A. Aliev, M. H. Lima, E. M. Silverman, and R. H. Baughman, Thermal conductivity of multiwall carbon nanotube sheets: radiation losses and quenching of phonon modes, Nanotechnology, pp.21-035709, 2010.

P. J. Burke, Luttinger liquid theory as a model of the gigahertz electrical properties of carbon nanotubes, IEEE Transactions On Nanotechnology, vol.1, issue.3, pp.129-144, 2002.
DOI : 10.1109/TNANO.2002.806823

A. M. Cassell-franz-kreupl-hong-li, W. Liu, and K. Banerjee, Low-resistivity long-length horizontal carbon nanotube bundles for interconnect applications -part ii characterization, IEEE Transactions on Electron Devices, pp.2870-2876, 2013.

J. Jiang, R. Saito, A. Grüneis, S. G. Chou, G. G. Samsonidze et al., Photoexcited electron relaxation processes in single-wall carbon nanotubes, Physical Review B, vol.71, issue.4, p.45417, 2005.
DOI : 10.1103/PhysRevB.71.045417

H. Li, W. Liu, A. Cassell, F. Kreupl, and K. Banerjee, Low-Resistivity Long-Length Horizontal Carbon Nanotube Bundles for Interconnect Applications—Part II: Characterization, IEEE Transactions on Electron Devices, vol.60, issue.9, pp.2870-2876, 2013.
DOI : 10.1109/TED.2013.2275258

H. Li, N. Srivastava, J. Mao, K. Wen-yan-yin, and . Banerjee, Carbon Nanotube Vias: A Reality Check, 2007 IEEE International Electron Devices Meeting, pp.207-210, 2007.
DOI : 10.1109/IEDM.2007.4418903

H. Li, C. Xu, N. Srivastava, and K. Banerjee, Carbon Nanomaterials for Next-Generation Interconnects and Passives: Physics, Status, and Prospects, IEEE Transactions on Electron Devices, vol.56, issue.9, pp.1799-1821, 2009.
DOI : 10.1109/TED.2009.2026524

A. Naeemi, G. Huang, and J. D. , Performance Modeling for Carbon Nanotube Interconnects in On-Chip Power Distribution, 2007 Proceedings 57th Electronic Components and Technology Conference, pp.420-428, 2007.
DOI : 10.1109/ECTC.2007.373831

A. Naeemi and J. D. , Physical Modeling of Temperature Coefficient of Resistance for Single- and Multi-Wall Carbon Nanotube Interconnects, IEEE Electron Device Letters, vol.28, issue.2, pp.135-138, 2007.
DOI : 10.1109/LED.2006.889240

A. Naeemi, R. Sarvari, and J. D. , Performance comparison between carbon nanotube and copper interconnects for gigascale integration (gsi) Electron Device Letters, IEEE, vol.26, issue.2, pp.84-86, 2005.
DOI : 10.1109/led.2004.841440

A. Nieuwoudt and Y. Massoud, Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques, IEEE Transactions on Electron Devices, vol.53, issue.10, pp.2460-2466, 2006.
DOI : 10.1109/TED.2006.882035

E. Pop, D. Mann, J. Reifenberg, K. Goodson, and H. Dai, Electrothermal transport in metallic single-wall carbon nanotubes for interconnect applications, Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, pp.4-256, 2005.

L. Qin, X. Zhao, K. Jirahara, Y. Miyamoto, Y. Ando et al., The smallest carbon nanotube, Nature, issue.6808, p.40850, 2000.

N. Srivastava and K. Banerjee, Performance analysis of carbon nanotube interconnects for VLSI applications, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005., pp.383-390, 2005.
DOI : 10.1109/ICCAD.2005.1560098

A. Todri, Investigation of horizontally aligned carbon nanotubes for efficient power delivery in 3d ics, IEEE 18th Workshop on Signal and Power Integrity (SPI), pp.1-4, 2014.

A. Todri-sanial, J. Dijon, and A. Maffucci, Carbon nanotube interconnects: Process, design and application, 2016.

J. W. Wildoeer, L. C. Venema, A. C. Rinzler, R. E. Smalley, and C. Dekkler, Electronic structure of atomically resolved carbon nanotubes, Nature, issue.6662, pp.39159-61, 1998.

L. Zhu, Y. Sun, J. Xu, Z. Zhang, D. W. Hess et al., Aligned carbon nanotubes for electrical interconnect and thermal management, pp.44-50, 2005.