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UMR 5558, 69000 Lyon, France
sacomoto@gmail.com

Abstract. With the increasing impact of genomics in life sciences, the
inference of high quality, reliable, and complete genome sequences is
becoming critical. Genome assembly remains a major bottleneck in bioin-
formatics: indeed, high throughput sequencing apparatus yield millions
of short sequencing reads that need to be merged based on their over-
laps. Overlap graph based algorithms were used with the first generation
of sequencers, while de Bruijn graph (DBG) based methods were pre-
ferred for the second generation. Because the sequencing coverage varies
locally along the molecule, state-of-the-art assembly programs now follow
an iterative process that requires the construction of de Bruijn graphs of
distinct orders (i.e., sizes of the overlaps). The set of resulting sequences,
termed unitigs, provide an important improvement compared to single
DBG approaches. Here, we present a novel approach based on a digraph,
the Superstring Graph, that captures all desired sizes of overlaps at
once and allows to discard unreliable overlaps. With a simple algorithm,
the Superstring Graph delivers sequences that includes all the unitigs
obtained from multiple DBG as substrings. In linear time and space, it
combines the efficiency of a greedy approach to the advantages of using
a single graph. In summary, we present a first and formal comparison of
the output of state-of-the-art genome assemblers.

1 Introduction

Ongoing improvements in DNA sequencing technologies have dramatically
increased the throughput of sequencers, thereby authorising the launch of very
large genome projects: the 1000 human genomes for studying natural variations
[15], the 10 K vertebrate genomes for phylogenomics issues [11] or the 10,000 rice
genomes, which aims at getting a genomic overview of all wild and cultivated
rice varieties. If getting the collections of raw sequencing reads becomes easier
and cheaper, assembling complex eukaryotic genomes remains one of the major
practical and theoretical challenges in bioinformatics.
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With the advent of Next Generation sequencing technologies, most of the
sequencing performed yields huge numbers of short reads. For that reason, the
de Bruijn Graph (DBG) approach, also termed as Eulerian sequence assembly,
has been preferred to the Overlap-Layout-Consensus approach, which resorts to
an overlap graph and was used with traditional Sanger sequencing. The DBG
encodes each k-mer of the read set as a node and contains an arc from one node
to another if the k + 1-mer obtained by merging them occurs in at least one
read. A path in the DBG represents the sequence obtained by merging the k-
mers along it. Many assemblers infer unitigs by traversing non branching paths
in the DBG, or contigs if the path chooses some extension when it encounters a
branching node. Unitigs, which are the parts of contigs comprised between two
branching nodes, represent unambiguous regions of the target genome. However,
the choice of the value of k is critical and difficult in practice. Indeed, the density
of sequencing reads along the molecule depends on the amount of sequencing
and fluctuates for technological and biological reasons. Some regions have low
coverage, while others may collapse the expected number of reads several times
because they contain genomic repeats.

1.1 Related Works

Recently, some papers have investigated the power of combining the assembly
made successively by several DBG of different orders, i.e. varying the order k in a
user defined range [kmin, kmax]. The goal is to enable the algorithm to find paths
both in tangled and fragmented regions of the graph. More precisely, (1) using
larger overlaps to find paths in tangled regions, where repeats in DNA create
bubbles and branching nodes because shared k-mers are collapsed in the DBG,
and (2) to find paths between connected components with shorter overlaps. The
algorithms named IDBA and SPAdes do that by building several DBG with
different values of k [1,13]. Their main problem is the necessity to build several
DBG. Currently, state-of-the-art methods exploit multiple sizes of overlaps and
also impose a constraint on the read coverage (i.e. the density of reads in the
sequence region). IDBA [13] builds a DBG of order kmin, computes the set of
unitigs, merges them with the reads, and iterates this procedure for all k until
kmax (see Algorithm 2). SPAdes adopts a slightly different algorithm [1]. For
all values of k between kmax and kmin, it computes in parallel the unitigs of
each DBGk, and makes their union. Finally, it builds DBGkmax

on this set and
outputs its unitigs. The result of the two approaches are similar. In practice,
building that many DBGs is prohibitive, and hence both IDBA and SPAdes
limit themselves to a few (i.e., ≈ 4) values of k.

