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Introduction

Revolution in DNA sequencing
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Introduction

Third generation technologies

©Oxford Nanopore

PacBio: Pacific Biosciences
up to 25 Kbp

Oxford Nanopore MINion
up to 50 Kbp

Moleculo synthetic reads
up to 10 Kbp
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Introduction

Overview of sequencing techniques

Name Read Lg Time Gb/run pros / cons

454 GS Flex 700 1 d 0.7 long / indels

Illumina HiSeq X 2*300 3 d 200 short/cost

Illumina NextSeq 500 2*300 3 d 150 PE, single/idem

SOLID (LifeSc) 85 8 d 150 long time

Ion Proton 200 2 h 100 new

Illumina TrueSeq 10-8500 − 4 synthetic reads

PacBio Sciences 10-40000 0.3 d 3 high error rate

Oxford MINion 10-50000 1 d 0.8 high error rate

The vast majority of errors for PacBio and Oxford are insertions & deletions.
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Introduction

Context

3rd generation sequencing technologies yield longer reads

PacBio Single Molecule Real Time sequencing:
much longer reads (up to 25 Kb) but much higher error rates

Error correction is required
1 self correction: using long reads only
2 hybrid correction: using short reads to correct long reads
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Introduction

Hybrid correction methods

[Koren et al, Nat. Bio. 2012]

Short reads are aligned to long reads

a consensus is applied to correct part of the long read
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Introduction

Self correction methods

[Chin et al, Nat. Met. 2013]

Long reads are corrected with shorter reads from same technology
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Introduction

Other hybrid PacBio error correction programs

PacBioToCA [Koren et al. 2012]

AHA [Bashir et al. 2012]
inside the assembler

LSC [Au et al. 2012]
compress homopolymers before alignment

All follow an alignment based strategy (e.g. BLAST like)

proovread [Hackl et al. 2014]: alignment & chimera detection

Jabba [Miclotte et al. 2015]: LoRDEC’s approach + MEM based alignment
variable length seeds for anchoring the LR on graph

CoLoRMap [Haghshenas et al. 2016]: alignment & local assembly
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Introduction

Hybrid correction and assembly

ECtools [Lee et al. bioRxiv 2014]
assemble SR into unitigs, assemble unitigs and LR with Celera

Nanocorr [Goodwin et al. bioRxiv 2014]
recruit SR for a LR using BLAST,
select SR with Longest Increasing Subsequence (LIS)
compute consensus
assembly with Celera

NaS (Nanopore) [Madoui et al BMC Genomics 2015]
recruit SR for each LR and reassemble the LR sequence
complex pipeline

All need to assemble SR
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Introduction

Motivation

LR correction programs ”require high computational resources
and long running times on a supercomputer even for bacterial
genome datasets”.

[Deshpande et al. 2013]

For a 1 Gb plant genome, correction of 18x PacBio with 160x
Illumina required 600000 CPU hours with EC-tools !
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Introduction

Contributions

LoRDEC

a new and efficient hybrid correction algorithm

based on De Bruijn Graphs (DBG) of short reads

avoids the time consuming alignments (of SR on LR)

LoRMA

a complementary tool to LoRDEC for self correction of long reads

a pipeline that iterates LoRDEC and apply LoRMA
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Introduction

Aperçu of raw and corrected PacBio reads
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Aperçu of raw and corrected PacBio reads

Rivals (CNRS Univ. Montpellier) Long read correction 7th Nov. 2016 14 / 59



LoRDEC algorithm
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LoRDEC algorithm

Algorithm overview

1 build a de Bruijn graph of the short reads

the graph represents the short reads in compact form

2 take each long read in turn and attempt to correct it

1 correct internal regions,

2 correct end regions of the long read
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LoRDEC algorithm

Example of short read DBG of order 3

gga

gac acg cga gag

aac gaa agc

caa gca

S = {ggacgaa, cgaac , gacgag , cgagcaa, gcaacg}
The DBG is built from the set of short reads (Illumina)

using the GATB library.
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LoRDEC algorithm

Filtering k-mers of short reads

Filtering k-mer rationale

Because errors are randomly positioned

Erroneous k-mers have low expected occurrence numbers

Threshold based filter s: minimum number of occurrences in short reads

All k-mers present more than s times are called solid k-mers

and kept in the de Bruijn Graph
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LoRDEC algorithm

Example of filtered short read DBG of order 3

raw graph filtered with s = 1

gga

gac acg cga gag

aac gaa agc

caa gca

gac acg cga gag

aac gaa

caa gca

S = {ggacgaa, cgaac , gacgag , cgagcaa, gcaacg}
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LoRDEC algorithm

Long read sequence is partitioned

inner
region

head tail

sources targets

◦: solid k-mers of the long read

Solid k-mers are a priori correct piece of the sequences

we correct the region between two solid k-mers

Rivals (CNRS Univ. Montpellier) Long read correction 7th Nov. 2016 20 / 59



LoRDEC algorithm

Long read is corrected with DBG

bridge path

s1 t1

path not found

s2 t2

extension path

s3

For each putative region of a long read:

align the region to paths of the de Bruijn graph

find best path according to edit distance

limited path search
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LoRDEC algorithm

