L. Zheng and H. Tenhunen, Fast modeling of core switching noise on distributed LRC power grid in ULSI circuits, IEEE 9th Topical Meeting on Electrical Performance of Electronic Packaging (Cat. No.00TH8524), pp.245-254, 2001.
DOI : 10.1109/EPEP.2000.895551

M. Pedram and S. Nazarian, Thermal Modeling, Analysis, and Management in VLSI Circuits: Principles and Methods, Proceedings of the IEEE, vol.94, issue.8, pp.1487-1501, 2006.
DOI : 10.1109/JPROC.2006.879797

A. Todri, S. Kundu, P. Girard, A. Bosio, L. Dilillo et al., A Study of Tapered 3-D TSVs for Power and Thermal Integrity, IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.21, issue.2, pp.306-319, 2013.
DOI : 10.1109/TVLSI.2012.2187081

URL : https://hal.archives-ouvertes.fr/lirmm-00806776

A. Naeemi and J. D. , Performance Modeling for Single- and Multiwall Carbon Nanotubes as Signal and Power Interconnects in Gigascale Systems, IEEE Transactions on Electron Devices, vol.55, issue.10, pp.2574-2582, 2008.
DOI : 10.1109/TED.2008.2003028

H. Li, C. Xu, N. Srivastava, and K. Banerjee, Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects, IEEE Transactions on Electron Devices, vol.56, issue.9, pp.1799-1821, 2009.
DOI : 10.1109/TED.2009.2026524

A. G. Chiariello, A. Maffucci, and G. Miano, Circuit Models of Carbon-Based Interconnects for Nanopackaging, IEEE Transactions on Components, Packaging and Manufacturing Technology, vol.3, issue.11, pp.1926-1937, 2013.
DOI : 10.1109/TCPMT.2013.2262213

N. H. Khan and S. Hassoun, The feasibility of Carbon Nanotubes for power delivery in 3-D Integrated Circuits, 17th Asia and South Pacific Design Automation Conference, pp.1-3, 2012.
DOI : 10.1109/ASPDAC.2012.6165010

A. Todri, Investigation of horizontally aligned carbon nanotubes for efficient power delivery in 3D ICs, Proc. of IEEE 18th Workshop on Signal and Power Integrity (SPI), 2014.

J. Yang, Q. Zhang, G. Chen, S. F. Yoon, J. Ahn et al., Thermal conductivity of multiwalled carbon nanotubes, Thermal conductivity of multiwalled carbon nanotubes, p.165440, 2002.
DOI : 10.1103/PhysRevB.66.165440

H. Cao, Z. Guo, H. Xiang, and X. Gong, Layer and size dependence of thermal conductivity in multilayer graphene nanoribbons, Physics Letters A, vol.376, issue.4, pp.525-528, 2012.
DOI : 10.1016/j.physleta.2011.11.016

Q. Shao, G. Liu, D. Teweldebrhan, and A. A. Balandin, High-temperature quenching of electrical resistance in graphene interconnects, Applied Physics Letters, vol.92, issue.20, p.202108, 2008.
DOI : 10.1063/1.2927371

S. Vollebregt, S. Banerjee, K. Beenakker, and R. Ishihara, Size-Dependent Effects on the Temperature Coefficient of Resistance of Carbon Nanotube Vias, IEEE Transactions on Electron Devices, vol.60, issue.12, pp.4085-4089, 2013.
DOI : 10.1109/TED.2013.2287640

A. Magnani, M. De-magistris, A. Maffucci, and A. Todri, A node clustering reduction scheme for power grids electrothermal analysis, 2015 IEEE 19th Workshop on Signal and Power Integrity (SPI), 2015.
DOI : 10.1109/SaPIW.2015.7237399

URL : https://hal.archives-ouvertes.fr/lirmm-01248589

C. Knoth, H. Jedda, and U. Schlichtmann, Current source modeling for power and timing analysis at different supply voltages, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp.923-928, 2012.
DOI : 10.1109/DATE.2012.6176629

A. G. Chiariello, A. Maffucci, and G. Miano, Temperature effects on electrical performance of carbon-based nano-interconnects at chip and package level, International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol.97, issue.1, pp.560-572, 2013.
DOI : 10.1002/jnm.1884