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Abstract 
Computer simulations consume and produce huge amounts of raw data files presented in different formats, e.g., 
HDF5 in computational fluid dynamics simulations. Users often need to analyze domain-specific data based on 
related data elements from multiple files during the execution of computer simulations. In a raw data analysis, one 
should identify regions of interest in the data space and retrieve the content of specific related raw data files. 
Existing solutions, such as FastBit and RAW, are limited to a single raw data file analysis and can only be used 
after the execution of computer simulations. Scientific Workflow Management Systems (SWMS) can manage the 
dataflow of computer simulations and register related raw data files at a provenance database. This paper aims to 
combine the advantages of a dataflow-aware SWMS and the raw data file analysis techniques to allow for queries 
on raw data file elements that are related, but reside in separate files. We propose a component-based architecture, 
named as ARMFUL (Analysis of Raw data from Multiple Files) with raw data extraction and indexing techniques, 
which allows for a direct access to specific elements or regions of raw data space. ARMFUL innovates by using a 
SWMS provenance database to add a dataflow access path to raw data files. ARMFUL facilitates the invocation of 
ad-hoc programs and third party tools (e.g., FastBit tool) for raw data analyses. In our experiments, a real parallel 
computational fluid dynamics is executed, exploring different alternatives of raw data extraction, indexing and 
analysis.  
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 Introduction 1.
Several data-intensive computer simulations take a long time to execute even when using High Performance 

Computing (HPC) environments. When these simulations dataflows are managed by a parallel Scientific Workflow 
Management System (SWMS) [1], they benefit from provenance [2] and data parallelism among different 
programs that compose the workflow. Systems like Swift/T [3] and Pegasus [4] are highly scalable SWMS and 
have shown impressive performance results for many different scientific application domains [3,5]. 

A data analysis challenging problem occurs when users have to navigate and browse thousands of raw data 
files that result from these data-intensive simulations. Provenance data from SWMS are an important asset in 
relating these files, but still very far from supporting raw data analytical queries in these file contents. There are 
several solutions to improve data analysis through query processing on raw data file contents [6–9]. They typically 
parse the raw data file; extract relevant contents; index; and present query support, usually with the help of a 
Database Management System (DBMS). However, these solutions do not support queries that correlate elements 
from different raw data files. 

Combining provenance support from SWMS and raw data query solutions bring a new vision to scientific data 
analysis. Current solutions are independent and offline [10]. This means that users are only able to query 
provenance or raw data when the execution finishes. In data-intensive computer simulations, workflow executions 
may take very long to execute (hours or days) even in HPC environments [5]. Typically, a user tries several 
different workflow configurations before reaching satisfactory parameters, convergence and error values. This 



requires a runtime data analysis support, where users may abort or fine tune, and debug their workflow long before 
it finishes.  

In a previous work [11] we have shown the advantages of adapting loop conditions based on partial data 
analysis, all during the iterative workflow execution. We used Chiron SWMS [12] and its data-centric algebra [13] 
to query provenance data related to domain data using a specialization of W3C PROV [14]. The work in [11] 
evolved into defining workflow algebraic operations to control and adapt loop conditions [15]. In a study on 
uncertainty quantification we anticipated a convergent state and dynamically changed loop control [15]. Such 
actions contributed to reduce execution time in several hours. These simulations or other iterative workflows 
typically take several hours or days to execute. These results led us to improve raw data analysis support into 
selecting raw data elements from files and relating them to workflow parameters at runtime [16]. However, our 
previous solutions suffer from limited raw data access with no direct path to specific regions or elements of raw 
data files. Users still had to write specific programs to access and analyze the raw data files. Even though direct 
access to files can be obtained by querying the provenance database, the raw data file content analysis remains 
isolated from the provenance database. 

There are several challenges in providing raw data file analysis, while the workflow is being executed by the 
SWMS. Performance is critical; the overhead in runtime data analysis support must not harm the parallel workflow 
execution time. Another challenge is managing the large size of these files with their specific raw data format; they 
cannot be converted to be inserted (i.e., replicated) into a database for queries. There is also the issue of mapping 
and accessing specific regions of interest inside the raw data file. 

To address these challenges and benefit from SWMS provenance data with raw data analysis support, the 
following services must be provided during the workflow execution: 

• access to raw data files while they are being generated; 
• parse raw data to find relevant data; 
• extract relevant subsets of raw data; 
• index over data regions of interest; 
• prepare raw data for queries; 
• runtime query relating raw data from different files, provenance data, and performance execution data. 
In this paper, we present a raw data analysis support to address these challenges. We implemented all these 

services in an architecture named ARMFUL (Analysis of Raw data from Multiple Files) that can be plugged in 
SWMS. In its current version, it is implemented in an extended version of Chiron and evaluated in an HPC 
environment with a real numerical simulation workflow. Experiments with a finite element solver for fluid 
dynamics [17] workflow show the performance improvements in runtime queries obtained by the ARMFUL 
indexing techniques. The results present relevant costs/benefits considering the overheads of managing and 
indexing raw data, with further gains from powerful runtime data analyses obtained by queries accessing data 
directly. 

The rest of the paper is organized as follows. Section 2 describes a motivating scenario from numerical 
simulations. Section 3 discusses related work on raw data analysis from the execution of computer simulations. 
Section 4 defines dataflow concepts with workflow algebra operations to analyze raw data files. Section 5 presents 
ARMFUL, an architecture to support raw data analysis, which is based on raw data extraction and index 
generation. Section 5 also presents how we use Chiron SWMS to implement ARMFUL. Section 6 uses the 
motivating example from Section 2 to present the experimental results. ARMFUL raw data support is evaluated 
with real computational fluid dynamics workflows, while extracting, indexing and querying raw data from XDMF 
and HDF5 files. Finally, Section 7 concludes. 

 Motivating Scenario 2.
To clarify the exploratory analysis of raw data files, let us consider an example from Computational Fluid 

Dynamics (CFD) that is presented in Figure 1. Specifically, this simulation analyzes the three-dimensional flow of 
an incompressible fluid in a cavity. This problem is a popular benchmark in CFD, used to evaluate new codes or 
new solution methods [18]. This benchmark is consistently used throughout this paper. In Figure 1, the black boxes 
show the simulation programs invoked for the configuration of the CFD analysis (edgecfdPre program) and solver 
execution (edgecfdSolver program). The edgecfdPre program generates configuration files in part.in and part.mat 
formats, which contain the needed raw data elements, such as the maximum time step (attribute DTMAX), the final 
simulation time (attribute TMAX), material properties such as fluid viscosity (attribute VISC) and fluid density 
(attribute DENS). The edgecfdSolver program consumes the produced files by edgecfdPre program, and generates 
solution attributes (such as velocity and pressure) over the execution of the CFD solver (i.e., files in XDMF and 
HDF5 formats) and some metrics for analyzing the CFD model convergence (number of linear iterations and 



residual norms represented as attributes ITER and RESIDUALS, in STP file format). The attribute RESIDUALS 
represents the ratio of the Euclidean norm of the momentum and continuity residuals between two linear iterations.  

Users in CFD domain commonly investigate the convergence of their solver based on the number of linear 
iterations and residual norms for a specific input mesh, boundary, initial conditions and material properties. To 
access solution quality and/or to define if it is necessary more time steps, users may increase the value of TMAX. 
This means that the CFD solver needs more time to reach a steady state, and other controlling parameters may also 
be adjusted. To analyze the number of linear iterations and residual norms, users must gather raw data elements 
(e.g., values for ITER and RESIDUALS) from STP files. To narrow their analysis for a specific input mesh and 
fluid properties and correlate it to the solver properties, users have to investigate the dataflow path for a specific 
input mesh (e.g., cav.1.msh, cav.1.part.in, cav.1.xmf, and cav.1.stp files). Furthermore, checking if the solution has 
reached the steady state (solution is no longer changing) is based on the reduction on the number of linear iterations 
and residual norms over time, as presented by the behavior in charts of scenario (a) in Figure 1. A solver execution 
that is not able to converge is represented by the behavior of scenario (b) in Figure 1. The analysis of scenario (b) 
can assist users to abort CFD executions that will not converge or to change some attributes like TMAX. The 
modifications on TMAX need a deep analysis in several parameters and raw data file contents to assert that the 
computational model is able to converge in more time steps.  

 
Figure 1. Raw data analysis in CFD simulation. 

To support the given examples of raw data analysis, a system underlying the dataflow generation of pre, post-
processing and the solver itself would have to trace and register simulation data for queries at runtime. Let us 
consider a scenario with no dataflow analysis support. After finding the directories and relationship between files 
cav.1.msh and cav1.xmf, the user would need an external program to find which elements from the first file relates 
to which elements of the latter. Then, another external program would have to be used or programmed to browse 
cav1.xmf to find the element cav.1.008.h5 inside the file and continue from there, all manually. In addition, 
changing a loop condition (e.g., TMAX) requires an external loop execution control, to be able to dynamically 
change it, and react to these changes, like keeping consistency in dataflow generation, as we show in [15]. 



However, the decision of when or how to change requires deeper raw data analysis support, currently not found in 
any work, to the best of our knowledge. This situation can be much worst if the user has to run and monitor many 
large simulations at the same time, e.g., when varying material parameters (parameter sweep) or dealing with the 
propagation of uncertainties in initial conditions or material properties (uncertainty quantification [15]). 

 Related Work 3.
In this section, we discuss the existing solutions for raw data analysis of files generated by workflow 

execution. We consider the support for the six services described at the Introduction: access; parse; extract; index; 
queries; and runtime query relating raw data from different files, provenance data and performance execution data. 

Current solutions do not provide for all six services and fall basically in two categories. The first category 
considers raw data file analyzers [7–9,19–22], which support the services of: access; parse; extract; index; and 
sophisticated queries on raw data file contents. However, this raw data support is offline (analyzes only after the 
execution of the simulations) and consequently falls short in relating different raw data files or any provenance 
database. The second category corresponds to SWMS with provenance data support, like [3,4,12,23–26]. Through 
provenance data, raw data files are identified as input and output of workflow activities. However, queries are 
limited to relating files with workflow provenance data, but no raw data file content analysis is supported, and they 
are all offline analyses. So, raw data analysis techniques would be needed to browse the file contents and access 
data elements from the files.  

Unlike Chiron [12], current SWMS do not allow for provenance data analysis at runtime. Our previous SWMS 
solutions are an exception in this scenario of raw data analysis at runtime. In [13], we present a solution to allow 
for provenance queries at runtime. In [11,27], we show how parameters such as loop control can be queried, steered 
and changed at runtime. In [16], we present an ad-hoc dataflow raw data support to complement provenance based 
queries. In this work, we build on these previous solutions by formalizing a dataflow approach considering data 
element flows with indexing techniques, all made available for raw data analysis with provenance at runtime even 
in HPC environments.  

