ontologies should in the long term change

rarely, middle and lower ontologies are frequently updated

by concept and relation refinement. In our case, the mid-

dle ontology includes concepts like Block Cypher and

Stream Cypher, that are likely ignored outside the security

community. Lower ontologies are closer to the instances, that

evolve rapidly and are more dynamic, following the evolution

of the technology, platforms, and needs.

Verification and synthesis methods like those described

in the next Section depend on the knowledge of properties

of the things they deal with, thus they need to refer to

machine readable descriptions of such things, codifications of

the domain they belong to in terms of concepts and relations

among concepts and with the things, in order to navigate and

query these concept/relation networks.

Int'l Conf. Security and Management | SAM'16 | 155

ISBN: 1-60132-445-6, CSREA Press ©

Fig. 4. Fragment of a simplified taxonomy in the security domain

Fig. 5. Taxonomy of System Properties, from [14]

V. TOWARDS MODEL DRIVEN DESIGN OF SECURITY

PROCESSES IN DIME

As described in Section II, encryption algorithms can be

classified as symmetrical and asymmetrical according to the

encryption key nature. There are several algorithms created

on the base of mathematical properties (e.g. big numbers

multiplication, exponentiation, etc.) and entropy generation

techniques (e.g. mix column, permutation tables, etc.). In spite

of these significant internal differences, it is possible to define

a common execution process and an abstract interface for all

the algorithms in the same class.

For example, symmetrical algorithms can be managed

through the same programming interface, summarized with

the following functions: Initialize, SetIV (meaning Set

Initial Vector), Update, Finalize.

• The Initialize function specifies the algorithm di-

rection (e.g. encryption mode, decryption mode), the

feedback mode (e.g. ECB, CBC, CFB, etc.) and starts

the key expansion procedure.

• The SetIV function is only used in a feedback mode and

it sets the initial vector. In principle the SetIV function

may be included in the Initialize phase. Nevertheless,

since the initial vector could be changed at any time and

the key expansion procedure (which is usually time con-

suming) is not required, the SetIV functions can be iso-

lated for a more effective usage, and the Initialize
function becomes itself a process, that internally uses

SetIV (cf the Usex discussion in [8]).

• The Update function just processes a data buffer (n

blocks in case of block-cipher algorithms or n-bytes

in case of stream-cipher algorithms) according to the

algorithm configuration (direction, feedback mode, etc.).

• Last, the Finalize function frees the internal imple-

mentation structures, especially in implementations able

to manage multiple concurrent sessions.

This is a case of set up and usage process that is parameter-
ized in the concrete algorithm i.e. independent of which one

among the set of symmetrical algorithms currently available

is chosen. This is interesting, in that it allows to express in

our platform the shape of this interaction independently of the

instance of behaviour (i.e. which concrete run is executed) and

of architecture (i.e. which concrete components are plugged

in). In terms of the philosophy explained in [15], [16], this is

a case of horizontal and vertical looseness.

Vertically, we employ hierarchical modeling as an aspect-

oriented mechanism for specifying variability. In this case,

we will use placeholder SIBs at all the variation points,

that specify the characterization of the suitable instances in

156 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

terms of the currently valid taxonomy concepts. This way,

any SIB (elementary or not) that satisfies the properties of the

variation point is an eligible instantiation, and thus a correct

variant. This needs to be complemented by constraint-guarded
variability modeling: Model checking needs to be applied

in order to establish the global consistency of the product

variants, which are typically built by manual specification of

variations points. In this case, even if any of the symmetrical

algorithms is eligible, once we have instantiated our choice

concrete algorithm, it needs to remain the same along the

entire protocol. This ”sameness” can be expressed as an

additional constraint and checked efficiently.

Horizontally, this process is actually spread at several lo-

cations inside the larger process of the application, which

is the context (or host) of the embedded security process.

Therefore, its description and modelling in DIME is de facto

a template of the shape, whereby most of the control flow

will not be contiguous, but be interrupted by intermittent

portions of the application process. For example, it is to be

expected that the application will have a prologue before

reaching the Initialize SIB, then there will be one or

more occurrences of the Update SIB, either directly after

Initialize or intercalated in the application workflow, and

that even the Finalize SIB may not be the last SIB executed

by the application. Here, the loose programming paradigm

of [] can help. Equivalent to declarative properties, these

templates can be described in terms of ”must-”successors that

are in all instances the concrete next SIBs, and ”eventually”

successors, that can occur along any given path after a number

of other SIBs. For this kind of templates it is possible to do

manual refinement followed by checks, but also to resort to

constraint-driven variability modeling using (LTL) synthesis

technology [17], [18], [16], to fully automatically generate

workflows that satisfy all given shape constraints.

VI. CASE STUDY: HOME BANKING

Nowadays, home banking is one of the most widely used

web-based secure services. Several security mechanisms pro-

tect both the customer and the bank during the various

processes. Although mechanisms and strategies may vary

according to the banking institutions, the security primitives

provided by the SEcube platform and their correspondent

modelling can be combined to cover any occurring security

scenario concerning the bank, the user, and the operations to

be carried on with the bank accounts.