Boucher et al. propose to extend the BOSS succinct data structure, which
succinctly encodes a DBG, to enable the dynamic update from k to k+1 [2]. Their
practical performance allows to navigate between different orders on bacterial
and a Human dataset. However, the question of which size of overlap/order is
needed in a given region remains. In other works, we have shown how to build
in linear time a DBG of order k from either a Generalised Suffix Tree, a Suffix
Array, or a Truncated Suffix Tree of the reads and exhibited an algorithm to
update k also in linear time [4].
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An alternative and interesting approach, called the manifold de Bruijn graph,
which assigns words of arbitrary length to nodes in the graph, was presented
in [9]. This perspective is different from the one we propose here.

Formally, the question of assembling strings is modelled as the Shortest Com-
mon Superstring, also termed the Shortest Linear Superstring. It requires finding
a single superstring containing the input words as substrings. This well-studied
problem is known to be NP-hard [7] and APX-hard [12]. Many approximation
algorithms have been proposed, which solve a relaxed problem known as the
Shortest Cyclic Cover of Strings (SCCS) – see Sect. 2 for a definition of a cyclic
cover. SCCS is usually solved in polynomial time with the Hungarian algorithm;
we have recently exhibited a linear time algorithm for SCCS and introduced
the Superstring Graph for this sake [5]. To handle the fact that DNA is double
stranded, we have extended this algorithm to the case where either the input
word or its reverse complement (in the biological sense) must appear as a sub-
string in the cyclic cover [3].

1.2 Summary of Our Contribution

Let P be a set of words on a finite alphabet. The well-known shortest super-
string problems ask for a either cyclic or linear superstring of minimal length,
and the Shortest Cyclic Cover problem asks for a collection of cyclic strings
of minimal norm (cumulated length). Here, with the Shortest Mixed Cover of
Strings or simply Shortest Mixed Cover, we relax the requirements and accept a
solution made of a collection of strings that can be linear or cyclic. We introduce
a graph that represents all the maximal overlaps between the input words in
small space: the Truncated Hierarchical Overlap Graph (THOG). We show first
that the Superstring Graph is embedded in the Truncated Hierarchical Overlap
Graph of P ; and second, that it captures the set of Mixed Covers built by a
greedy algorithm that agglomerates words using their largest overlaps ranked in
decreasing order.

As mentioned above, Generalised Suffix Tree can also serve to build the DBG
of order k for P [4]. However, classical DBG are limited in the size of overlaps,
which must be of length k− 1. This is a strong limitation, and a natural remedy
is to consider overlaps of different sizes, by extending the framework of DBG.
Current state-of-the-art proposals successively build and explore several DBG
to compute unitigs with different overlap sizes [1,13]. Our proposal is to capture
multiple overlap sizes in a single graph and to explore its paths to compute
unitigs.

Finally, we show that unitigs built with the IDBA approach are substrings of
those found in our Superstring Graph. Moreover, we characterise when a unitig
from the SG captures an overlap missed in a multiple DBG approach. It can be
proven that IDBA solution is contained in the SG solution. A strong point of the
SG algorithm is to retain the sensitivity of variable order DBG without building
several graphs, which remains computationally prohibitive. Indeed, it is stated in
[13] that exploring the whole range of orders [kmin, kmax] is not feasible on large-
scale data. In fact, each iteration in IDBA takes linear time in ||P ||, while the
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SG algorithm takes overall linear time in ||P ||. Our contributions are theoretical,
but our solution has a linear space complexity (Theorem3). For simplicity, here
we disregard the fact that one usually does not know from which DNA strand
the input reads of an assembly problem come from. Hence, both the reads and
their reverses complement are considered in assembly problem. However, the
approach described in [3] shows that the results developed here can be extended
to handle the case of missing information about the DNA strand. Due to space
constraints, the proof of Theorems 1, 2, and 3 are omitted here.