3.1. Raw Data Extraction from Files 
Users commonly need to extract raw data from files [16] for performing domain-specific analysis. This 

process, known as raw data extraction, may present two granularity levels according to the volume of data retrieved 
from files: total and partial extraction. Total raw data extraction retrieves all attribute values from a raw data file, 
e.g., XDMF feature for ParaView1 toolkit. Partial raw data extraction retrieves part (or slices) of the attribute values 
from a raw data file, e.g., HDF5 tools [22] and SDS framework [20]. Moreover, there are related work that extract 
raw data from files on demand, i.e., attributes are extracted from files as requested by users (in some specific time 
steps). This approach is named as incremental raw data extraction. Also, a raw data extraction commonly needs to 
tokenize and parse retrieved data [28], since raw data files often contain binary or semi-structured data that have to 
assume data structures acceptable by the DBMS. Although raw data are extracted, tokenized, and parsed, there are 
some circumstances that users may need to generate indexes to provide direct access to the raw data in a specific 
region of interest from files. 

3.2. Indexing Raw Data from Files 
The index generation improves direct access to specific regions of the raw data space. The definition of the 

most suitable indexing algorithm depends mainly on: (i) the volume of scientific data manipulated, (ii) the data 
structure that is intended to be captured and (iii) the analysis to be performed on the computer simulation at hand 
[8,28]. Since workflows with only raw data extraction may present a severe overhead for data ingestion into the 
external repository (e.g., file or database) in a large-scale computer simulation, it fits in cases that the 
computational model generates a small volume of data on each data transformation or a few attributes are extracted 
from each raw data file and those attributes assume standard data structures (e.g., floating-point, integer, and 
characters sequence).  

Otherwise, index generation can be employed when there is a large volume of data to be extracted and the data 
structures are complex, such as octrees and meshes [7,28]. In this paper, we present file indexes to address the raw 
data elements with more complex data structures. Indexing algorithms can reduce the time to find which subset of 
raw data is relevant for the analysis. Although index generation offers advantages especially to query processing, it 
has its own overheads, which have to be considered when deciding what to index [8,9]. 

                                                        
1 http://www.paraview.org/ 



There are different existing solutions in scientific domains that already use raw data indexing algorithms, such 
as FastBit tool [9] with bitmap indexes, and DiNoDB [19] with positional indexes. Indexing algorithms based on 
bitmaps, known as bitmap indexing, consist on the domain analysis of certain attributes in the raw data files to 
generate Boolean indexes through the verification of algebraic equations. For example, assuming that the values of 
attribute X for all scientific data files present a domain with only four possible values in the integer data structure, 
then the bitmap needs four columns to evaluate the presence of certain value, admitting an equality equation. In 
some cases, the use of inequalities for a bitmap indexing may be more beneficial. Supposing a floating-point 
number with a very extensive domain, the use of inequalities can be more suitable to generate indexes (less number 
of bitmap columns) and query certain intervals (of values) of the attribute indexed (search space limited by the 
generated indexes). FastBit tool, FastQuery [29] and SDS/Q framework are examples of related work that employ 
bitmap indexing. However, none of these solutions can manage data element through dataflow generation. 

Different from bitmap indexing, positional indexing makes use of information that facilitates the raw data 
location (position) in files. A positional index can be two integers (or other standard data structure), where the 
values determinate where to start to read an attribute in the raw data file and the length in bytes of the attribute 
value. Positional indexing provides a smaller data overload to manage scientific data, since it only generates a 
pointer (two integer values, for instance) for each attribute value, while bitmap indexing presents a bitmap for each 
attribute with redundant bits (zero sequences). Another difference between both indexing algorithms is the ability 
that positional indexes have to reference complex data structures, like trees and multidimensional arrays. NoDB 
[7], DiNoDB, and RAW [8] allow for positional indexing of raw data from files. 

3.3. Raw Data and Workflows  
Raw data exploratory analysis is not limited to the investigation of scientific data in a single file. In many 

cases, users analyze the dataflow path to scan data propagation over multiple related raw data files. Therefore, the 
approaches for raw data analysis must be able to monitor the flow of the data consumed and produced by each 
simulation program during the execution. As presented in [16], there are basically two abstraction levels to deal 
with dataflow management: physical and logical.  

Dataflow management at the physical level consists in supporting data transformation on the file system. Thus, 
this level of dataflow management deals with files as black boxes, since there are no indexes or query support to 
access their domain-specific content. Hence, users are limited to perform analysis with pointers to the related files 
in the dataflow, which creates the need to analyze each file individually or develop specific programs to extract and 
index their domain-specific content. Both alternatives present tedious and error-prone tasks. 

In contrast, dataflow management at the logical level deals with the monitoring of how data elements are 
consumed and produced by the simulation programs. Those data elements can be the raw data from files or the data 
propagated through the chained simulation programs. The relationship between data elements may be used to trace 
the dataflow path, which contributes to the analytical potential of this management level. From the users’ point of 
view, it is possible to query domain data related to the execution of the computer simulation without the need to 
develop specific programs to extract raw data from multiple files. On the other hand, the elapsed time of the 
computer simulation is higher for dataflow management at the logical level, since the data elements must be 
extracted and monitored at runtime, while at the physical level such monitoring comes down to pointers to the raw 
data files. Considering the dataflow management on both levels, users need to capture and store provenance data 
[2] about the composition of the computer simulation (and their data dependencies) and raw data gathered from 
files in each simulation step (i.e., invocation of a simulation program). 

As shown in [16], the AWARD framework [26] has a dataflow approach based on the physical level. It 
captures tuples (set of parameter values) at runtime and manages data propagation through simulation programs 
according to the dependency between existing data. Despite treating the representation of parameter values, 
AWARD does not handle parameter values as data elements in its relational representation, which prevents the 
management of the dataflow at the logical level. There are some SWMS with dataflow management support at the 
logical level, such as Kepler [24], Panda [25] and Chiron [12]. SWMS typically register dataflow as workflow 
provenance. However the support in Kepler and Panda for provenance data analysis is offline, i.e. they do not 
provide any runtime data analysis feature. All provenance data analyses have to be performed before or after the 
workflow execution. In addition, although Kepler can support dataflow management at a logical level, it does not 
go into file contents. With respect to Panda, it supports a provenance data formalism that represents dataflow 
produced by a workflow composed of relational algebra operations. However, Panda aims at textual structured data 
from databases, not facing the problem of raw data files. 

Chiron uses a workflow algebra to model and execute workflows. This algebra is inspired by the relational 
algebra for databases [30] and provides a uniform data model that expresses all workflow data as relations. It is a 
parallel SWMS, where workflows are represented and executed as algebraic expressions composed of operations 



that encapsulate simulation programs and operands to represent the dataflow. Different from related work, Chiron 
enables capturing and storing provenance data ready to be queried at runtime. It allows raw data file analysis 
through external program invocations, which extract domain-specific content from raw data files. In this paper, we 
generalize and extend Chiron's raw data support by isolating the components that manage raw data from the 
SWMS, making them available as services of the ARMFUL architecture. While related work does not consider file 
contents in runtime analyses, we use the dataflow abstraction to go "inside" the files. In addition to associating one 
input file to a corresponding output file, we allow for associating one element from an input file to its 
corresponding output element in its output file, as the workflow executes. Therefore, the input dataset concept is 
not just a set of files, but also a set of elements within a raw data file. 

Comparing these related work with our contributions in the present paper, we adapt Panda's formalism for 
defining dataflows with provenance data from workflows to be used as operands for the algebraic operations we 
propose here for managing raw data. To the best of authors’ knowledge, Chiron is the only SWMS supporting raw 
data file analysis, since it extracts raw data from files and ingests them in a provenance database. However, 
considering large-scale computer simulations, Chiron presents a significant overhead when a large amount of raw 
data is ingested into its relational DBMS. Also, this is the first work that allows dataflow management at the logical 
level considering raw data extraction and index generation combined with provenance data at runtime.  

 Using a Dataflow Approach with Workflow Algebra to Analyze Raw Data Files  4.
Workflow algebras are focused on the operations and not the datasets that flow from one data transformation to 

the other. To represent, manage and access the datasets of the workflows, they have to be explicitly represented as a 
data transformation of a dataflow notation. In this section, we present dataflow concepts related to a workflow 
algebra. To consider raw data file analysis, we introduce two algebraic operators to represent the raw data 
extraction and indexing from files generated by scientific programs (i.e., data transformations).  

4.1. Dataflow Definition 
We provide formal definitions for dataflow concepts to be used in the remaining of this paper. We define that 

each data set (Definition 1) is any set of data elements, which has some predefined attributes in each data element. 
In a dataflow scenario, a data transformation (Definition 2) consumes data from one or more data sets (inputs) and 
produces one or more data sets (outputs). The chaining of these data transformations and the specification of the 
involved data sets represent the dataflow (Definition 3). 

Definition 1. (Data set) Data set S ℎ𝑎𝑠 a set of data elements E = {e1,e2,…,ex}, where x is the number of data 
elements. Each data element has a sequence of predefined attributes A = {a1,a2,…,ay}, where y is the number of 
attributes. Thus, each data element has values for each of these predefined attributes. 

Definition 2. (Data transformation) Data transformation T is characterized by the consumption of one or 
more input data sets I and the production of one or more output data sets O. Formally, a data transformation is 
represented by T, where O = T(I).  

Definition 3. (Dataflow) Let T1 and T2 be two data transformations. The composition T1 ∘ T2 is a 
transformation that first applies T1 to input data sets I1 to obtain intermediate data sets I2. It then applies T2 to I2 to 
obtain output data set O. Composition is associative, so the linear composition of n data transformations is denoted 
as T1 ∘ T2 ∘ … ∘ Tn. Such composition of n data transformations is denoted as a dataflow DF, which can be 
represented as DF = T1 ∘ T2 ∘ … ∘ Tn. The output data sets O from this dataflow can be represented as O = (T1 ∘ T2 ∘ 
… ∘ Tn)(I1), or O = (DF)(I1) for short, where I1 represents the input data sets of this dataflow. This definition is 
inspired on the concepts presented by Ikeda et al. [31].  