The right Bank. For example, when the customers initiate

a web connection to the bank website to start a home banking

session, the first security procedure is implemented through

the HTTPS protocol: it aims to authenticate the bank website

and create an encrypted communication channel.

This process is usually implemented by digital certificates:

the bank website exposes its identity and public key through

a certificate delivered and signed by a certification authority

recognized by the customer web browser. This process guar-

antees that the user is not connected to a fake bank web site.

In terms of security primitives, the certificates management

usually requires algorithms like RSA and DSA, which are fully

supported and modeled in the SEcube platform.

Once the web bank authentication is successfully performed,

a secure HTTPS channel is established using symmetrical

encryption algorithms, such as AES256, and the user must

authenticate itself.

The right User. There are many ways for the users to

be authenticated. However, all the methodologies provided by

the banks are based on a multi-factor authentication process,

which requires more than one factor (e.g. username, password,

one-time password, token authentication, etc.) to prove the

user’s identity and authenticity. Again, in this case the low

level security primitives provided by our platform can be

combined to implement the higher level mechanisms. For

example, the one-time password can be implemented as an

encryption algorithm evolution started from a basic key and

plaintext (also called seed) which are in common between the

user token and the bank server.

Once both the parties are authenticated, there are several

ways to create symmetrical session keys to protect the com-

munication channel. In most of the cases the symmetrical keys

are derived by the random challenges used in the mutual-

authentication process. Sometimes the session keys are created

and exchanged using specific asymmetrical algorithms like

DH (Diffie Hellman). A very few times, the session keys

are generated from a pre-shared master key. In any case,

all the techniques described above (and many others) can

be implemented by a combination of the security primitives

provided by the platform.

The right Operation. After the mutual authentication is

performed and the secure channel is established, the secure

service is in place and the sensitive information can be

encrypted and signed. In order to prevent reply attacks, the

communication protocols usually provide counters which are

automatically incremented at any packet transmission.

According to the banking policies, the signature process can

be performed at any transmitted packet or just for specific

operations, such as money transactions, authorizations, etc.

In any case the algorithms used for signature belong to the

asymmetrical class: RSA, DSA, Elliptic Curves, etc.

More security behind the scenes. Sometimes, within

the same working session, the cryptographic keys can be

renewed in a transparent way (without any action on the user

side). In any case the security primitives are still the same

independently of the mechanisms and strategies implemented

by the specific home banking services.

Wrapping up properly. Finally, when the working session

is terminated, the secure channel is closed, the session keys

are deleted and all the encrypted/signed packets used in the

previous session are invalidated against possible reply attacks

attempts.

VII. CONCLUSION

In this paper we have shown how the consequently modular

hardware and software architecture of the SEcube platform

Int'l Conf. Security and Management | SAM'16 | 157

ISBN: 1-60132-445-6, CSREA Press ©

paired with the DIME integrated modelling environment and

semantic domain description techniques can render security

more easily understandable and reusable at large scale, also by

non-experts in security, With an adequate formal representa-

tion of the sematic domain and its properties and relations, and

with better support for property expression and enforcement,

we are confident that the SEcube environment as a whole

can significantly contribute to a wider adoption and higher

quality implementation of security also in vertical domains

where so far it is still difficult to master. Referring again to

the Veracrypt report [1], their reporting that the prevalence

of Cryptographic issues ranged from 80% of the uploaded

applications analyzed provenient from the Healthcare sector,

to 63% in Retail and Hospitality 62% in Technology, 60%

in the Financial Sector, 51% in Government, down to 45%

in Manufacturing, is discomforting. Healthcare and Financial

Sector, as highly regulated industries (like Transportation, that

was not surveyed as a category) are mandated to achieve

high rates of security. One of the observations of the report

concerns the programming language of the analyzed over

200.000 projects. The vast majority of the application was

written in .NET or Java, and the choice maes a difference.

”Where some languages and programming models completely
eliminate some security issues (for instance, buffer manage-
ment issues common in C/C++ are completely eliminated in
Java or .NET), often the choice of programming language
is influenced by factors other than security. This indicates

that there are benefits in raising the level of abstraction ant

which programmers work, providing a language discipline,

infrastructure, and tools that take care in a preventive way

that certain issued do not arise. Moving to models instead of

code for secure application design can be the next generation

of abstraction that helps to scale pervasively.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation

Ireland grant 13/RC/2094 and co-funded under the European

Regional Development Fund through the Southern & Eastern

Regional Operational Programme to Lero - the Irish Software

Research Centre (www.lero.ie).

We also thank Antonio Varriale (Blu5 Labs) for his valuable

input to this work.

REFERENCES

[1] Chris Wysopal. State of software security - focus on application
development (2015). https://www.veracode.com/.

[2] The Open Web Application Security Project.
https://www.owasp.org/index.php/Main Page.

