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Abstract—This paper presents a new interval-based operator
for continuous constrained global optimization. It is built upon
a new filtering operator, named TEC, which constructs a
bounded subtree using a Branch and Contract process and
returns the parallel-to-axes hull of the leaf domains/boxes.
Two extensions of TEC use the information contained in the
leaf boxes of the TEC subtree to improve the two bounds
of the objective function value: (i) for the lower bounding,
a polyhedral hull of the (projected) leaf boxes replaces the
parallel-to-axes hull, (ii) for the upper bounding, a good feasible
point is searched for inside a leaf box of the TEC subtree,
following a look-ahead principle. The algorithm proposed is an
auto-adaptive version of TEC that plays with both extensions
according to the outcomes of the upper and lower bounding
phases. Experimental results show a significant speed-up on
several state-of-the-art instances.

I. INTRODUCTION

Interval Branch&Bound algorithms are used to solve
constrained global optimization problems1 in a reliable
way [1], [2], [3], [4], [5]. They interleave branching, filtering
and bounding steps for calculating an optimal solution and
its cost with a bounded error or a proof of infeasibility.
The branching step selects a variable and splits its domain
into two sub-domains. To limit the combinatorial explosion,
the filtering step can contract the domains without loss
of solutions. In several interval Branch&Bounds, the
objective function value is handled as an additional variable,
so that the filtering step is also used for finding a good lower
bound, i.e. a point such that no other feasible point exists
with a cost lower than it. The lower bounding step is used
to prove the optimality of the solution.

In this paper, we first introduce a new filtering operator,
called TEC (Tree for Enforcing Consistency), for contracting
the domains and improving the lower bound of the objective
function value. TEC is a generalization to several dimensions
of the constructive disjunction used by the operator CID [6].
It constructs a subtree, bounded in size by a parameter, by
using a Branch & Contract process, and returns a parallel-
to-axes hull of the leaf boxes. Two extensions of TEC exploit
the information contained in the leaf boxes of the TEC
subtree. In a first extension, the basic parallel-to-axes hull is

1In this paper, we consider minimization, without loss of generality.

replaced by a polyhedral hull of the (projected) leaf boxes
for improving the filtering capacity of TEC and the lower
bounding. This polyhedral hull is achieved by a rigorous
variant of the Graham computational geometry algorithm.
A second extension of TEC focuses on the upper bounding
step of global optimization, which searches for a feasible
point with a cost better than the cost of the best solution
found so far. This extension searches for a good feasible
point inside a selected leaf box of the TEC subtree, thus
following a look-ahead principle.

Finally, we introduce an advanced version of TEC en-
dowed with both extensions. This LGT (Lazy Graham TEC)
algorithm calls the standard hull or the Graham polyhedral
hull algorithm in an adaptive way during the optimization
process. When the upper bound has not been improved for
long, LGT intensifies its effort for proving optimality: it tries
to improve the lower bound of the objective function value
by switching to the polyhedral hull of the TEC subtree
during the next nodes. If a new upper bound is found,
LGT switches back to the less time-consuming box hull,
preferring investing in the upper bounding phase.

After presenting the background in Section II, TEC is
described in Section III, and LGT is detailed in Section IV.
Section V carries out an empirical study of these operators
implemented in the Ibex interval library [7], and compares
them to state-of-the-art operators on constrained optimiza-
tion problems belonging to the Coconut benchmark [8].
Finally, Section VI presents the related work.

II. BACKGROUND

An interval [xi] = [xi, xi] defines the set of reals xi s.t.
xi ≤ xi ≤ xi, where xi and xi are floating-point numbers.
IR denotes the set of all intervals. A box [X] is a cartesian
product of intervals [x1] × ... × [xi] × ... × [xn]. ω([xi])
denotes the width xi − xi of an interval [xi]. The width
of a box is given by the width of its largest dimension
(i.e., maxi=1..n ω([xi])). Since the union of several boxes
is generally not a box, the box hull operator returns the
minimal box enclosing all of them.