4.2. Workflow Algebra meets Dataflow Concepts 
While a dataflow notation represents the data sets of transformations, the operations behind these 

transformations are defined in data-centric algebraic workflow notations. The two notations are complementary. 
There are several workflow algebras based on data set transformations (i.e., workflow activities) [13,32,33,23]. 
These transformations are ruled by algebraic operators (e.g., Map, Reduce, Filter, and Flat Map). Those algebraic 
operators are data-oriented. Operands of the algebraic operators represent the data sets of the dataflow. In 
particular, the workflow algebra proposed by Ogasawara et al. [13] is capable of modeling entities as datasets and 
its relationships. The execution control is based on data dependency synchronization, but the algebra also has loop 
control and branch control operations [15]. For instance, if a data transformation Ti generates Ii+1 that is a subset of 
Ii, we may say that this Ti behaves like a Filter operator. When Ti operates on Ii, this means invoking a function or a 
program represented by Ti with an operand Ii. The algebraic operator just rules the behavior of Ti with respect to the 
data set transformation. In SWMS, a data transformation corresponds to a workflow activity. 



The dataflow O = (T1 ∘ T2)(I1) can be represented by the following algebraic expression:  
I2 ← Operator1 (T1, optional parameters, I1) 
O ← Operator2 (T2, optional parameters, I2) 

This expression notation combines the explicit representation of operators (from workflows) and operands 
(from dataflows), such as input, intermediate and output data sets. Considering that in the previous expression, 
Operator1 is a Map, its execution applies T1 to all elements of I1, generating for each input element of I1, a 
corresponding output element in I2. However, despite the access to elements of the data set, in workflow algebras, 
elements are not explicitly represented. Since we use a relational algebra based approach to represent dataflows 
with workflows, each Ti of a DF is associated to a workflow algebraic operator and its operand Ii and result Ii+1 are 
associated to relations. The set of attributes A, from data elements E, from I (Definition 1), correspond to attributes 
of tuples in these relations, respectively. Having an explicit representation for elements in I from a DF allows for 
establishing an element flow, which has shown to be an important asset in workflow data analysis [16]. For textual 
data sets, loading data elements into relations is trivial, but when the elements of data sets are raw data files, it 
requires specific operations to parse the file to extract data element values from these files. When a raw data file is 
seen as a "black box" set in a workflow execution, data elements implicitly related from multiple raw data files are 
not addressable for queries.  

4.3. An Algebraic Operator for Raw Data Extraction 
In this subsection, we present an algebraic operator to extract raw data elements from files in dataflows. It aims 

to be consistent with data-centric workflow algebra operators. The operator Raw data extraction (Raw, for short) 
enables to extract selected data elements from raw data files to insert into elements of workflow data sets. The Raw 
algebraic operator encompasses raw data parsing of input data sets, selection of specific values for extraction and 
loading these values into elements of the output data sets. The Raw operator is represented as:  

Ii+1 ← Raw (Ti, RC, RF, Ii) 
where the execution of Raw applies Ti to all elements of Ii, generating for each input element of Ii, corresponding 
output elements in Ii+1. Ti represents a workflow activity that invokes a program that is able to access, parse and 
extract raw data from the files referenced in Ii. To apply Ti as a Raw data extraction operation on raw data files, it 
requires two additional parameters: RF, which has the name of the Ii attribute that has, in each tuple, a raw data file 
name, and RC, which is a set of the identifiers of raw data file contents to be extracted from each raw data file and 
stored in a corresponding output attribute of Ii+1. 

Let us consider a fragment of the motivation example presented in Section 2. The following algebraic 
expression defines a Map operator that invokes the edgecfdSolver program, represented as T1 followed by a Raw 
operator, represented as T2, which allows for raw data analysis on S, the output of T1  (the edgecfdSolver program): 

S ← Map (T1, R) 
V ← Raw (T2, {TIME, POINT_0, POINT_1, POINT_2, VELOCITY_0}, HDF5, S) 

 Figure 2 illustrates the operand relations R, S and V with tuples that are generated as the workflow is executed.  
The boxes in Figure 2 represent program invocations responsible for data transformations and <<stereotypes>> 
represent the algebraic operator that rules the data transformation. Since the Map operator rules T1, each activation 
of T1 is invoked consuming a tuple from its input relation R. The R attributes are defined as follows, ID: the 
primary key; MESH: a binary input file, which represents a mesh for CFD simulations; VISC: a numerical attribute 
value to represent the fluid viscosity; and DENS: a numerical attribute to be used by T1 as the fluid density. Each of 
the n activations of T1 consumes one tuple from R, and produces one corresponding tuple in S (this is the typical 
behavior of a Map operator), where its attribute HDF5 represents the HDF5 file path that is produced by T1.  

The values for attributes VISC and DENS in R represent a parameter sweep [34] scenario, where users want to 
run their CFD solver for different material properties (different attribute values to the fluid viscosity and density). 
The Raw operator is expressed so that the raw data files from the attribute HDF5 of S are parsed (as specified by 
the parameter RF) to extract values for the raw data contents of TIME, POINT_0, POINT_1, POINT_2, and 
VELOCITY_0 (as specified by the parameter RC) in its output relation V.  

As V is generated as a database relation, users may submit queries to V and relate its elements to tuples of S 
and R at runtime. Users may, for example, select fluid simulations with a specific range for the average velocity of 
a fluid in x coordinate (VELOCITY_0 output values) in a specific time (attribute TIME in V). Moreover, this 
component may also correlate ID output value (from V) with the input mesh (attribute MESH in R) consumed by 
the CFD solver. Therefore, the Raw operator is able to enrich the operand relations with domain-specific data from 
raw data files. These domain-specific data are related along the workflow execution allowing analyzing raw data as 
dataflows. 



  
Figure 2. Data transformations with the Map and Raw operators. 

4.4. An Algebraic Operator for Raw Data Indexing 
We propose a new algebraic operator for indexing elements from raw data files in dataflows, also integrated to 

the workflow algebra operators. The operator is named Raw data Indexing (RawI, for short), as follows: 
Ii+1 ← RawI (Ti, RC, RF, Ii) 

where, similarly to the Raw operator, the execution of RawI applies Ti to all elements of Ii, generating for each 
input element of Ii, corresponding output elements in Ii+1. Ti represents a workflow activity that invokes a program 
that is able to access, parse and index raw data from the files referenced in Ii. To apply Ti as a RawI data indexing 
operation on raw data files, it requires two additional parameters: RF, which has the name of the Ii attribute that has, 
in each tuple, a raw data file name, and RC, which is a set of identifiers in the raw data file contents to be indexed 
and stored in a corresponding output attribute of Ii+1. 

RawI accesses raw data elements from files and employs indexing techniques to provide direct access to 
specific regions of the raw data space in files. Since there are well known solutions for indexing raw data from 
single files, such as FastBit, NoDB, and RAW (as discussed in Section 3.2), the invocation of these indexing 
implementations can be specified in the algebraic expression. The idea is that some pre-built indexing algorithms 
can be made available to be used as data transformations in the specification of RawI.  

Let us consider the same example of the Raw operator (Figure 2), replaced here by the RawI operator as in the 
following algebraic expression: 

S ← Map (T1, R) 
V ← RawI (T2, {TIME, POINT_0, POINT_1, POINT_2, VELOCITY_0}, HDF5, S) 

Figure 3 illustrates an example of a dataflow that presents a data transformation for indexing raw data, 
represented as T2 and ruled by RawI operator. The indexing program invoked by RawI accesses the raw data 
elements related to the contents specified by the argument RC from files (in argument RF) and generates indexes to 
provide direct access to the data elements.  



The indexing program T2 generates index files to store all generated pointers to the raw data contents in a file. 
In this case, T2 invokes the FastBit tool and generates a bitmap index for the raw data contents, which is stored in 
an index file with the IDX file extension.  

The output relation of RawI plays the role of a metadata catalog. The query processor is able to identify that 
the V attributes TIME and VELOCITY_0 are indexed and uses the corresponding index files (/1/TIME.idx and 
/1/VELOCITY_0.idx in Figure 3) to directly access the file contents. The FastBit tool has a program named ibis 
that is invoked when queries are submitted to V. For example, if the user wants to access regions that contain 
velocity values > 0.8, all VELOCITY_0.idx index files are evaluated by the FastBit tool that directly accesses the 
selected regions. The advantages of using RawI in comparison with Raw are that the same queries can be executed 
with less raw data in its database. A single index file represents the values of several raw data contents and the 
elapsed time needed to generate an index is smaller than the needed time to extract raw data. 

 
Figure 3. Data transformations and indexing with the Map and RawI operator. 

 ARMFUL: An Architecture to Analyze Raw Data from Dataflows 5.
This section presents ARMFUL, a component-based architecture that enables the Analysis of Raw data from 

Multiple Files. ARMFUL analyzes scientific data by retrieving raw data from files and relating them through 
dataflow provenance data. Raw data management requires features that are domain-specific, therefore, provenance 
data models leave this representation in a coarse grain level. However, provenance queries have limited analytical 
value if not related to domain-specific data elements. This requires a lot of effort from SWMS users in developing, 
for each domain, data modeling design and specific programs to access, extract and relate domain data to 
provenance data. The ARMFUL architecture aims at helping on this effort by presenting some generic components 
that model and relate domain-specific data to provenance in the same database.  

Since the raw data file contains a data set (in a binary or other encoding), the extraction process needs to 
identify elements within this data set. As the identification of data elements requires data access that depends on the 
application domain, we isolate those dependencies in cartridges [35]. A cartridge encapsulates a method that is able 
to access the contents of a raw data file and returns the data elements. This method is typically implemented by a 
program known by the user (domain specialist), who has to define it during the workflow specification. Therefore, 
the goal is to leave the domain data specificities to the cartridges that are invoked by ARMFUL components. 

We chose a relational DBMS to manage provenance and raw data to benefit from its analytical query support 
in dataflows. DBMS present well-known algorithms and strategies to guarantee atomicity, consistency, isolation, 
and durability in transactions, while they also have consolidated solutions for enabling concurrency control and 
recovery [36]. Therefore, ARMFUL extracts selected content from raw data files, generates indexes (as an optional 



step), and allows for using it to query raw data combined to provenance data through the DBMS. In addition, 
ARMFUL has to manage the relationships among files, needing file references to access and extract raw data from 
files. These characteristics are essential for enabling dataflow management at the logical level. They enable queries 
that associate raw data elements from multiple files, i.e., from different data transformations (execution of 
simulation programs), as discussed in the analysis of Figure 1. Following, we discuss each one of the ARMFUL 
components in detail.  

Figure 4 presents the components of ARMFUL. As in SWMS with provenance support, white components 
correspond to the capture of provenance data and their storage in a provenance database. Gray components (Raw 
Data Extraction, Raw Data Indexing, and Query Processing) describe the steps to extract raw data from files, to 
generate indexes over the raw data, and to query provenance and raw data from the same database. These three 
components are detailed in the following subsections. The definition of the most suitable strategy to be used (raw 
data extraction and index generation) depends on the volume of data and the data structures of the specific contents 
in raw data files, as discussed in Sections 3.1 and 3.2. 