1.3 Notation and Basic Definitions

About Strings. We consider two kinds of strings: linear and cyclic strings. For
a string s, the length of s is |s|. For a linear string s and i ≤ j in {1, . . . , |s|},
s[i, j] is the linear substring of s beginning at the position i and ending at the
position j, s[i] is the substring s[i, i], s[1, j] is a prefix of s and s[i, |s|] is a suffix
of s. A prefix (or suffix) s′ of s is proper if s′ is different of s. For another linear
string t, the maximum overlap from s to t, denoted by ov(s, t), is the longest
substring that is a proper suffix of s and a proper prefix of t. The prefix from s to
t, denoted by pr(s, t), is such that s = pr(s, t)ov(s, t) and the suffix from s to t,
denoted by suf(s, t), is such that t = ov(s, t)suf(s, t). The merge of s with t using
their maximal overlap is denoted s � t and is equal to pr(s, t)ov(s, t)suf(s, t).
Since we consider only maximal overlaps, we simply use the term overlap. For
simplicity, we denote the concatenation of s with t simply by st.

We say that a linear string w is a substring of a cyclic string c if there
exists wc a linear permutation of c such that w is a substring of w∞

c (where
w∞

c = wcwc . . .). To ease distinction between linear and cyclic strings, we will
denote a cyclic string c by 〈c〉.

For a set P of finite strings, we define and denote the norm of P by ||P || :=∑
w∈P |w|. For two strings x and y, we denote by x ⊂sub y the fact that x is

a substring of y. We denote the set of factors of P by Fact(P ) := {w | ∃si ∈
P, w ⊂sub si}. Moreover, for k an integer, we denote by Factk(P ) the subset of
Fact(P ) made of strings of length k.

About permutations. Let E be a finite set. A permutation on E is a bijection from
E onto itself. Let σ be a permutation on E. The partition of E due to σ, which
is denoted by Partσ, is a partition (E1, . . . , Ep) of E of maximal cardinality,
and such that for any i in [1, p] and for any x of Ei and for any integer k, one
has σk(x) ∈ Ei. Then, one can define p permutations on E, (σ1, . . . , σp), such
that for any i in [1, p], for any x in E one has σi(x) := σ(x) if x ∈ Ei, and
σi(x) := x otherwise. Then (σ1, . . . , σp) is called a decomposition of σ in circular
permutations.

Throughout the article. let P := {s1, . . . , sn} be a set of input words, and
||P || denotes the norm of P . Without loss of generality, we always assume that
P is factor-free, i.e. for any two strings of P , none is a substring of the other.
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2 Permutations and Truncated Hierarchical Overlap
Graph

Let P = {s1, . . . , sn} be a finite set of linear strings over a finite alphabet. We
can define two types of covers:

– a cyclic cover of strings of P is a set C = {〈c1〉, . . . , 〈cp〉} of cyclic strings
such that each string si of P is a substring of a 〈cj〉 of C, i.e., si ⊂sub 〈cj〉.

– a mixed cover of strings of P is a set C = {〈c1〉, . . . , 〈cq〉, lq+1, . . . , lp} of cyclic
and linear strings such that each string si of P is a substring of an element of C.

Obviously, one could consider also linear covers of strings. However, by con-
catenating the strings of a shortest linear cover one gets a shortest linear super-
string. Thus, the problem of finding a shortest linear string cover is as hard and
as difficult to approximate as the shortest linear superstring problem (NP-hard
[7] and APX-hard [12]). Another reason explains our interest in mixed cover
of strings: state-of-the-art assemblers like IDBA or SPAdes can yield linear and
cyclic strings. Indeed, the de Bruijn Graph may contain an isolated cycle. Hence,
their result is indeed a mixed cover of strings. Clearly, a cyclic cover is a mixed
cover, and the norm of a shortest cyclic cover of P is at most that of a shortest
mixed cover of P . To our knowledge the problem of finding a shortest mixed
cover of strings has not yet been studied.