Interval arithmetic [9] has been defined to extend to IR
elementary functions over R. For instance, the interval sum
is defined by [x1]+[x2] = [x1+x2, x1+x2]. When a function



f is a composition of elementary functions, an extension
of f to intervals must be defined to ensure a conservative
image computation.

Definition 1: Extension of a function f :Rn → R to IR.
[f ] : IRn → IR is said to be an extension of f to intervals
if:

∀[X] ∈ IRn [f ]([X]) ⊇ {f(X), X ∈ [X]}
∀X ∈ Rn f(X) = [f ](X)

In our context, the expression of a function f is always
a composition of elementary functions (e.g., sin, cos, +,
×, exp, log, ...). The natural extension [f ]N is then simply
a composition of the corresponding interval operators.

This paper deals with continuous global optimization
under inequality constraints defined by:

min
X∈[X]

f(X) s.t. g(X) ≤ 0 (1)

where f : Rn → R is the (non convex) real-valued objective
function and g : Rn → Rm is a (non convex) vector-valued
function. X = (x1, ..., xi, ..., xn) is a vector of variables
varying in a box [X]. A point X is said to be feasible if it
satisfies the constraints.

An interval Branch & Bound (B&B) scheme for con-
tinuous constrained global optimization is described below.
Algorithms 1 and 2 correspond to a simplified version of
the algorithms implemented in IbexOpt [5].

The algorithm is launched with the vector of constraints
g, the objective function f and with the input domain
initializing a list Boxes of boxes to be handled. εobj is
the absolute or relative precision required on the objective
function value and is used in the stopping criterion. The
algorithm outputs a feasible floating point Xf̃ of cost f̃ and
a proof that no feasible points can be found with a cost
lower than fmin.

Let Xf∗ and f∗ be the optimal real point and its cost.
The algorithm returns fmin ≤ f∗ ≤ f̃ with an absolute
(f̃ − fmin ≤ εobj) or relative ( f̃−fmin

|f̃ |
≤ εobj) precision.

The variable xobj (corresponding to the objective function
value) is added to the problem (to the vector X of variables)
with the constraint f(X) = xobj . The algorithm maintains
two main types of information during the iterations:
• f̃ : the value of the best feasible point Xf̃ found so far,
• fmin: the minimal value of the lower bounds xobj of

the boxes to explore.
The lower bound fmin guarantees that, in every box, no

feasible point exists with an objective function value lower
than it. The procedure SelectBox selects the next node
to handle. The selected box [X] is then split into two sub-
boxes [X]1 and [X]2 along one dimension (selected by a
branching strategy). Both sub-boxes are then handled by the
Contract&Bound procedure (see Algorithm 2).

A constraint xobj ≤ f̃ − εobj is first added to the problem
for decreasing the upper bound of the objective function in

Algorithm 1: IntervalBranch&Bound (f, g,X, box, εobj , εsol)

1 fmin ← −∞; f̃ ← +∞
2 Boxes← {box}
3 while Boxes 6= ∅ and f̃ − fmin > εobj and f̃−fmin

|f̃ |
> εobj do

4 [X]← SelectBox (Boxes, criterion)
5 Boxes← Boxes\{[X]}
6 ([X]1, [X]2)←Bisect ([X])
7 ([X]1, Xf̃

, f̃ , Boxes)← Contract&Bound ([X]1, f, g,

X, εobj , Xf̃
, f̃ , Boxes)

8 ([X]2, Xf̃
, f̃ , Boxes)← Contract&Bound ([X]2, f, g,

X, εobj , Xf̃
, f̃ , Boxes)

9 PushIfNonEmpty([X]1, Boxes)
10 PushIfNonEmpty([X]2, Boxes)
11 fmin ← min[X]∈Boxes xobj

the box. Algorithm 2 then contracts the handled box without
loss of feasible part [7]. In other words, some infeasible parts
at the bounds of the domain are discarded using filtering op-
erators. First, CPContract uses a filtering operator which
comes from constraint programming [10], [6], [1]. Then,
ConvexContract uses a convexification algorithm [11]
which relies on a polyhedral convex relaxation of the system
to contract the box. These contractions work on the extended
box including the objective function variable xobj and on
the associated constraint, so improving xobj amounts to
improving the lower bound of the objective function image
(lower bounding).