The Provenance Data Gathering component aims at capturing provenance data and execution metadata 
generated during the parallel execution of scientific workflows, and storing those gathered data in a provenance 
relational database. To enhance raw data analysis support, this component also manages the file references and the 
data dependencies (relationships) among raw data files. File references are essential to raw data extraction and 
indexing as aforementioned, while data dependencies enable dataflow management at the logical level. Therefore, 
this component combines provenance with some metadata about the raw data to be extracted/indexed by Raw Data 
Extraction and Raw Data Indexing components. 

 
Figure 4. Components of ARMFUL. 

5.1. Raw Data Extraction and Indexing Components 
Raw Data Extraction component aims at reading the contents of raw data files, parsing them and retrieving 

selected contents that are relevant according to the attributes chosen by the user. To achieve this goal, this 
component follows four steps: content read, tokenization, contents filtering, and parsing. The first step accesses the 
raw data files and reads their contents. Tokenization step investigates the raw data catalog, which contains metadata 
related to the file format specification and their contents, with the purpose of verifying if the obtained raw data in 
the previous step correspond to the domain of the current computer simulation. As the next step, contents filtering 
considers the user’s specification to define which contents and their values should be parsed and stored into the 
provenance database. Thus, this step avoids storing attributes that will not be used in domain-specific analysis. 
Then, parsing step converts each filtered raw data contents to present a specific data structure acceptable by the 
DBMS. This data structure requirement is informed by the raw data catalog.  

Raw Data Indexing component indexes specific contents from files to improve direct access to specific regions 
of the raw data space and managing metadata associated to the dataflow. Besides the content read from raw data 
files and parsing, Raw Data Indexing has to create indexes to the accessed raw data contents according to the 
defined indexing algorithm. For instance, bitmap indexing [9] generates a bitmap to indicate the presence of a 
specific value on the raw data content, while positional indexing [7] provides the location of a value within the 
content of the raw data files.  



The Raw Data Extraction component is ruled by the algebraic operator Raw presented in Section 4.3. When 
both components are employed (Raw Data Extraction and Raw Data Indexing), they are ruled by the algebraic 
operator RawI presented in Section 4.4, where the program Ti determines the chosen indexing algorithm. In a more 
practical perspective, considering the indexing algorithms in the literature [7–9,28], ad-hoc programs or third-party 
tools (e.g., FastBit tool) can be invoked by this component to generate indexes. Thus, Raw Data Indexing 
component is highly recommended to simulations that generate a huge amount of raw data in files or whose files 
assume more advanced data structures, such as meshes. The definition of the most suitable strategy to be used (raw 
data extraction and index generation) depends on the volume of data and the data structures of the specific contents 
in raw data files, as discussed in Sections 3.1 and 3.2. 

To instantiate new cartridges in ARMFUL, users initially have to identify to which component this cartridge 
corresponds to, Raw Data Extraction or Raw Data Indexing component. With the Raw Data Extraction component, 
the cartridge needs three methods to access and extract raw data elements from files, named as extract(), run(), and 
access(). The extract() method aims at identifying and extracting raw data elements for the raw data file attributes 
chosen by the user. Thus, this method assumes that all specified contents are present in the raw data file. The run() 
method is used with the extract() method to extract raw data from several files with the same file format. It means 
that the run() method invokes the extract() method for each raw data file, which returns domain-specific data to be 
represented in the same output data set. The access() method retrieves raw data extracted by extract() method.  

To instantiate cartridges for the Raw Data Indexing component, the three methods to access and generate 
indexes for raw data in files, are named as index(), run(), and access(). The index() method generates indexes for all 
attributes chosen by the user, which are present in a single raw data file. Algorithm 1 implements this method, 
assuming that the index() method invokes the indexing algorithm (argument algorithm) chosen by the user and all 
specified contents (variable cts) are present in the raw data file. As happens with the Raw Data Extraction 
cartridge, the run() method invokes the index() method to generate indexes for all selected raw data contents in 
each record from multiple raw data files. The access() method retrieves raw data using indexes generated by 
index() method, as presented in Algorithm 2.  

 
Algorithm 1. Index generation for accessing raw data from files 
Input: 
       algorithm: Algorithm for accessing raw data via indexes 
   path: Path of input file 
   filename: Input file name 
   cts: List of raw data contents 
Output: 
   dataSet: Output data set 
1. function index(algorithm, path, filename, cts): 
2.       dataSet ⃪ DataSet(cts) 
3.       if exists filename in path then: 
4.             for each element in filename do: 
5.                   valueselement ⃪ { } 
6.                   position ⃪ 0 
7.                   for each content in cts do: 
8.                         ctValue ⃪ generateIndex(algorithm, content, element) 
9.                         valueselement[position] ⃪ ctValue 
10.                         position++ 
11.                  end do 
12.                  dataSet.addElement(valueselement) 
13.             end do 
14.       end if 
15.       return dataSet 
16. end function 

 
Once the cartridge is identified, users need to define programs for the methods: (i) extract() or index(), and (ii) 

access(). The run() method is provided by ARMFUL. To help on using the extract() method, ARMFUL presents a 
cartridge, named as External Invoker, which accesses and extracts the contents from raw data files by invoking ad-
hoc programs. Therefore, using this cartridge, users need to specify the raw data file paths, the raw data contents to 
be extracted, and the command line to invoke the ad-hoc program. Since we performed experiments in CFD 



simulations, Section 6 presents the invocation of an ad-hoc program developed with the Python API of ParaView 
toolkit to extract raw data from XDMF and HDF5 files. 

To support raw data indexing, this first version of ARMFUL presents two cartridges for the Raw Data 
Indexing component, named as Positional Indexing and FastBit tool. The Positional Indexing cartridge consists of 
a program developed by our team to generate positional indexes by adapting the algorithm presented in the RAW 
approach [8]. The FastBit tool cartridge implements the invocation of FastBit tool (Figure 3) to generate bitmap 
indexes. In relation to the access() method implemented on those indexing cartridges, we developed from scratch a 
code to access the raw data via the indexes generated by the Positional Indexing cartridge. We use features 
provided by the FastBit tool to implement the access() method to the FastBit tool cartridge. As a limitation of this 
first version of ARMFUL, it does not consider modifications in raw data files after the extraction or indexing 
process (only append operations). In future versions it should implement adaptive indexing approaches. More 
details about ARMFUL and its components implementation can be found in its website2. 

 
Algorithm 2. Raw data access using indexes 
Input: 
       algorithm: Algorithm for raw data access using indexes 
       path: Path of input file 
   filename: Input file name 
   dataSet: Data set, where each element contains generated indexes  
   cts: Raw data contents of interest 
Output: 
   output: Output data set 

1. function access(algorithm, path, filename, dataSet, cts): 
2.       output ⃪ DataSet(cts) 
3.       if exists filename in path then: 
4.             for each element in dataSet do: 
5.                   valueselement ⃪ { } 
6.                   position ⃪ 0 
7.                   for each ctIndex in element.values do: 
8.                         if dataSet.contents[position] in cts: 
9.                                ctValue ⃪ getValueByIndex(method, ctIndex) 
10.                                valueselement ⃪ values + {ctValue} 
11.                         end if 
12.                         position++ 
13.                   end do 
14.                   output.addElement(valueselement) 
15.             end do 
16.       end if    
17.       return output      
18. end function    

5.2. A PROV-Compliant Provenance Database Component  
Extracted raw data has to be loaded into a database to be queried and analyzed. In ARFMUL, this database is a 

provenance database that integrates provenance data, extracted raw data and execution data. The Provenance 
Database component is this provenance database that can be analyzed through the Query Processing component.  

The Provenance Database representation follows the dataflow definition presented in Section 4.1, which 
allows for querying data transformations and data sets involved in computer simulations uniformly in the 
provenance database. It extends the PROV-Df [16] data model (see Figure 5), which is a W3C PROV-DM3 
specialization data model, to represent metadata about the data transformation and the flow of data sets. More 
specifically, the extended PROV-Df represents properties about the scientific workflows and their associated 
dataflow generation at the logical level, i.e., data element flow considering indexing. This data model describes a 
scientific workflow in relation to the simulation programs (i.e., workflow activities), their invocations, and data 
dependencies (i.e., attributes consumed, produced, and propagated represented in data sets), while it also gathers 

                                                        
2 https://hpcdb.github.io/armful 
3 https://www.w3.org/TR/prov-dm 



provenance data related to the execution of the scientific workflow, such as metadata about the execution of a 
specific activation (or task) and their raw data elements extracted or indexed from files. 

The original version of PROV-Df is composed of three types of classes: dataflow concepts (white classes in the 
UML class diagram with exception of entities Workflow, Activity, and Relation), dataflow generation during the 
execution of a scientific workflow (dark gray classes) and environment configuration (light gray classes). Each 
class in PROV-Df is extended from the core and extended structures of PROV standard (entity, agent, plan and 
activities). The stereotypes in the UML class diagram are used to represent PROV components regarding the 
PROV-DM specification. For more detail about PROV-Df, please refer to [16]. 

 
Figure 5. PROV-Df data model with extensions for scientific workflow concepts [16]. 

Differently from the original version of PROV-Df, we changed the entities Workflow, Activity, and Relation, as 
presented in Figure 5. These changes added conceptual descriptions about computer simulation modeling, since 
dataflow entities are only dedicated to the data generation during the execution of computer simulations, while 
workflow concepts introduce metadata about the specification of simulation programs (e.g., program invocation) 
and their rules (e.g., data dependency between data transformations). Considering the improvements for raw data 
extraction and index generation, this process handles data transformations (entity ExecuteDataTransformation) 
ruled by the Raw or RawI operator addressing consumed raw data files (entity File) and raw data extracted or 
indexed (entity AttributeValue) to a specific attribute (entity Attribute). Meanwhile, a set of attributes is specified in 
a data set schema (entity DataSetSchema).  

We validated PROV-Df compliance with W3C PROV-DM using ProvToolbox4 to generate files according to 
the PROV-DM specification (in PROV-N, JSON, XML, and DOT file formats) and ProvValidator5 web service 
[37] to analyze these generated files. Our focus is on the runtime dataflow analysis. Therefore PROV-Df represents 
provenance and domain specific data ready to be queried as they are being generated by the SWMS. In ARMFUL, 
PROV-Df is mapped to a relational database to represent the dataflows and their data transformations, as shown in 
[38]. A relational DBMS is used to query raw data in a structured way, thus easing user’s analysis. Users are able to 
submit queries to the DBMS to get information about the entire dataflow and its execution (such as elapsed time 
and errors from the execution of simulation programs). In addition, differently of existing solutions for raw data file 
analysis, users have access through provenance database to selected raw data files and their contents among a large 
number of generated files spread in several workspaces. The reference to files is registered in the provenance 
database as pointers (e.g., Uniform Resource Identifier, known as URI).  