It is known that for each optimal solution and each greedy solution of SCCS,
there exists a permutation such that this permutation induces this cyclic cover
of strings [5]. Figure 1 shows how to build a cyclic cover of strings from a permu-
tation. Indeed, let P = {s1, . . . , sn} be a set of strings which is factor-free and
let σ be a permutation. We define

CC(P, σ) = {circular(P1, σ1), . . . , circular(Pm, σm)}
where the decomposition in circular permutation of σ is σ1 . . . σm, Partσ =
{P1, . . . , Pm} is such that for any i in [1,m], Pi is the element of Partσ cor-
responding to σi, and for all i between 1 and m where Pi = {si1, . . . , si|Pi|}:

circular(Pi, σi) := 〈pr(si1, siσi(1)).pr(siσi(1), siσ2i (1)). . . . .pr(s
i

σ
|Pi|−1
i (1)

, si1)〉.

We denote by Overlap(CC(P, σ)) the set of overlaps used by the cyclic cover
of strings CC(P, σ), i.e. Overlap(CC(P, σ)) = {ov(si, sσ(i)) | ∀i ∈ {1, . . . , n}}.

For any cyclic cover of strings w of P , we can map each word of P on w,
and create the permutation σw defined so that on the mapping sσw(i) is just
after the string si. Hence, we get that |CC(P, σw)| ≤ |w|. Indeed, CC(P, σw)
always merges the input words using their maximal overlaps, while w can use
any overlap. Thus, we can restrict the problem SCCS to consider only cyclic
covers induced by permutations.

Some assemblers consider that a subset of overlaps are unreliable, for example
if these are too short [1,13]. In fact they forbid this subset of overlaps. We adapt
our definitions to this case and introduce a set F representing the maximal



44 B. Cazaux et al.

{ababb, aab, abba, abaa}
P (

1 2 3 4
3 1 2 4

)
+

σ

ababb abba aab abaa
1 3 2 4

pr(1, 3) pr(3, 2) pr(2, 1) pr(4, 4)

CC(P, σ) = ab abb a aba
{

,
}

Fig. 1. From a permutation to a cyclic cover. Example with the input set P :=
{ababb, aab, abba, abaa}. Instance of a cyclic cover of P obtained with a permutation
σ. We obtain the cyclic cover CC(P, σ) = {〈ababba〉, 〈aba〉}. (Color figure online)

elements among all forbidden overlaps. All substrings of elements of F will be
forbidden. We define variants of shortest cover problems that are constrained by
the set of forbidden overlaps (see Definitions 1 and 2).

Definition 1 (Constrained Shortest Cyclic Cover of Strings (CSCCS)).

– Input: Two sets of linear strings P and F .
– Output: A cyclic cover of strings C induced by a permutation of P such that

Overlap(C) ∩ Fact(F ) = ∅, which minimises ||C||.
Note that if we assume two elements x, y of F such that y is a substring of x,

Overlap(C) ∩ Fact({x}) = ∅ implies that Overlap(C) ∩ Fact({y}) = ∅. Hence
from now on, F is assumed to be factor-free. Unfortunately, some instances of
CSCCS lack solutions, and for other instances, the greedy algorithm (Algo-
rithm1) does not find any solution (see Example 1).

So, we define the following problem which is a relaxed formulation of
CSCCS.

Definition 2 (Constrained ShortestMixedCover of Strings (CSMCS)).

– Input: Two sets of linear strings P and F ,
– Output: A mixed cover of strings C induced by a permutation of P such that

Overlap(C) ∩ Fact(F ) = ∅, which minimises ||C||.
We denote by CMC(P,F) the set of mixed covers C induced by a permuta-

tion of P such that Overlap(C) ∩ Fact(F ) = ∅. Let OPTCMC(P, F ) be the set
of optimal solutions of CSMCS for (P, F ).
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This time, we can determine easily whether CMC(P,F) is empty or not (see
Proposition 1 and Example 1). We get the same result as for the greedy solutions
of CSMC(P,F) (see Theorem 1 and Example 1).

Proposition 1. CMC(P,F) is empty if and only if Fact(F )∩P is not empty.