LoRDEC: Correcting read ends

Find a path in DBG starting from the
extreme solid k-mer

Maximize length of the prefix of the end to
correct

Minimize edit distance between the path
and the prefix of the end

Find best extension maximizing an
alignment score

bridge path

s1 t1

path not found

s2 t2

extension path

s3
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LoRDEC algorithm

Correction algorithm

1 Correct inner region:

1 depth first search traversal of paths between source and target k-mers

2 node wise: minimal edit distance computation with seq region

2 Correct end region:

3 Paths optimisation:

1 build a graph of all correction paths for current read

2 finding a shortest path between the first and last solid k-mers
Dijkstra algorithm
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LoRDEC algorithm

Trimming and splitting (optional)

Classify each base as solid if it
belongs to at least one solid
k-mer and weak otherwise

LoRDEC outputs solid bases in
upper case characters and weak
ones in lower case characters

Corrected reads can be trimmed
and/or split:

1 Trim weak bases from both
ends of the read

2 Extract all runs of solid bases
from the corrected reads

Output of LoRDEC:
>read1
acgtgaGTAGTCGAGTagcgtagG
TGGATCGAGCTAGggggt

Trimmed read:
>read1
GTAGTCGAGTagcgtagGTGGATCG
AGCTAG

Trimmed and split reads:
>read1 1
GTAGTCGAGT
>read1 2
GTGGATCGAGCTAG
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LoRDEC algorithm

LoRDEC correction pipline

Filtering short-reads data for quality value and adapter presence
cutadapt [Martin, 2012]

Long reads correction with LoRDEC.
Two parameters must be set :

I k-mer length – default k = 19
I threshold : minimum abundance for a k-mer to be solid

that is, to be included in the de Bruijn graph
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LoRDEC experimental results

Outline
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LoRDEC experimental results

Data sets

E. coli Yeast Parrot

Genome size 4.6 Mbp 12 Mbp 1.23 Gbp

PacBio coverage 21x 129x 5.5x

Illumina coverage 50x 38x 28x
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LoRDEC experimental results

Results: time and memory

Data Method CPU time Elapsed time Memory Disk

PacBioToCA 45 h 18 min 3 h 12 min 9.91 13.59

E. coli LSC 39 h 48 min 2h 56 min 8.21 8.51

LoRDEC 2 h 16 min 10 min 0.96 0.41

PacBioToCA 792 h 41 min 21 h 57 min 13.88 214

Yeast LSC 1200 h 46 min 130 h 16 min 24.04 517

LoRDEC 56 h 08 min 3 h 37 min 0.97 1.63

Parrot LoRDEC 568 h 48 min 29 h 7 min 4.61 74.85
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LoRDEC experimental results

Runtime, memory and disk usage
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LoRDEC experimental results

Evaluation methods

Two ways:

1 how do the reads align to the genome?

2 how do raw and corrected reads differ in their alignments?

Using the Error Correction Toolkit [Yang et al. 2013] we compute

Sensitivity = TP/(TP+FN)
how well does the tool recognise erroneous positions?

Gain = (TP-FP)/(TP+FN)
how well does the tool remove errors without introducing new ones?
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LoRDEC experimental results

Error correction performance: E. coli

Data Size Aligned Identity Genome coverage
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LoRDEC experimental results

Error correction performance: Parrot

Data Size Aligned Identity Genome coverage
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LoRDEC experimental results

Sensitivity and gain results

Data Method Sensitivity Gain

PacBioToCA NA NA

E. coli LSC 0.2865 0.2232

LoRDEC 0.9090 0.8997

PacBioToCA1 NA NA

Yeast LSC 0.3246 0.2596

LoRDEC 0.8427 0.8194

Parrot LoRDEC 0.8962 0.8544
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LoRDEC experimental results Impact of parameters

Parameters: E. coli
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LoRDEC experimental results Scalability

Scalability of LoRDEC

CPU time (h) Memory (GB) Disk (GB)
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LoRDEC experimental results Scalability

Scalability of LoRDEC

Mais transcriptome data

Illumina HiSeq : 194 million of reads, 29 Tbp

PacBio : 276000 reads, 168 Gbp

LoRDEC time: 12 hours

LoRDEC memory: 5 Gbytes
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LoRDEC experimental results Correction of transcriptomic reads (RNA-seq)

Chicken transcriptome with PacBio

PacBio data Raws Corrected and trimmed

# reads (x1000) 1 849 1 848

# reads > 1Kbp (x1000) 687 569

Max length of reads (kbp) 12.2 11.9

Total length (Gbp) 1.98 1.77

%GC 48.08 47.28

Avg length (bp) 1 075 960

Rivals (CNRS Univ. Montpellier) Long read correction 7th Nov. 2016 37 / 59



LoRDEC experimental results Correction of transcriptomic reads (RNA-seq)