For all workflow activities ruled by Raw or RawI operator (entity Activity), the output relation (entity Relation) 
presents the domain-specific data values extracted or the generated indexes, respectively, from the raw data files or 
propagated from previous workflow activities. Thus, users can elaborate deeper analytical queries on the 
provenance database, involving workflow composition (the chaining of simulation programs), dataflow information 
and raw data from/within files. 

                                                        
4 http://lucmoreau.github.io/ProvToolbox 
5 https://provenance.ecs.soton.ac.uk/validator/view/validator.html 



5.3. Query Processing Component  
The Query Processing component aims at providing a mechanism to query provenance and raw data stored in a 

provenance database following our data model (Section 5.2). This component varies its behavior according to the 
chosen strategy for extracting or indexing raw data from files. If it is only considered the raw data extraction, the 
obtained data elements from files are stored in a database respecting the provenance data model and the 
specifications of the DBMS. Therefore, this component only allows for queries that are supported by the DBMS 
query processor, since all raw data contents are stored in its provenance database.   

Depending on the strategy for raw data extraction and index generation, query processing presents additional 
steps related to raw data file access and data retrieval, as discussed in Section 3.2. If it is assumed a strategy that 
applies indexing techniques, provenance database presents the generated indexes (or index files), instead of the raw 
data elements (with their attribute values). In this case, this component has to retrieve the generated indexes (or 
index files) from the provenance database, to use them to access (and retrieve) the raw data contents in file. As 
presented in the example of Figure 3, FastBit tool can be used to access raw data from files using the generated 
indexes (i.e., bitmap files). 

The Query Processing component of ARMFUL uses the access() method of cartridges from the Raw Data 
Extraction and Raw Data Indexing components to access raw data from files during the workflow execution. To 
explain the use of access() method for dataflow analysis, let us consider a theoretical example. We assume two 
workflow activities, A and B, where B depends on A (i.e., output data set OS from activity A is consumed by activity 
B). Activity A is ruled by the RawI operator using a data access method via indexes. In this case, the invocation of 
activity B needs the values for each element from data set OS produced by activity A. Then, it is necessary that the 
Query Processing component considers the generated indexes for each data element (from data set OS) in activity A 
and use them for retrieving raw data from files with the access() method. 

5.4. Coupling ARMFUL to a SWMS  
To couple ARMFUL to a SWMS, the workflow definition has to be instrumented to call its components for 

provenance gathering and raw data extraction/indexing. To support raw data extraction and indexing, each 
workflow activity that has a data transformation has to include one raw data transformation. Raw data 
transformations, ruled by Raw or RawI operators, are decoupled from the workflow activities, but keep the 
consistency with all other data-centric transformations.  

Raw data file parsing requires the invocation of ad-hoc programs or third-party tools (similar to the 
specification of simulation programs). This way, to add raw data extraction or indexing to a specific data 
transformation activity, the workflow definition has to include another data transformation activity, which is ruled 
by Raw (for raw data extraction) or RawI (for raw data indexing) operators (see Sections 4.3 and 4.4). It is also 
important to highlight that the SWMS has to manage the path reference of the raw data files and users have to 
define which attributes should be tracked by the raw data extraction or indexing process. Although Raw and RawI 
operators are fairly compatible with Chiron’s algebra [13], they work in an isolated way in other SWMS, provided 
that the data being gathered can be stored in relational tables with data provenance. 

To bind ARMFUL components with a SWMS, we provide three Java ARchive (JAR) files, named as 
ProvenanceGatherer, DataIngestor, and RawDataAnalyzer. ProvenanceGatherer JAR file aims at managing 
provenance data gathered during the execution of scientific workflows. This program should be used when the 
SWMS does not support provenance data management. However, if the SWMS manages provenance data, it needs 
to follow the PROV-Df data model to be coupled to ARMFUL. In our approach, A-Chiron already presents a 
provenance database that follows PROV-Df data model. The DataIngestor JAR file initializes a database server 
using a column-based DBMS, MonetDB [39], to store the provenance data gathered by the ProvenanceGatherer 
program. As the ProvenanceGatherer program, the DataIngestor program is only recommended if the SWMS does 
not support provenance data management.  

The RawDataAnalyzer JAR file presents two different methods for accessing raw data from files: raw data 
extraction and indexing. The former method extracts the contents from raw data files, while the last one accesses 
and generates indexes to the data elements in raw data files. All cartridges for raw data extraction and indexing 
presented in Section 5.1 were developed with the RawDataAnalyzer program. Therefore, to couple a SWMS to 
ARMFUL, we only need to invoke the RawDataAnalyzer program, defining the raw data access cartridge. 

 Experimental Evaluation 6.
In this paper, we couple ARMFUL to Chiron SWMS, which we named as A-Chiron. As the first step on this 

development, we implemented the Raw and RawI operators in Chiron by the invocation of the raw data extraction 
and indexing cartridges from ARMFUL. In relation to the provenance data management, we extended Chiron to 



manage extracted data and the generated indexes and, consequently, to present a provenance database consistent 
with our PROV-Df data model. In this section, we evaluate A-Chiron for extracting and indexing raw data during 
the execution of data-intensive scientific workflows. Our experiments are based on a scientific workflow in 
Computational Fluid Dynamics (CFD) domain [17] (see Section 6.1). Although our experimental evaluation 
considers a specific CFD workflow, workflows from other domains, like those in astronomy [16], geophysics [17] 
and bioinformatics [40], can also benefit from the raw data analysis support of ARMFUL. In the following 
experimental evaluation, we compare the cost with and without raw data file analysis, considering two strategies 
that apply indexing techniques, and present the analytical capabilities enhanced using our proposed approach. 

6.1. Case Study: Computational Fluid Dynamics Workflow 
In our experiments, we used as case study a workflow for analyzing the flow of an incompressible fluid on a 

cavity problem introduced in Section 2. This case study uses EdgeCFD software and, consequently, the modeled 
workflow presents the same name (i.e., EdgeCFD workflow). EdgeCFD is a Fortran90 finite element application 
where the kernel of the computational solution consists of a fully implicit predictor – multicorrector time 
integration scheme as described in [18]. The generalized trapezoidal rule is employed in the time discretization, 
with an adaptive time stepping procedure based on a proportional-integral-derivative (PID) controller.  

The nonlinearities due to the convective term on the Navier–Stokes equation (describes the motion of viscous 
flow) are treated by an Inexact Newton–GMRES algorithm [17]. In this solution algorithm, at the beginning of the 
nonlinear iterations in each time step, the algorithm computes large linear tolerances, producing fast nonlinear 
steps. As the iterations progress towards the solution, the inexact nonlinear method adapts the GMRES tolerances 
to reach the desired accuracy. The tolerance, which the linearized system is solved, known as the forcing term, 
plays an instrumental role in the numerical performance of this method. To enhance the robustness of these 
methods, they could be employed with some globalization strategies, which contemplate auxiliary procedures that 
increase the convergence to the solution when good initial approximate solutions are not available. Four forcing 
terms are implemented in EdgeCFD and its applicability will be analyzed in this study. Moreover, we choose this 
workflow as a case study, since their scenarios manipulate huge volumes of data. This data may be stored as files in 
different formats and assume non-trivial data structures for generating indexes. To facilitate these issues, we used 
some existing solutions, such as ParaView toolkit and FastBit tool, for accessing raw data from these 
heterogeneous files and generating indexes. 

Figure 6 presents the EdgeCFD workflow using the workflow algebra described in Section 4, where 
<<stereotypes>> represent algebraic operators that describe the activity behavior. In this workflow, only activities 
EdgeCFD Pre and EdgeCFD Solver use binaries from EdgeCFD software (i.e., edgecfdPre and edgecfdSolver 
programs, respectively), while other activities without raw data extraction and index generation support run 
programs (uncompressDataset, preProcessing, and setSolverConfiguration) to lead with compressed datasets, 
configuration files for executing EdgeCFD binaries, and raw data stored on specific file formats (e.g., HDF5 files). 
EdgeCFD Pre consumes an input data set (i.e., mesh) and defines the properties of the mesh (i.e., partitioning for 
parallel processing and nodal reordering for improving data locality) to be employed on the CFD solver (activity 
EdgeCFD Solver). This way, EdgeCFD Solver consumes the generated files by EdgeCFD Pre and computes the 
behavior of a fluid in a specific mesh along a predefined time interval. As a result, this solver produces different 
files in XDMF and HDF5 file formats, which present information about the pressure, velocity and other fluid 
properties in that time interval. More specifically, HDF5 files contain the values for domain-specific attributes 
(e.g., fluid velocity) and XDMF files present some pointers to address each HDF5 file for a specific time steps. Pre 
RDFA and Solver RDFA are activities with raw data file analysis support, which we use to vary the strategy for raw 
data extraction and index generation. For this reason, we have two possible algebraic operators for those activities. 
As presented in previous sections, activities with raw data file analysis (i.e., Pre RDFA and Solver RDFA) may 
extract or index the contents of those files by Raw and RawI operators, respectively.  

Users normally perform this computer simulation with the purpose of analyzing the behavior of the fluid over 
time, which requires raw data analysis from XDMF and HDF5 files. However, due to the huge volume of data from 
those files, the time overhead for storing raw data into a provenance database may be higher than the execution of 
simulation programs [8] itself, when it is considered a total raw data extraction. In these circumstances, users 
extract only a specific region of interest to analyze it (i.e., partial extraction), such as a line of points for the cavity 
problem, considering the boundary conditions and Reynolds number (a non-dimensional number characterizing 
fluid flow) presented in Figure 7(a). This specific region collects velocity components to be compared with existing 
reference solutions (Lo et al. [41]), that is, controlling solution accuracy for a given set of parameters. As results, 
Figure 7(b) presents the horizontal and vertical velocities represented by attributes Vx and Vz, respectively. In our 
experiments, we used the ParaView toolkit with Python API for accessing raw data from the region of interest (i.e., 
region of the generated meshes) in XDMF and HDF5 file formats after the execution of activity EdgeCFD Solver. 



As an input to this Python API, users have to provide the raw data file path and the attributes to be extracted from 
the files. Furthermore, we store this selected data into a tabular file format, which is similar to the CSV file format. 

