C. Goodson, I. Kozyrakis, K. Markov, L. Olukotun, E. Pileggi et al., Energy efficient abundant data computing: The n3xt 1000x, Rebooting Computing, pp.24-33, 2015.

J. Zhang, Carbon Nanotube Robust Digital VLSI, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol.31, issue.4, pp.453-471, 2012.
DOI : 10.1109/TCAD.2012.2187527

M. Shulaker, Carbon nanotube computer, Nature, vol.292, issue.7468, p.501
DOI : 10.1038/nature12502

C. Berger, Multiwalled carbon nanotubes are ballistic conductors at room temperature, Applied Physics A: Materials Science & Processing, vol.74, issue.3, 2002.
DOI : 10.1007/s003390201279

S. Ch, T. Yamada, K. Kobashi, A. Sekiguchi, D. N. Futaba et al., One hundred fold increase in current carrying capacity in carbon nanotube-copper composite, Nature Communication, vol.4, p.2202, 2013.

X. Chen, Fully Integrated Graphene and Carbon Nanotube Interconnects for Gigahertz High-Speed CMOS Electronics, IEEE Transactions on Electron Devices, vol.57, issue.11, p.57, 2010.
DOI : 10.1109/TED.2010.2069562

A. G. Chiariello, A. Maffucci, and G. Miano, Electrical Modeling of Carbon Nanotube Vias, IEEE Transactions on Electromagnetic Compatibility, vol.54, issue.1, pp.158-166, 2012.
DOI : 10.1109/TEMC.2011.2180024

A. G. Chiariello, A. Maffucci, and G. Miano, Temperature effects on electrical performance of carbon-based nano-interconnects at chip and package level, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.97, issue.1, pp.560-572, 2013.
DOI : 10.1002/jnm.1884

G. F. Close, A 1 GHz Integrated Circuit with Carbon Nanotube Interconnects and Silicon Transistors, Nano Letters, vol.8, issue.2, 2008.
DOI : 10.1021/nl0730965

P. G. Collins, M. S. Arnold, and P. Avouris, Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown, Science, vol.292, issue.5517, pp.706-709, 2001.
DOI : 10.1126/science.1058782

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima et al., Electrical Properties of Carbon Nanotubes Grown at a Low Temperature for Use as Interconnects, Japanese Journal of Applied Physics, vol.47, issue.4, 1985.
DOI : 10.1143/JJAP.47.1985

G. Zhong, J. H. Warner, M. Fouquet, A. W. Robertson, B. Chen et al., Growth of Ultrahigh Density Single-Walled Carbon Nanotube Forests by Improved Catalyst Design, ACS Nano, vol.6, issue.4, p.2893, 2012.
DOI : 10.1021/nn203035x

H. Sugime, S. Esconjauregui, D. Arsie, L. Yang, J. Makaryan et al., Growth Kinetics and Growth Mechanism of Ultrahigh Mass Density Carbon Nanotube Forests on Conductive Ti/Cu Supports, ACS Applied Materials & Interfaces, vol.6, p.15440, 2014.
DOI : 10.1021/am504048h

J. Y. Huang, Atomic-Scale Imaging of Wall-by-Wall Breakdown and Concurrent Transport Measurements in Multiwall Carbon Nanotubes, Physical Review Letters, vol.94, issue.23, 2005.
DOI : 10.1103/PhysRevLett.94.236802

J. Robertson, G. Zhong, S. Hofmann, B. C. Bayer, C. S. Esconjauregui et al., Use of carbon nanotubes for VLSI interconnects, Diamond and Related Materials, vol.18, issue.5-8, p.957, 2009.
DOI : 10.1016/j.diamond.2009.02.008

K. Ghosh, K. Y. Verma, and T. Ch, Implementation of carbon nanotube bundles in sub-5 micron diameter through-silicon-via structures for three-dimensionally stacked integrated circuits, Materials Today Communications, vol.2, pp.16-25, 2015.
DOI : 10.1016/j.mtcomm.2014.11.004

K. Hata, D. N. Futaba, K. Mizuno, T. Namai, M. Yumura et al., Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes, Science, vol.306, issue.5700, p.1362, 2004.
DOI : 10.1126/science.1104962

K. K. Koziol, C. Ducati, and W. A. , Carbon Nanotubes with Catalyst Controlled Chiral Angle, Chemistry of Materials, vol.22, issue.17, p.4904, 2010.
DOI : 10.1021/cm100916m

F. Kreupl, Carbon nanotubes in interconnect applications, Microelectronic Engineering, 2002.

H. Li, Low-resistivity long-length horizontal cnt bundles for interconnect applications, IEEE Transactions on Electron Devices, 2013.
DOI : 10.1109/ted.2013.2275258

H. J. Li, Multichannel Ballistic Transport in Multiwall Carbon Nanotubes, Physical Review Letters, vol.95, issue.8, p.95, 2005.
DOI : 10.1103/PhysRevLett.95.086601