Example 1. 1. Let P = {abba,baab,bab} and F = {b}, Then the set of cyclic
covers of P constrained by F is empty but {〈abba〉,bab} ∈ CMC(P,F),

2. LetP ={abec,bed, cfabe,dgab} andF ={b},OPTSCCS(P )= {〈ecfabedgab〉};
however, the greedy algorithm for CSCCS gives no solution but the greedy
algorithm for CSMCS gives {〈cfabe〉,bedgab} as a solution.

From now on, we assume that F ⊆ Fact(P ) \ P and F is factor-free.
Let P := {s1, . . . , sn} be a factor-free set of words, and F ∈ Fact(P ) \ P .

For any permutation σ of {1, . . . , |P |}, we can obtain a cyclic cover of strings.
We ask when such a cyclic cover satisfies the constraint of F , i.e., when it uses
a forbidden overlap. For any circular permutation σc in a decomposition of σ in
circular permutations, we define a set of violations, denoted V iolations(P, F, σc).
If this set is empty, the induced cyclic cover is a solution of CSCCS and of
CSMCS. If V iolations(P, F, σc) contains only one violation, say i, then the cyclic
string can be transformed into a linear string satisfying the constraint of F . The
transformation is as follows: the forbidden overlap occurs between si and sσc(i).

One builds the linear word by cutting the word circular(P, σc) between the
words si and sσc(i) to obtain:

linear(P, σc, i) := pr(sσc(i), sσ2c(i)
) pr(sσ2c(i)

, sσ3c(i)
) . . . pr(sσn−1

c (i), si) si

Let F ⊆ Fact(P ) and σc be a circular permutation of {1, . . . , n}. We set
V iolations(P, F, σc) := {i ∈ {1, . . . , n} | ∃f ∈ F such that ov(si, sσc(i)) ⊂sub f}.
Violations are the overlaps used in the cyclic cover (induced by σ) that are
substrings of an element of F .

We say that a circular permutation σc is coherent with (P, F ) if and only if
|V iolations(P, F, σc)| ≤ 1. We say that a permutation σ is coherent with (P, F )
if each circular permutation in a decomposition of σ in circular permutations
is coherent with (P, F ). For any circular permutation σc that is coherent with
(P, F ) we define the Mixed Cover (MC) induced by σc on (P, F ) as

MC(P, F, σc) :=

{
circular(P, σc) if |V iolations(P, F, σc)| = 0,
linear(P, σc, i) if V iolations(P, F, σc) = {i}.

and for any permutation σ coherent with (P, F )

MC(P, F, σ) := {MC(P1, F, σ1), . . . ,MC(Pm, F, σm)}

where (σ1, . . . , σm) is a decomposition of σ in circular permutation, and Partσ =
{P1, . . . , Pm} is such that for any i in [1,m], Pi is the element of Partσ corre-
sponding to σi. Let PMC(P,F) denote the subset of Mixed Covers induced by
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a permutation coherent with (P, F ). We obtain the following proposition, which
means that (1) if there is a solution to CSMC, there also exists one solution
induced by a coherent permutation, and (2) an optimal solution is induced by a
coherent permutation.

Proposition 2. Let P be a factor-free set of words and let F ⊆ Fact(P ). One has

1. PMC(P,F) = ∅ if and only if SMC(P,F) = ∅.
2. OPT(P,F) ⊆ PMC(P,F) ⊆ SMC(P,F),

Let us introduce the Truncated Hierarchical Overlap Graph (THOG), which
is a generalised version of the Hierarchical Overlap Graph defined in [3].

Let Ov(P ) be the set of maximum overlaps from a string of P to another
string or the same string of P . Let Ov∗(P, F ) be Ov(P ) minus the set of all
factors of forbidden overlaps; in other words, Ov∗(P, F ) := Ov(P ) \ Fact(F ).
Now, we define the Truncated Hierarchical Overlap Graph (THOG) of (P, F ), in
which the nodes are either words of P or allowed overlaps between these words,
and an arc links a string to the node representing its maximal suffix or the
maximal prefix of a string with this string. Two examples of THOG are shown
in Fig. 4a and c.