 
Figure 6. The EdgeCFD workflow specification with associated algebraic expressions for raw data extraction. 

  
Figure 7. EdgeCFD simulation: (a) boundary conditions and (b) cavity flow validation for Reynolds number Re=1000. 

Besides varying CFD workflow specifications, users often need to try some alternative values for their input 
attributes, named as parameter sweep [42]. In CFD simulations, users commonly vary the mesh size, fluid density, 
fluid viscosity, and Inexact Newton solver parameters, such as forcing terms and backtracking globalization 
strategy parameters. When the physical domain is discretized by linear simplexes (tetrahedra), as the mesh size 
grows, the number of vertices and tetrahedra also grows. Note that mesh sizes in a real scenario may be as big as 
several billions of vertices and tetrahedra. A tetrahedron contains four integer numbers (connectivity) to map the 
vertices and another integer for the tetrahedron identifier. A finite element mesh (represented in HDF5 files) 
contains the coordinates in three dimensions of all points, and the connectivity. The outputs are the fluid pressure, 
and the fluid velocity in three components (x, y, and z) at given time steps, also stored in HDF5 format. In our 
experiments, we used three types of input mesh: coarse, medium and fine meshes. The coarse mesh presents 32,109 
vertices and 128,436 tetrahedra; the medium mesh presents 257,852 vertices and 1,031,408 tetrahedra, and fine 
mesh presents 1,145,569 vertices and 4,583,276 tetrahedra.  

6.2. Alternatives of the EdgeCFD Workflow using A-Chiron 
In this paper, we developed different cartridges for A-Chiron, considering raw data file analysis from a specific 

region of interest (e.g., a line of coordinates with domain-specific data) in a CFD simulation, as described in 
Section 6.1. We only modified activity EdgeCFD Solver to support different strategies for raw data extraction and 
indexing, since this activity manipulates the most part of the data generated (HDF5 files) by the EdgeCFD 



workflow execution and presents the most advanced data structures (i.e., meshes). Thus, the following set of 
cartridges were developed and used in our experiments: 

• ParaView: development of an ad-hoc program that accesses raw data in files and extracts them. This 
program uses ParaView toolkit with Python API to extract raw data from XDMF and HDF5 files; 

• FastBit tool: use of FastBit tool to generate bitmap indexes of raw data in XDMF and HDF5 files. To 
access raw data on these file formats, we use ParaView toolkit with Python API; 

• Positional Indexing: development of a program to generate positional indexes from raw data in 
XDMF and HDF5 files, which was based on the positional indexing algorithm of RAW [8]. To access 
raw data on these file formats, we also use ParaView toolkit with Python API. 

Considering the aforementioned cartridges, we developed different versions of EdgeCFD workflow to evaluate 
the support for raw data extraction and indexing, when we vary the algorithm. Figure 6 presents two workflow 
activities, named as Pre RDFA and Solver RDFA, that employ raw data file analysis. Those activities were defined 
as optional activities, since they were disabled (or removed) according to the raw data file analysis support. Thus, 
the following versions were proposed for the EdgeCFD workflow: 

• Baseline: Workflow version without raw data file analysis support. Thus, activities Pre RDFA and 
Solver RDFA are not present in workflow specification. In addition, this workflow version do not 
support query processing with raw data elements; 

• Raw Data Extraction (named as rde): Workflow version with both activities for raw data analysis 
using the cartridge ParaView. Thus, this workflow version enables the extraction of raw data from 
XDMF and HDF5 files (i.e., without raw data indexing); 

• Bitmap Indexing (named as idx-bitmap): Workflow version with both activities for raw data 
analysis. More specifically, this version uses Paraview toolkit and FastBit tool (cartridges ParaView 
and FastBit tool, respectively), which enables accessing raw data from XDMF and HDF5 files and 
generating bitmap indexes from the accessed contents, respectively; and 

• Positional Indexing (named as idx-positional): Workflow version with both activities for raw data 
analysis. Furthermore, this workflow version uses ParaView toolkit and a program for positional 
indexing, which enables the access of raw data from XDMF and HDF5 files and the generation of 
positional indexes following the RAW’s implementation presented in [8], respectively. It means that 
this workflow version uses cartridges ParaView and Positional Indexing. 

6.3. Environment setup 
All experiments presented in this paper were executed in Stampede cluster, a Dell Linux Cluster based on 

6400+ Dell PowerEdge server nodes, each outfitted with 2 Intel Xeon E5 (Sandy Bridge) processors and an Intel 
Xeon Phi Coprocessor (MIC Architecture) at the Texas Advanced Computing Center (TACC).6 Each compute 
node contains 32GB of RAM memory with an additional 8GB of memory on the Xeon Phi coprocessor card. 
Nodes are interconnected with Mellanox FDR InfiniBand technology in a 2-level (cores and leafs) fat-tree 
topology. All experiments performed in this paper used 240 cores considering, exclusively, the Intel Xeon E5 
processors. In this cluster architecture, we instantiate a provenance database using the PostgreSQL DBMS in one of 
the available computational nodes to store provenance and raw data into the DBMS. This database node uses just 
16 cores. Chiron connects its master node to the DBMS node to get activities ready for execution and manage 
provenance data. In Chiron’s code, this connection between the workflow engine and the DBMS is performed by a 
JDBC driver to the PostgreSQL. 

6.4. Experimental results 
We performed 5 experimental evaluations using EdgeCFD workflow (see Section 6.1) with the following 

goals: 
• Time cost according to the amount of raw data extracted from files (named as EXTRACTION): 

Measurement of the time cost for extracting the contents from XDMF and HDF5 files considering two 
granularity levels. For the granularity levels for raw data extraction, we considered partial – 
considering a region of interest as discussed in Section 6.1 – and total extraction of raw data from files. 

                                                        
6 https://www.tacc.utexas.edu 



Since we only consider raw data extraction in this experimental evaluation, we used the workflow 
version rde. However, we also compare this workflow version using different granularity levels 
(partial and total) with the workflow version baseline (i.e., without raw data extraction). 

• Time cost for raw data file analysis (named as RDFA): Measurement of the time cost for extracting 
or indexing raw data (i.e., process named as Raw Data File Analysis or RDFA) with the four versions 
of EdgeCFD workflow using the fine mesh (presented in Section 6.1) as input data. We also compare 
this elapsed time with other time costs, which are associated to store data into provenance database 
(provenance and raw data loading into database) and execute workflow activities; 

• Workload analysis for indexing raw data from files (named as INDEXING): Measurement of the 
time cost to generate indexes of raw data accessed from files with different workloads. Each workload 
considers a specific mesh size in input data set. Each workflow version was executed three times, 
varying the input data set, which assumed the following mesh sizes for analyzing fluid dynamics: 
coarse, medium, and fine meshes (see Section 6.1); 

• Workload analysis for data ingestion into provenance database (named as INGESTION): 
Evaluation of the time cost to store provenance and raw data into provenance database with different 
workloads, similar to the experimental evaluation INDEXING; 

• Query processing (named as QUERY): Analysis of the raw data query capabilities. We present 
queries to analyze domain-specific content (from files); specific related elements from multiple raw 
data files; and performance execution data.  

EXTRACTION. We modeled and executed EdgeCFD workflow with and without raw data extraction as 
presented in Section 6.2 (baseline and rde, respectively). In this experiment, we considered 4,800 alternatives of 
attribute values (i.e., forcing terms and backtracking globalization strategy, and fluid viscosity), which manipulated 
86,400 HDF5 and XDMF files and required approximately 1.09 TB of storage space. As input data set, it was 
considered the fine mesh. To measure the time cost associated to store the contents from raw data files into a 
DBMS, we compare the average elapsed time from 3 executions of each workflow version.  

In this case, we considered the following workflow versions: baseline, rde with total extraction, and rde with 
partial extraction. Table 1 presents the elapsed time for the execution of workflow activities, raw data extraction, 
and data ingestion into DBMS and the total workflow elapsed time. We do not consider the contribution of index 
generation, since no indexing algorithm was applied in this experiment. As expected, the elapsed time for executing 
workflow activities does not present a high variance in those results, since we do not change the complexity of 
simulation model or the mesh size for the CFD simulation. The scheduling algorithms, implemented in Chiron for 
parallel workflow execution, can also explain the variance between elapsed times for workflow activities.  

Table 1. Workflow elapsed time associated to the granularity level for raw data extraction. 

Workflow version 
Total elapsed time in minutes 

Execution of 
workflow activities 

Raw data 
extraction 

Data ingestion 
into DBMS 

Workflow 
Standard deviation 
for workflow time 

baseline 37.22 0.00 2.58 39.80 1.35 
rde with partial 

extraction 
36.72 2.36 16.52 55.60 3.04 

rde with total 
extraction 

41.03 6.21 84.36 131.60 3.66 

 
Still considering the obtained results for this experiment, when we increase the volume of data extracted from 

files (from partial to total extraction), the elapsed time for raw data extraction also increases. In consequence, the 
elapsed time for data storing in the database also increases, since more data have to be loaded into Chiron’s 
provenance database. In CFD domain, users normally analyze some predefined positions in the mesh, such as the 
centerline for a specific Reynolds number attribute value as discussed in Section 6.1, to perform their CFD 
investigations. Considering the execution of a program for extracting this region of interest, it introduces 
approximately 2.36 minutes to the workflow elapsed time. For extracting raw data from XDMF and HDF5 files, 
our program is a Python script that uses ParaView’s Python API. We can also state that raw data extraction elapsed 
time is negligible for all workflow versions, i.e., 4.72% of workflow elapsed time in the worst case. 

Comparing the workflow elapsed time, we note that workflow rde with partial extraction presents a workflow 
elapsed time overhead equals to 39.70% in relation to the baseline (i.e., without RDFA), while this overhead is 
equal to 330.65% for the rde with total extraction. For this reason, other experiments from this paper only consider 



EdgeCFD workflow with partial extraction, when we perform RDFA. Despite of the aforementioned overhead for 
data storing, partial extraction still presents several benefits for domain-specific analyses. As discussed before, this 
analytical capability at runtime provides to the users some features to decide the future of their computer 
simulations. For instance, they may abort a workflow execution or fine-tune some attribute values according to 
their algorithm convergence (as discussed in example from Figure 1). 

RDFA. In this experiment, we executed EdgeCFD workflow to analyze the elapsed time for: the execution of 
workflow activities; raw data file analysis (encapsulate elapsed times for extracting raw data and generating 
indexes); and storing data into DBMS. During the execution, we vary the approach for raw data file analysis, 
considering the 4 workflow versions presented in Section 6.2. More specifically, this workflow was configured to 
use the fine mesh with the purpose of representing a real scenario in CFD domain.  