K. Liu, Electrical transport in doped multiwalled carbon nanotubes, Physical Review B, vol.63, issue.16, 2001.
DOI : 10.1103/PhysRevB.63.161404

A. Maffucci, G. Miano, and G. Villone, Performance Comparison Between Metallic Carbon Nanotube and Copper Nano-Interconnects, IEEE Transactions on Advanced Packaging, vol.31, issue.4, pp.692-699, 2008.
DOI : 10.1109/TADVP.2008.2005001

N. Chiodarelli, S. Masahito, Y. Kashiwagi, Y. Li, K. Arstila et al., Measuring the electrical resistivity and contact resistance of vertical carbon nanotube bundles for application as interconnects, Nanotechnology, vol.22, issue.8, p.85302, 2011.
DOI : 10.1088/0957-4484/22/8/085302

A. Naeemi, Compact physical models for multiwall carbon-nanotube interconnects, IEEE Electron Device Letters, vol.27, issue.5, 2006.
DOI : 10.1109/LED.2006.873765

A. Naeemi, Design and Performance Modeling for Single-Walled Carbon Nanotubes as Local, Semiglobal, and Global Interconnects in Gigascale Integrated Systems, IEEE Transactions on Electron Devices, vol.54, issue.1, 2007.
DOI : 10.1109/TED.2006.887210

A. Nieuwoudt, Evaluating the impact of resistance in carbon nanotube bundles for vlsi interconnect using diameterdependent modeling techniques

N. Patil, J. Deng, A. Lin, H. P. Wong, and S. Mitra, Design emthds for misaligned and mispositioned carbon-nanotube immune circuits, IEEE Trasactions on Computer-Aided Design of Integrated Circuits and Systems, issue.10, pp.271725-1736, 2008.
DOI : 10.1109/tcad.2008.2003278

A. R. Harutyunyan, G. Chen, T. M. Paronyan, E. M. Pigos, O. A. Kuznetsov et al., Preferential Growth of Single-Walled Carbon Nanotubes with Metallic Conductivity, Science, vol.326, issue.5949, p.116, 2009.
DOI : 10.1126/science.1177599

S. Esconjauregui, M. Fouquet, B. C. Bayer, C. Ducati, R. Smajda et al., Growth of ultra-high density vertically-aligned carbon nanotube forests for interconnects, ACS Nano, p.7431, 2010.

S. Esconjauregui, R. Xie, M. Fouquet, R. Cartwright, D. Hardeman et al., Measurement of area density of vertically aligned carbon nanotube forests by the weight-gain method, Journal of Applied Physics, vol.113, issue.14
DOI : 10.1063/1.4799417

S. Salahuddin, Transport Effects on Signal Propagation in Quantum Wires, IEEE Transactions on Electron Devices, vol.52, issue.8, 2005.
DOI : 10.1109/TED.2005.852170

T. Wang, S. Chen, D. Jiang, Y. Fu, K. Jeppson et al., Through-Silicon Vias Filled With Densified and Transferred Carbon Nanotube Forests, IEEE Electron Device Letters, vol.33, issue.3, pp.420-422, 2012.
DOI : 10.1109/LED.2011.2177804

T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D. N. Futaba et al., Revealing the Secret of Water-Assisted Carbon Nanotube Synthesis by Microscopic Observation of the Interaction of Water on the Catalysts, Nano Letters, vol.8, issue.12, p.4288, 2008.
DOI : 10.1021/nl801981m

A. Todri, Investigation of horizontally aligned carbon nanotubes for efficient power delivery in 3d ics, IEEE Workshop on Signal and Power Integrity (SPI), pp.1-4, 2014.

A. Todri, Carbon nanotube interconnects for energy-efficient integrated circuits, 2015.
URL : https://hal.archives-ouvertes.fr/lirmm-01446233

A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon nanotube interconnects: Process, design and applications, 2016.

S. Vollebregt, S. Banerjee, K. Beenakker, and R. Ishihara, Sizedependent effects on the temperature coefficient of resistance of carbon nanotube vias, IEEE Trans. Electron Dev, pp.4085-4089, 2013.

X. Li, A. Cao, Y. J. Jung, R. Vajtai, and A. P. , Bottomup growth of carbon nanotube multilayers: Unprecedented growth

R. Xie, C. Zhang, M. H. Van-der-veen, K. Arstila, T. Hantschel et al., Carbon nanotube growth for through silicon via application, Nanotechnology, vol.24, issue.12, p.24125603, 2013.
DOI : 10.1088/0957-4484/24/12/125603

G. Zhang, P. Qi, X. Wang, Y. Lu, X. Li et al., Selective Etching of Metallic Carbon Nanotubes by Gas-Phase Reaction, Science, vol.314, issue.5801, pp.314974-977, 2006.
DOI : 10.1126/science.1133781