Chicken transcriptome with PacBio

After correction and mapping with BWA-MEM [Li H., 2013]
on ref. transcriptome (1 RNA per gene)

5% more transcripts covered with uniquely mapping reads

80% id in alignments vs 66% before correction
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LoRDEC experimental results Correction of transcriptomic reads (RNA-seq)

Aperçu of raw and corrected PacBio RNA reads
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LoRDEC experimental results Correction of Oxford Nanopore MINIon reads

Correcting E. coli Nanopore MINIon data

Raw reads + quast

Corrected reads + quast

Nanopore data Raw Corrected

Nb reads 3463 2749

Nb reads ≥ 1kbp 3420 2685

Total length (Mbp) 22 17

Unaligned bases (%) 99.99 7.60

Genome fraction (%) 0.02 96.59

Quast [Gurevich et al. 2013]
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LoRDEC experimental results Correction of Oxford Nanopore MINIon reads

MINion S. aureus data

Mapping of reads with BWA-MEM onto the reference genome
with appropriate options

ref génome: 2.8 Mbp

MINIon sequencing coverage 14x

gain for k = 17 and s = 2 reaches 69%

99, 9 % genome covered by corrected reads

65 % genome at median coverage 8x

79% identity instead of 66 % without correction
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LoRDEC∗+LoRMA
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LoRDEC∗+LoRMA

Overview of LoRDEC∗+LoRMA

Modify LoRDEC to run on long reads only =⇒ LoRDEC∗

Run LoRDEC∗ iteratively with increasing k

Polish the result with multiple alignments =⇒ LoRMA

PacBio reads LoRDEC∗ LoRMA Corrected reads

increase k

Rivals (CNRS Univ. Montpellier) Long read correction 7th Nov. 2016 43 / 59



LoRDEC∗+LoRMA

LoRDEC

Build a de Bruijn graph of the short reads

I Use a small k such that
the genomic k-mers are expected to be found in the reads

I Use an abundancy threshold to differentiate
between correct and erroneous k-mers

For each long read:
I Classify k-mers: solid (= in the DBG) and weak
I Find paths in the DBG between the solid k-mers
I Minimize edit distance between the long read and the path’s string

I Select a correcting path only if all possibilities have been explored.

ACGT

CGTT GTTC TTCA TCAA CAAC

AACC ACCC CCCT

CGTA GTAA TAAC

AGTT TTCC

TAAG

ACGT

C CAAC
T CCCT
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LoRDEC∗+LoRMA

LoRMA

Build a de Bruijn graph of the reads

Annotate the graph by threading each read through the graph

For each read find its friends, i.e. the most similar reads

Use a multiple alignment of a read and its friends to correct the read

ACGT

CGTT GTTC TTCA TCAA CAAC

AACC ACCC CCCT

CGTA GTAA TAAC

AGTT TTCC

TAAG
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LoRMA experimental results
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LoRMA experimental results

Evaluation method

Process

1 Align the raw and corrected reads to the genome
with BLASR [Chaisson et Tesler, 2012]

2 Consider a single best alignment.

Compute following metrics

total size of corrected reads

total aligned size of corrected

error rate of aligned regions (nb erroneous positions / aligned length)

genome coverage
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LoRMA experimental results

Selfcorrection: E. coli with k = 19, 40, 61
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LoRMA experimental results

Selfcorrection and hybrid correction: E. coli
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LoRMA experimental results

Selfcorrection: Yeast
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LoRMA experimental results

Selfcorrection and hybrid correction: Yeast
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LoRMA experimental results

Selfcorrection: Resources
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LoRMA experimental results

Selfcorrection and hybrid correction: Resources
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Conclusion and future works
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Conclusion and future works

Take home message

LoRDEC is

at least 6 times faster than previous methods

uses at least 93% less memory than previous methods

corrects both PacBio & Nanopore reads

scales up to vertebrate cases

achieves similar accuracy as state-of-the-art methods.

LoRDEC is freely available at http://atgc.lirmm.fr/lordec/
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Conclusion and future works

LoRDEC and LoRMA use GATB

http://gatb.inria.fr
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Conclusion and future works

Conclusions

LoRDEC∗+LoRMA [Bioinformatics 2016]:

DBG based initial correction of sequencing errors in long read data

Further polishing with multiple alignments

Accurate selfcorrection method, needs high coverage (75×)

Future: improve memory footprint and running time

Freely available at http://www.cs.helsinki.fi/u/lmsalmel/LoRMA/
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Conclusion and future works
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Accurate selfcorrection of errors in long reads using de Bruijn
graphs

L. Salmela, R. Walve, E. Rivals, E. Ukkonen

Bioinformatics, doi: 10.1093/bioinformatics/btw321, 2016.
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Funding and acknowledgements

Thank you for your attention!

Questions?

Thanks to L. Salmela, R. Wake, E. Ukkonen, A. Makrini
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