Figure 8 presents the workflow elapsed time of the execution of the workflow activities, raw data file analysis, 
and data ingestion for each workflow version. With those results, we note that workflow version rde needs 72.20 
minutes more than baseline (i.e., without RDFA), and 24.20 minutes in relation to the worst workflow elapsed time 
using an indexing algorithm (i.e., idx-positional). With rde, we can observe a data storing overhead equals to 69.75 
minutes in relation to the baseline, while the positional and bitmap indexing approaches present overheads equal to 
20.91 and 7.37 minutes, respectively. In addition, we note that the cost for running indexing algorithms in the worst 
case is approximately 79 seconds, which represents 0.13% of the total workflow elapsed time. Therefore, we 
conclude that storing data into DBMS is a severe bottleneck, even with partial raw data extraction. Meanwhile, we 
overview that index generation may reduce the data storing and do not interfere significantly in workflow elapsed 
time. We also emphasize that this better performance for raw data indexing is associated to the data structures from 
attributes in the analyzed raw data files, i.e., meshes in XDMF and HDF5 files. 

    
Figure 8. Raw data file analysis cost using fine meshes. 

INDEXING. This experiment evaluates the index generation, when we vary the number of vertices in the 
input mesh (i.e., mesh size) for the EdgeCFD workflow. So, we analyze the sequential elapsed time for generating 
indexes when we vary the volume of raw data analyzed in files (mesh size) and the indexing algorithm (positional 
indexes and bitmap indexes). Although workflow version rde do not generate indexes using an external program, 
raw data extracted from files is stored in DBMS. In this circumstance, the gathered provenance data have to be 
represented with raw data in the same data model, PROV-Df. So, DBMS has to parse the extracted raw data and 
generate internal indexes to correlate provenance data, raw data files, and extracted raw data. If we employ 
indexing algorithms, such as bitmap or positional for raw data contents from files, the time cost for generating 
internal indexes in DBMS is aggregated with to time cost of generating indexes to the access raw data contents in 
files. In addition, since the baseline do not present raw data extracted from files, they do not generate indexes via a 
DBMS and, consequently, the sequential elapsed time is equal to zero for raw data indexing. 

Considering the experimental results presented in Figure 9, we note that rde has the highest sequential elapsed 
time for indexing raw data, when it is compared to the indexing algorithms. For instance, this approach is 
approximately 2 times slower than the positional indexing algorithm, when we consider fine meshes similar to real 
scenario for CFD simulations. More specifically, we note reduction of 64.95% and 46.39% in time overheads for 



generating indexes, when we used a positional and bitmap indexing algorithms, respectively, instead of an 
algorithm that extracts raw data.  

   
Figure 9. Sequential elapsed time for generating indexes with different workloads. 

If we isolate our analysis only for bitmap and positional indexing algorithms (idx-bitmap and idx-positional, 
respectively), we noted that bitmap indexing algorithms, which we use FastBit tool, presents the performance 
worse than positional indexing algorithm. Due to the many distinct values assumed by the indexed attributes in 
output raw data files from EdgeCFD solver, bitmap indexing algorithm generates sparse bitmap arrays (or bitmaps) 
that means arrays with a large number of columns and many zero values (non-occurrence of a specific attribute 
value). Consequently, this indexing algorithm takes more time to generate indexes and requires more storage space. 
We observe these issues in Figure 9 and when the positional indexing algorithm consumes 4.4 GB less than the 
bitmap indexing algorithm with fine meshes in file system, disregarding storage space from provenance database. 
Although FastBit tool enables users to modify the indexing algorithm, we did not consider these advanced 
configurations of FastBit in our experiments. Therefore, we could reduce elapsed time for index generation using 
FastBit tool, if we generate bitmaps based on some intervals of values (based on inequalities, discussed in Section 
3.2), instead of specific attribute values (based on equations, e.g., attribute pressure = 0.002). 

INGESTION. This experiment evaluates the data ingestion into DBMS, when we vary the number of vertices 
in the input mesh (i.e., mesh size) for the EdgeCFD workflow. The workloads of this experiment are similar to the 
experiment INDEXING. Moreover, for each mesh size, we analyze the elapsed time for ingesting data into the 
provenance database, varying the raw data extraction support and the indexing algorithm (positional indexes and 
bitmap indexes). 

Figure 10 presents the obtained results considering the 4 versions for EdgeCFD workflow. Firstly, we note that 
data ingestion cost increases as well as we increase the mesh size, since more provenance, execution, and raw data 
are stored in Chiron’s provenance database. In all mesh sizes, workflow version rde presents the highest data 
ingestion overhead, since it accesses the contents from raw data files, parses them to a specific data structure, and 
loads this structured data into the provenance database. Different from this workflow version, the approaches with 
indexing algorithms present optimized data structures to address raw data (e.g., integers for positional indexes), as 
discussed in Section 3.2 and experiment INDEXING. This experimental result also demonstrates a reduction of 
52.55% in time overhead for data ingestion into the Chiron’s DBMS, when we used a positional indexing algorithm 
(44.11 minutes) in this workflow with fine meshes, instead of an algorithm limited to the raw data extraction (92.95 
minutes). 

With the idx-bitmap implemented in FastBit tool, we decide to load only the path for index file (i.e., catalog 
that can be used for query processing) generated by this tool to reduce the elapsed time for data ingestion, as 
observed in our experimental result. Moreover, this developed cartridge with FastBit tool requires less storage 
space for provenance database than the algorithm for positional indexing (please refer to Table 2). With fine 
meshes, our database requires 3.20 GB of storage space in the workflow version baseline, 6.40 GB in rde, 3.20 GB 
in idx-bitmap, and 5.73 GB in idx-positional. Although bitmap indexing algorithm presents a reduced data 
ingestion overhead, it takes more time to generate indexes in relation to the positional indexing algorithm 
(significant overhead in relation to the positional indexing algorithm, as presented in Figure 9) and to query raw 
data, since the stored index files need to be accessed into provenance database and use by FastBit’s query processor 
to access the raw data from files. Differently, positional indexing algorithm only uses the stored positional indexes 



into provenance database for accessing raw data from files. Those issues for querying raw data from files are 
discussed in more detail in experiment QUERY. 

  
Figure 10. Data ingestion cost varying mesh size. 

Table 2. Storage space of our provenance database for the EdgeCFD workflow varying the mesh size in input data set. 

Workflow 
version 

Storage space in GB 
Coarse meshes Medium meshes Fine meshes 

baseline 2.88 2.98 3.20 
rde 4.80 5.76 6.40 

idx-positional 5.44 5.56 5.73 
idx-bitmap 3.01 3.05 3.20 

 
QUERY. EdgeCFD workflow retrieves domain-specific data from raw data files. We now focus on the 

workflow versions with RDFA (rde, idx-bitmap, idx-positional) to analyze the potential of dataflow queries to 
debug, fine tune the dataflow execution and analyze some domain-specific data. All queries were performed on 
relations (in provenance database) that contain raw data analyzed from files. We executed 3 SQL queries to 
consider the elapsed time of a workflow activity and the values of some attributes to analyze domain-specific data 
from multiple related raw data files (i.e., management of the data element flow). 

In the first query, named as ELEMENT_FLOW (see Figure 11), we identify multiple values of structured data 
in different meshes after EdgeCFD solver execution with an average velocity in x coordinate (attribute 
VELOCITY_0 in relation RSolverRDFA from Figure 6) greater than 0.40 and less than 0.50 for different values of 
Inexact Newton solver parameter (attribute ISOLVER). We also relate those meshes to the fluid properties 
(attributes viscosity and density). While the density (attribute DENS) and viscosity (attribute VISC) are set to a 
certain value (e.g., 1.00 and 0.001, respectively), different values are shown for the Inexact Newton parameters. 
Thus, this analysis investigates the contents of meshes in CFD simulation considering the data element flow 
between different data transformations (Pre RDFA, Set Solver Configuration, EdgeCFD Solver and Solver RDFA).  

Based on this definition, users are able to restrict their analyses for relevant meshes and to understand the fluid 
velocity in x coordinate over the time, considering specific values of viscosity and density, while they vary forcing 
terms and backtracking globalization strategy (attribute ISOLVER). Figure 12 presents the table from the relational 
provenance database that contains domain-specific data analyzed by this query. More specifically, tables 
RPreRDFA and RSolverRDFA contains raw data contents extracted from files using the algebraic operator Raw or 
RawI (presented in Section 4.3). Moreover, this figure indicates by dashed arrows the relationships between tables, 
which are ensured by the invocation of identifiers of simulation programs (or tasks), i.e., attributes previoustaskid 
and nexttaskid. Regarding those relationships, this query specified by the user is able to investigate the data element 
flow. 



 
 

Figure 11. ELEMENT_FLOW - Analysis of the fluid velocity in x coordinate varying the method of Inexact Newton 
solver. 

 
Figure 12. Tables from relational provenance database and the data element flow investigated in the query 

ELEMENT_FLOW. 

As a second query, named as DATAFLOW (see Figure 13), we select three scalars that represent the 
convergence of the CFD solver execution (attributes in relation RSolverRDFA) considering distinct values for the 
fluid viscosity, while keeping fixed the fluid density, a particular setting of the Inexact Newton solver, and the time 
of CFD solver (i.e., time step). Similarly to the query ELEMENT_FLOW, this kind of analysis allows for the users 
to relate workflow’s output data elements, while it also represent the convergence of the CFD model (attributes 
ITER and RESIDUALS, similar to the Figure 1) with the input data elements, which contains fluid properties like 
fluid viscosity (attribute VISC) and density (attribute DENS) or solver parameters (attribute ISOLVER). Moreover, 
this query results provide a snapshot about the CFD solver execution, since it fixes a specific moment in time 
(attribute TIME), as presented in Figure 14. 

 
 
 

nex$askid	 mesh	 isolver	 visc	 dens	

16	 cavp.1	 -4	 0.0001	 1	

17	 cavp.1	 -4	 0.0002	 1	

18	 cavp.1	 -4	 0.0003	 1	

...	

413	 cavp.5	 4	 0.0008	 1	

414	 cavp.5	 4	 0.0009	 1	

415	 cavp.5	 4	 0.001	 1	

...	

previoustaskid	 nex$askid	 mesh	 dat	

16	 416	 cavp.1	 /config/1/input.dat	

17	 417	 cavp.1	 /config/2/input.dat	

18	 418	 cavp.1	 /config/3/input.dat	

...	