[3] Steve Boßelmann, Johannes Neubauer, Stefan Naujokat, and Bernhard
Steffen. Model driven design of secure high assurance systems: an
introduction to the open platform from the user perspective. In Pro-
ceedings of the International Conference on Security and Management
(SAM). The Steering Committee of The World Congress in Computer
Science, Computer Engineering and Applied Computing (WorldComp),
July 2016, in press.

[4] Giuseppe Air Farulla, Marco Indaco, Axel Legay, and Tiziana Margaria.
Model driven design of secure properties for vision-based applications:
A case study. In Proceedings of the International Conference on
Security and Management (SAM). The Steering Committee of The World
Congress in Computer Science, Computer Engineering and Applied
Computing (WorldComp), July 2016, in press.

[5] Tiziana Margaria and Bernhard Steffen. Agile IT: Thinking in User-
Centric Models. In Tiziana Margaria and Bernhard Steffen, editors,
Leveraging Applications of Formal Methods, Verification and Validation,
volume 17 of Communications in Computer and Information Science,
pages 490–502. Springer Berlin / Heidelberg, 2009.

[6] Stefan Naujokat, Michael Lybecait, Dawid Kopetzki, and Bernhard
Steffen. Cinco: A simplicity-driven approach to full generation of
domain-specific graphical modeling tools. Int. Journal on Software Tools
for Technology Transfer (STTT), Springer Verlag, (to appear), 2016.

[7] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography
Engineering: Design Principles and Practical Applications. Wiley
Publishing, 2010.

[8] Antonio Varriale, Giorgio Di Natale, Paolo Prinetto, Bernhard Steffen,
and Tiziana Margaria. SecubeTM : An open security platform: General
approach and strategies. In Proceedings of the International Confer-
ence on Security and Management (SAM). The Steering Committee of
The World Congress in Computer Science, Computer Engineering and
Applied Computing (WorldComp), July 2016, in press.

[9] Tiziana Margaria, Steve Boßelmann, and Bertold Kujath. Simple
modeling of executable role-based workflows: An application in the
healthcare domain. J. Integrated Design & Process Science, 17(3):25–
45, 2013.

[10] Anna-Lena Lamprecht and Tiziana Margaria. Scientific Workflows and
XMDD. In Process Design for Natural Scientists: An Agile Model-
Driven Approach, volume 500 of CCIS. Springer Berlin Heidelberg,
2014.

[11] Anna-Lena Lamprecht, Tiziana Margaria, and Bernhard Steffen. Seven
variations of an alignment workflow - an illustration of agile process
design and management in bio-jeti. In Bioinformatics Research and
Applications, Fourth International Symposium, ISBRA 2008, Atlanta,
GA, USA, May 6-9, 2008. Proceedings, pages 445–456, 2008.

[12] Samih Al-Areqi, Steffen Kriewald, Anna-Lena Lamprecht, Dominik
Reusser, Markus Wrobel, and Tiziana Margaria. Towards a flexible
assessment of climate impacts: The example of agile workflows for the
ci: grasp platform. In Leveraging Applications of Formal Methods,
Verification and Validation. Specialized Techniques and Applications
- 6th International Symposium, ISoLA 2014, Imperial, Corfu, Greece,
October 8-11, 2014, Proceedings, Part II, pages 420–435, 2014.

[13] Giorgio Di Natale, Alberto Carelli, Pascal Trotta, and Tiziana Margaria.
Model driven design of crypto primitives and processes. In Proceedings
of the International Conference on Security and Management (SAM).
The Steering Committee of The World Congress in Computer Science,
Computer Engineering and Applied Computing (WorldComp), July
2016, in press.

[14] Nadereh Hatami Mazinani. Multi-level analysis of non-functional
properties. PhD Thesis, Fakultät Informatik, Elektrotechnik und Infor-
mationstechnik der Universität Stuttgart, 2014.

[15] Anna-Lena Lamprecht, Stefan Naujokat, and Ina Schaefer. Variability
management beyond feature models. IEEE Computer, 46(11):48–54,
2013.

[16] Sven Jörges, Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer,
and Bernhard Steffen. A constraint-based variability modeling frame-
work. International Journal on Software Tools for Technology Transfer,
14(5):511–530, 2012.

[17] Bernhard Steffen, Tiziana Margaria, and Burkhard Freitag. Module
configuration by minimal model construction. In Technical Report -
MIP Universitaet Passau, Faku—taet fuer Mathematik und Informatik.
Citeseer, 1993.

[18] Stefan Naujokat, Anna-Lena Lamprecht, and Bernhard Steffen. Loose
programming with PROPHETS. In Fundamental Approaches to Soft-
ware Engineering - 15th International Conference, FASE 2012, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2012, Tallinn, Estonia, March 24 - April 1, 2012.
Proceedings, pages 94–98, 2012.

158 Int'l Conf. Security and Management | SAM'16 |

ISBN: 1-60132-445-6, CSREA Press ©