Definition 3. The Truncated Hierarchical Overlap Graph of (P, F ), denoted by
THOG(P, F ), is the oriented graph (P ∪ Ov∗(P, F ), R ∪ B) where:

R = {(x, y) ∈ (P ∪ Ov∗(P, F )) × (P ∪ Ov∗(P, F )) | y longest suffix of x in P}
B = {(y, x) ∈ (P ∪ Ov∗(P, F )) × (P ∪ Ov∗(P, F )) | y longest prefix of x in P}
R denotes the set of red arcs, and B the set of blue arcs.

It is known that overlaps between two strings are explicit nodes in the Gen-
eralised Suffix Tree of these words [8]. Hence, all nodes of THOG are explicit
nodes of the Generalised Suffix Tree of P . Moreover, a blue arc is a contracted
path of edges of the suffix tree, while a red arc is a contracted path of suffix
links. Altogether, we can built THOG in linear time.

Proposition 3. The graph THOG(P, F ) can be built in linear time in ||P ||.
Let si and sj be two words of P . We define the RB-path from si to sj , denoted

by RB-path(si, sj), as the path in THOG(P, F ) going from si to ov(si, sj) using
only arcs from R, and then from ov(si, sj) to sj using only arcs of B. Let σ be
a permutation of P coherent with (P, F ). Then, for any i between 1 and n, the
RB-path from si to sσ(i) is well defined and exists in THOG(P, F ).

THOG construction algorithm We execute Gusfield’s algorithm for finding max-
imal overlap nodes in the Generalised Suffix Tree (GST) of P [8] and along the
way we mark the words of F . This gives an explicit list of the THOG nodes. We
then perform a depth first traversal of the GST (using the suffix tree arcs) to set
all blue arcs of the THOG. Finally, we perform the same using the tree of suffix
links to the set of all red arcs. Altogether it takes linear time in the GST of P .
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3 Greedy Algorithm and Superstring Graph

Here, we define the Superstring Graph and introduce the greedy algorithm for
the problem Shortest Mixed Cover of Strings (SMC) of a set P of words. The
difference between the norm of the input and the norm of a solution is the com-
pression achieved by this solution. Finally, we show that a Eulerian multi-path
of the SG and the associated set of words form a solution of SMC, which approx-
imates the optimal compression by a factor 1

2 , as later shown in Theorem 1.
We define the greedy algorithm for CSMCS (see Algorithm1).

Algorithm 1. The greedy algorithm for CSMCS
Input: P a set of linear words and F ⊆ Fact(P ) Output: C′ ∈ PMC(P,F)1

C := ∅2

while Ov∗(P, F ) is not empty do3

Select u and v of P which have the longest overlap (u can be equal to v)4

P := P \ {u, v}5

if u = v (i.e. u � v is cyclic) then C := C ∪ {u � v};6

else P := P ∪ {u � v};7

return C ∪ P8

Let Greedy(P,F) denote the set of solutions of algorithm greedy for CSMCS
(for simplicity, we say greedy solutions). One has the following theorem, whose
third statement gives the 1

2 -approximation ratio of compression of the greedy
algorithm. To prove this ratio, one can define a subset system for CSMCS,
which turns out to be 2-extendible. The ratio of 1

2 follows directly from this
2-extendibility [10] (see [6] for details). Note this greedy approximation ratio
of 1

2 for the compression is the same as for the well-studied Shortest Common
Superstring problem [6,14]. These considerations support Theorem 1 (omitted
proof).

Theorem 1. Let P be a factor-free set of words and let F ⊆ Fact(P ). One has

1. Greedy(P,F) ⊆ PMC(P,F) ∩ {σ permutation coherent with (P, F )},
2. Greedy(P,F) = ∅ if and only if SMC(P,F) = ∅.
3. Let wg ∈ Greedy(P,F) and wo ∈ OPT(P,F). Then ||P || − wg ≥ 1

2 (||P || −
wo).

The inclusions of set of solutions are illustrated in Fig. 2. Section 3 states how
greedy solutions can be found in linear time.