Algorithm 2: Contract&Bound ([X], f, g,X, εobj ,Xf̃
, f̃ , Boxes)

1 g′ ← g ∪ {xobj ≤ f̃ − εobj}
2 [X]← CPContract ([X], g′ ∪ {f(X) = xobj})
3 [X]← ConvexContract ([X], g′ ∪ {f(X) = xobj})
4 if [X] 6= ∅ then
5 (X

f̃
, cost)← FeasibleSearch ([X], f, g′, εobj )

6 if cost < f̃ then
7 f̃ ← cost
8 Boxes←FilterOpenNodes (Boxes, f̃ − εobj)

9 return ([X], X
f̃
, f̃ , Boxes)

The last part of the procedure carries out upper bounding.
FeasibleSearch calls one or several heuristics searching
for a feasible point Xf̃ that improves f̃ , the best cost
found so far. If the upper bound of the objective value is
improved, the FilterOpenNodes procedure performs a
type of garbage collector on all the open nodes by removing
from Boxes all the nodes having xobj > f̃ − εobj . After the
calls to Contract&Bound, Algorithm 1 pushes the two
sub-boxes in the set Boxes of open nodes.

Several filtering operators have been proposed by the CP
community. The HC4 algorithm [10] is a well-known con-
straint propagation algorithm. The 3B algorithm [12], like
SAC [13] for finite CSP, relies on the shaving principle to



prune a sub-interval on a bound of an interval. The shaving
consists in first restricting an interval to a sub-interval on
a bound. If the application of a constraint propagator, like
HC4, on the corresponding subproblem leads to a wipeout,
the sub-interval is removed from the domain. Otherwise, the
sub-interval is kept and the pruning effort performed by the
constraint propagator is lost. The constructive disjunction
permits to exploit this pruning effort by performing the box
hull of all the boxes calculated by the subproblems. CID uses
this principle to improve the contraction. First, CID selects
a variable xi and splits its interval [xi] in scid sub-intervals.
Then, each corresponding subproblem is contracted by a
constraint propagator like HC4, and the box hull of the
contracted boxes is performed. This process is achieved on
each variable while a contraction is obtained. 3BCID [6]
is an efficient algorithm that hybridizes 3B and CID. This
state-of-the-art variant of CID is used in the experiments
shown in Section V.

III. TEC

Contrarily to 3B, CID is able to prune values from all
variable domains when it performs shaving tests on one
of them. TEC generalizes the CID principle. TEC steps
up the shaving process by shaving a subset of variables
simultaneously and uses constructive disjunction to be able
to contract all variable domains. Indeed, TEC constructs a
bounded subtree, called here TEC tree, and performs the
box hull of all generated leaves (boxes). The TEC tree is
constructed in breadth-first search by a Branch & Contract
process where each node is handled by constraint propaga-
tion. Algorithm 3 describes this process.

A. TEC Algorithm

Algorithm 3 is called at line 2 of Algorithm 2. It is
launched with the vector of constraints, and an initial box to
contract. The combinatorial process is achieved by the loop
at line 4. First, the initial box is contracted by a constraint
propagator Φ and is pushed into the list Boxes. At each
iteration of the loop, the first box [X] of Boxes is extracted,
following a ”First In, First Out” principle. If the size of
[X] is inferior to a given precision εsol, [X] is stored in
AtomicBoxes (line 7). Otherwise, [X] is split into two sub-
boxes along one dimension. Both are contracted by Φ and
are pushed at the end of Boxes. This process is repeated
until the number of contractions reaches the value given by
the TECnodes parameter or until Boxes is empty. Finally,
TEC returns the box hull of the leaf boxes of the TEC tree.