413	 813	 cavp.5	 /config/397/input.dat	

414	 814	 cavp.5	 /config/398/input.dat	

415	 815	 cavp.5	 /config/399/input.dat	

...	

previoustaskid	 nex$askid	 Dmestep	 xdmf	

416	 816	 1	 /solver/1/cavp.1.xdmf	

...	

416	 823	 7	 /solver/7/cavp.1.xdmf	

417	 824	 1	 /solver/8/cavp.2.xdmf	

...	

417	 831	 7	 /solver/14/cavp.2.xdmf	

...	

previoustaskid	 Dmestep	 x	 y	 z	 velocity_0	

816	 1	 0.10	 0.50	 0.50	 0.00000	

816	 1	 0.10	 0.50	 0.50	 0.01000	

...	

823	 7	 0.50	 0.50	 0.98	 0.73546	

823	 7	 0.50	 0.50	 0.99	 0.86773	

823	 7	 0.50	 0.50	 1.00	 1.00000	

...	

824	 1	 0.50	 0.50	 0.00	 0.00000	

824	 1	 0.50	 0.50	 0.01	 0.00000	

...	

831	 7	 0.50	 0.50	 0.98	 0.73546	

831	 7	 0.50	 0.50	 0.99	 0.86773	

831	 7	 0.50	 0.50	 1.00	 1.00000	

...	

RPreRDFA	 RSSConfig	

RECFDSolver	 RSolverRDFA	

average(velocity_0)	

SELECT rprerdfa.ISOLVER, rsolvrdfa.timestep, AVERAGE(rsolvrdfa.velocity_0) as vx 
FROM RPreRDFA rprerdfa, RSSConfig rconf, RECFDSolver rsolv, RSolverRDFA rsolvrdfa 
WHERE rprerdfa.nextActivationID = rconf.previousActivationID 
AND rconf.nextActivationID = rsolv.previousActivationID 
AND rsolv.nextActivationID = rsolvrdfa.previousActivationID 
AND vx>0.40 AND vx<0.50 AND rprerdfa.DENS=1.00 AND rprerdfa.VISC=0.001 
GROUP BY rprerdfa.ISOLVER, rsolvrdfa.timestep; 



 
Figure 13. DATAFLOW – Analysis of the convergence for a CFD simulation, when it is fixed the fluid density, method 

of Inexact Newton solver, and the time step. 

 
Figure 14. Query results from convergence analysis that aid to analyze the number of linear iterations and residual 

norms, when users vary the fluid viscosity. 

If we consider the workflow versions discussed in this paper, only version rde is able to perform those types of 
query without modifications in our query processor (i.e., users can submit queries directly to the DBMS). However, 
idx-bitmap and idx-positional need a specific query processor to be used in queries. This way, it is necessary to 
access raw data from files using the generated indexes (or index file, if it uses FastBit tool) stored into the DBMS 
and to join this data with other results obtained from provenance database (for Chiron’s provenance database, SQL 
queries submitted to the relational DBMS). For all CFD workflow versions with index generation, Chiron’s DBMS 
already provides values for density, viscosity, and method of Inexact Newton solver, while the average velocity 
(from HDF5 files) needs to be accessed by the stored indexes into the output mesh.  

Despite the raw data file analysis mechanism introduced in this paper, which supports index generation, we 
still do not present a formal definition for the query processor using positional and bitmap indexing to support 
those types of queries. Nonetheless, for the experiments presented in this section, we support these queries using an 
ad-hoc program, which decomposes query to generate and run subqueries. These subqueries isolate operations to 
be processed in the DBMS used by Chiron’s provenance database, retrieve raw data from files using the generated 
indexes (e.g., query processor from FastBit tool), and join results from the previous steps. When we use bitmap 
indexing algorithm, we used the query mechanism from FastBit tool to retrieve the attribute values (i.e., raw data 
elements) based on the indexes stored in the Chiron’s provenance database. Furthermore, workflow version without 
RDFA (baseline approach) does not support those queries, since it does not present raw data stored into Chiron’s 
provenance database. Therefore, users are not able to run analytical queries or steer their scientific workflow at 
runtime. 

The third query, named as PERFORMANCE_DATA (see Figure 15), investigates the execution time of the 
solver in specific data transformations. This query presents similar conditions from query DATAFLOW, since it 

SELECT rprerdfa.VISC, rsolvrdfa.ITER, rsolvrdfa.RESIDUALS 
FROM RPreRDFA rprerdfa, RSSConfig rconf, RECFDSolver rsolv, RSolverRDFA rsolvrdfa 
WHERE rprerdfa.nextActivationID = rconf.previousActivationID 
AND rconf.nextActivationID = rsolv.previousActivationID 
AND rsolv.nextActivationID = rsolvrdfa.previousActivationID 
AND rprerdfa.DENS = 1 AND rprerdfa.ISOLVER = 3 AND rsolvrdfa.TIME=1.5; 



considers distinct values for the viscosity, while values are fixed for: density, time step, and a particular setting of 
the Inexact Newton solver. However, this query combines those raw data to the elapsed time of the CFD solver 
execution (the elapsed time for executing an activation from the activity Solver RDFA). In this case, it is possible to 
connect data elements from multiple raw data files with metadata associated to the workflow execution, more 
specifically, the elapsed time for executing a specific activation. This type of query is commonly employed by 
users to monitor the performance of their CFD solver according to the fluid properties or detect errors. Despite 
those queries are concentrated in specific data structures, all of them represent an important contribution of our 
approach: the dataflow management at the logical level (data element flow). 
 

 
Figure 15. PERFORMANCE_DATA – Performance analysis of CFD solver considering a fixed value for fluid density, 

and a particular setting of Inexact Newton solver.  

Table 3 presents the elapsed time of each query for all workflow versions, i.e., total time to access data from 
the Chiron’s provenance database and an external repository (e.g., usage of the query processor of FastBit tool), 
and combine those results. According to the query results, we note that rde presents a better performance in relation 
to the workflow versions with indexing algorithms. However, we observe that the time overhead for the query 
processing using bitmap and positional indexing algorithms, approximately 45.74 minutes in the worst case (query 
DATAFLOW), is compensated by the time overhead from the execution of programs for extracting raw data from 
files, generating indexes and ingesting data into the provenance database, which represents approximately 192.84 
minutes in experiments INDEXING and INGESTION using fine meshes. Our experiment for query processing 
considers the average time of 3 executions of those queries, while users commonly perform these queries several 
times. Considering this scenario, there are some opportunities for adaptive query processing that consider the 
storage of some metadata or query results with the purpose of improving performance as presented in [8]. 

Table 3. Elapsed time of query processing.  

Workflow version 
Query elapsed time (minutes) 

ELEMENT_FLOW DATAFLOW PERFORMANCE_DATA 

rde 0.28 4.39 3.88 
idx-bitmap 0.51 41.89 41.04 

idx-positional 0.56 45.74 44.81 

 Conclusions 7.
Several computer simulations manage a huge volume of raw data within files. This raw data is fundamental for 

analyzing the evolution of the workflow execution and the results of the experiment. However, analyzing raw data 
across several files is far from trivial. These resulting data have to be analyzed with their related data elements from 
multiple raw data files. Solutions based on raw data extraction present a high overhead for loading extracted raw 
data into an external repository (e.g., a file or a database) to be available for the queries. There is a high cost for 
parsing and tokenizing the contents from raw data files due to the large size of these files. To avoid this heavy load, 
some solutions extract raw data on demand based on query submissions [7,8]. However, these existing solutions do 
not manage data element flow, so users are not able to relate data elements from multiple raw data files.  

In our previous work [16], we presented a solution based on the Chiron SWMS with its provenance data 
support to access and query raw data file and element flow. However, our previous solution still presents a 
significant raw data load cost and does not provide for direct access to specific raw data file contents. In this paper, 
we present a dataflow formalism and the definition of operators for raw data extraction and indexing (Raw and 
RawI). We also separate the raw data analysis services from the SWMS into ARMFUL, so that it can be coupled to 
other SWMS. Thus, the proposed approach becomes more generic with new algebraic operators and a general 
definition for dataflows. We define a specialization of W3C PROV so that the provenance database relates raw data 

SELECT rprerdfa.VISC, a.elapsedTime 
FROM RPreRDFA rprerdfa, RSSConfig rconf, RECFDSolver rsolv,  

RSolverRDFA rsolvrdfa, activation a 
WHERE rprerdfa.nextActivationID = rconf.previousActivationID 
AND rconf.nextActivationID = rsolv.previousActivationID 
AND rsolv.nextActivationID = rsolvrdfa.previousActivationID 
AND rsolvrdfa.previousActivationID = a.activationID 
AND rprerdfa.DENS = 1 AND rprerdfa.ISOLVER = 3; 



from multiple files to provenance activities and entities. As a proof of concept, we present A-Chiron, an 
implementation of ARMFUL with Chiron SWMS. The main contributions of ARMFUL are supporting raw data 
extraction and index generation based on the invocation of external programs (ad-hoc programs or third-party 
tools). Two types of index are currently supported in A-Chiron: a positional indexing algorithm inspired on the 
RAW system [8], and a bitmap indexing algorithm using the FastBit tool.  

Our experiments executed a real scientific workflow with numerical simulation techniques for analyzing the 
behavior of A-Chiron in fluid dynamics raw data queries. These experiments measured the overhead of A-Chiron 
and the efficiency obtained by the two proposed indexing techniques. Applying a well-known raw data extraction 
tool (e.g., ParaView tool) and indexing solutions (e.g., FastBit tool) in A-Chiron, we demonstrate reductions of 
52.55% in overhead of data ingestion and 64.95% in the overhead for generating indexes. Runtime queries allowed 
for the domain users to monitor the convergence of their CFD solver and analyze raw data that assume more 
advanced data structures (using indexing algorithms), such as meshes. We explore the query capabilities in 
analyzing raw data from related files. We also show query processing improvements of our indexing techniques 
and dataflow management. Based on our previous workflow executions with Montage, or in bioinformatics and 
geophysics we envision that any workflow that can be modeled as a dataflow and present programs, which access 
raw data from files, can benefit from ARMFUL runtime analytical support. 

Our approach based on ARMFUL has two limitations. One is that all references to raw data files are assumed 
to be valid.  We consider that the contents of raw data files will not be modified after the workflow execution 
although new contents can be added (append-only operation restriction). The second limitation is that the user has 
to anticipate which domain data should be extracted from the raw data files before the execution starts. It may 
happen that some data elements from raw data files may turn out to be not relevant for the user analyses. Still, those 
elements will be extracted or indexed by ARMFUL. To address these limitations, as future work, we intend to 
provide version control to files and adaptive mechanisms to select domain data to be tracked for dynamic 
extracting/indexing raw data from files. 
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