Let σ be a permutation that is coherent with (P, F ) and such that
MC(P, F, σ) is a greedy solution for CSMCS. Let us denote by G(σ) the sub-
graph that consists of the set of RB-paths from si to sσ(i) for all i in [1, n]. As
in [5], one can show that any two permutations that are coherent with (P, F )
and correspond to a greedy solution for CSMCS, yield the same graph. We call
this graph the Superstring Graph (SG) and define it as follows. Two examples
of superstring graphs are shown in Fig. 4b and d.
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Definition 4 (Superstring Graph). The Superstring Graph of (P, F ),
denoted SG(P,F), is the graph G(σ) where σ is a permutation that is coherent
with (P, F ) and corresponds to a greedy solution for CSMCS.

As the Superstring Graph of (P, F ) is embedded in THOG of (P, F ), it can
clearly be built in a time linear in ||P ||.
Theorem 2. The Superstring Graph of (P, F ) can be built in timeO(||P ||+ ||F ||).

4 Comparing the Superstring Graph with a Multiple
Order DBG Approach

The IDBA assembler iteratively builds DBG basically as depicted in Algorithm 2.
The only difference concerns the step for removing the so-called short dead-ends
in the DBG at each iteration. As the name says, a dead-end is a simple path
starting after a branching node and ending in a node having a single neighbour.
IDBA removes dead-ends shorter than 2k, which are likely due to nucleotidic
errors [13]. Such a dead-end would make up a very short, biologically meaning-
less, unitig. However, for the simplicity of the proofs, we consider a simplified
algorithm without short dead-end removal. As usual, we require that the input
set P of words is factor-free.

Algorithm 2. Algorithm IDBA assembler where DBm(P, k) is the de
Bruijn Graph of order k (i.e. , dBG+

k ) where we remove all nodes which
represent a k-mer of coverage smaller than m.
Input: A set P of reads factor-free Output: A set Ukmax

of unitigs1

for kmin ≤ k ≤ kmax do2

Hk = DBm(P, k)3

Uk = Unitigs Hk4

P = P ∪ Uk5

return Ukmax
6

About IDBA algorithm (Algorithm 2)

Complexity. For each k between kmin and kmax, the algorithm needs to look at
all the strings of the instance, i.e. ||P ||. At the end, the complexity of Algorithm 2
is at least linear in (kmax − kmin) × ||P ||.
Theoretical Solution. Nothing prevents a unitig of DBm(P, k) from being a
cycle. Let w be a string. We denote the cover of w in P by CovP (w) := {(i, j) |
∃ri ∈ P such that w = ri[j : j + |w|]}. Let P (k,m) denote the set of substrings
of P satisfying, for any w ∈ P (k,m): |w| ≤ k, and CovP (w) ≥ m, and for all
word w′ such that w is a proper substring of w′, CovP (w′) < m or |w′| > k.
Hence, we have that Ukmax

, which is a set of cyclic and linear strings, is in fact
a mixed cover of string of P (kmax + 1,m) with the set of (kmin − 1)-mers, i.e.
Factkmin−1(P ), is taken as forbidden overlaps.
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We are going to use the Superstring Graph on the Truncated Hierarchical
Overlap Graph to build in linear time in ||P || an improved mixed cover for the
same instance, that is for strings of P (kmax + 1,m) with the set of (kmin − 1)-
mers taken as forbidden overlaps. The mixed cover obtained from the superstring
graph is smaller in terms of inclusion, of cardinality and of norm than Ukmax

(see
Theorem 3).

Let SG(P, kmax, kmin,m) be the Superstring Graph of (P (kmax +
1,m), Factkmin−1(P )). A RB-route of a Superstring Graph is a sub-path of a
sequence of RB-paths.

Proposition 4. We can build SG(P, kmax, kmin,m) in linear time in ||P ||.
Proof. With the Generalised Suffix Tree of P , we can build P (kmax + 1,m)
in linear time in the size of P . We can build the Superstring Graph of
(P (kmax +1,m), Factkmin−1(P )) in linear time in ||P (kmax +1,m)||, because in
this case, we can determine the nodes of the tree corresponding to the elements
of Factkmin−1(P ) during the construction of the GST of P without reading these
strings. Hence, it improves on the complexity of Theorem2, and show that one
can build the SG in linear time in ||P ||.

Let USG be the set of labelled maximal RB-routes (u, v) of the
SG(P, kmax, kmin,m) such that (dinR (u) = dinB (u) = 1 or dinR (u)+dinB (u) ≤ 1) and
doutR (v) + doutB (v) ≤ 1. Here, dinR (u) denotes the in-degree in number of red arcs
of node u in the superstring graph, and doutR (u) the out-degree of u in number
of red arcs. The notation dinB (u) and doutB (u) are defined similarly for blue arcs.

Proposition 5. For all c ∈ Ukmax
, there exists x ∈ USG such that c ⊂sub x.

Proposition 6. For all x ∈ USG, ∃c1, . . . , cq ∈ Ukmax
such that x = c1� . . .�cq

and for all i between 1 and q − 1, |ov(ci, ci+1)| ≥ kmin.

Theorem 3. We can build a mixed cover that includes a solution of Algorithm2
in time in O(||P ||), and in linear space in the size of the de Bruijn Graph of
order kmax of P .

Now, we know that the words of USG, the solution provided by the SG,
contains all unitigs of IDBA as substrings. Some words of USG are exactly equal
to some unitigs of IDBA. However, the remaining words of USG, contain strictly
more than one unitig of IDBA as substring. In other words, they elongate the
unitigs of IDBA by capturing an overlap missed by IDBA. We formalise this
result in the next proposition.

Proposition 7. (Figure 3) For all x ∈ USG, ∃c1, . . . , cq ∈ Ukmax
such that x =

c1 � . . . � cq and for all i between 1 and q − 1, there exists y ∈ USG such that
∃c′

1 and c′
2 ∈ Ukmax

such that c′
1 � c′

2 ⊂sub y and ov(ci, ci+1) is a strict prefix of
ov(c′

1, c
′
2).
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Fig. 2. Inclusions of sets of solutions
of the greedy algorithm for CSMCS.
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Fig. 3. Illustration of Proposition 7.
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Fig. 4. Examples of truncated hierarchical overlap graphs ((a) and (c)) and of asso-
ciated Superstring Graphs ((b) and (d)) for P := {aacbb, bbdaa, aeb, bfa}. (a) and
(b) have instance (P, F ) with F := ∅. (c) and (d) have instance (P (2, 1), F ) with
F := Fact1(P ); F forbids any overlap of length 1 or 0. (Color figure online)

5 Conclusion

State-of-the-art genome assemblers, like IDBA or SPAdes, build multiple DBG
with distinct values of k to improve the quality of assembled unitigs. In a formal
manner, we compared the result of IDBA with the sequences obtained using the
Superstring Graph of an input set P of reads. The SG is a recently introduced
digraph with labels on its arcs, which is embedded in a Truncated Hierarchical
Overlap Graph (THOG) of P . The SG yields solutions for Constrained Mixed
Cover that greedily merge the input words using their maximal overlaps; hence,
we get a 1

2 -approximation ratio for the compression. We show that the unit-
igs output by IDBA are always substrings of the sequences assembled with the
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SG, and that the converse is false. Indeed, some assembled sequences from the
SG extend IDBA unitigs by merging words with smaller overlaps that cannot
be incorporated in IDBA. For the first time, a theoretical framework helps to
understand and to characterise formally the output of real-world assembly soft-
ware that adopts a multiple-order de Bruijn graph approach. It also provides a
way to improve on their results. Moreover the Superstring Graph offers the pos-
sibility to dynamically extend the range of overlap lengths considered without
recomputing the unitigs from scratch. It can be adapted to cope with reverse
complement of the reads/k-mers using the approach of [3]. The main advantage
of the SG, which is linear in the input size, over IDBA is to concentrate all
overlaps needed to build a similar assembly in one single graph.
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