B. Implementation Choices for TEC

Several implementation choices have been validated by
preliminary experiments. They have been obtained on a
subset of the benchmark used in this paper (see Section V).

Algorithm 3: TEC (box, g′′, εsol, TECnodes,Φ)

1 Boxes← {Φ(box, g′′, εsol)} /* queue(FIFO)ofboxes */
2 AtomicBoxes← ∅ /* set of atomic boxes */
3 #nodes← 1
4 while Boxes 6= ∅ and #nodes ≤ TECnodes do
5 [X]← Pop(Boxes)
6 if ω([X]) ≤ εsol then
7 Push([X], AtomicBoxes)
8 else
9 ([X]1, [X]2)← Bisect([X])

10 PushIfNonEmpty(Φ([X]1, g′′, εsol), Boxes)
11 PushIfNonEmpty(Φ([X]2, g′′, εsol), Boxes)
12 #nodes← #nodes+ 2

13 return BoxHull(Boxes ∪AtomicBoxes)

Variable Selection Heuristic

TEC selects a subset of variables to contract the box.
Indeed, selecting a good subset of variables is very important
to apply a strong contraction. The importance of a variable
depends on constraints, but also on the box studied. Con-
sequently, the importance of a variable changes during the
search. Therefore we compared different dynamical variable
selection heuristics available in Ibex [7]. The tests led
us to choose the SmearSumRel2 heuristic. This was not
a surprise since SmearSumRel is state-of-the-art both in
constraint satisfaction and global optimization. Although it
is not always the best, this strategy appears to be more robust
than its competitors on the tested benchmark.

Subfiltering Operator

To choose the subfiltering operator Φ, we compared the
different filtering operators available in Ibex. Experimental
studies showed that using HC4 in TEC provides the best
results, due to its low computational time.

TECnodes Value

Experiments showed that the most significant impact on
performance is brought by the size of the TEC tree. We
compared several values of TECnodes (see Algorithm 3) for
each instance of our benchmark. Depending on the instance
considered, the optimal value of TECnodes varied from 10
to 100. Further work could investigate how to automatically
adapt TECnodes according to the instance. Lacking such
an adaptive strategy, we used 25 as a fixed value for all
benchmarks in the following experiments, since we identify
it as a robust value.

Overall, the different implementation choices led to a
current version of TEC that is comparable in performance
to 3BCID.

2SmearSumRel is a variant of the well-known smear function [14].
The smear(xi, cj) function measures an impact of the variable xi on the
function of cj , depending on the width of xi and on the partial derivative
of the cj function w.r.t. xi evaluated on the box [X].



IV. LGT

Although TEC is comparable in performance to the state-
of-the-art filtering operator 3BCID, its tree (i.e., the TEC
tree) contains additional information. LGT uses this addi-
tional information in an auto-adaptive way to better improve
the two bounds of the objective function value. During the
optimization process, LGT can switch between two versions
of TEC, namely TEC-UB and Graham-TEC.

For improving the lower bounding and the contraction,
Graham-TEC adds new linear constraints in the polytope
generated by the polyhedral convexification algorithm, e.g.
X-Newton (see the ConvexContract procedure in Al-
gorithm 2). For the upper bounding, TEC-UB makes better
use of the In-X-Newton procedure.

Let us first present the convexification algorithms
X-Newton and In-X-Newton, available in our opti-
mization code IbexOpt, for supporting the observation
that led us to propose TEC-UB (see Section IV-B) and
Graham-TEC (see Section IV-C).

A. Brief Description of X-Newton and In-X-Newton

X-Newton [11] is a convexification algorithm which
relies on an outer interval linear form of the constraints to
contract the box. It can implement the ConvexContract
procedure called in Algorithm 2.

A polyhedral convexification is built upon an adaptation
of a specific first order interval Taylor form of a nonlinear
function [15]. Consider a function gj : Rn → R
defined on a domain [X]. For any variable xi ∈ X , let
[ai] =

[
∂gj
∂xi

]
N

([X]) be the natural interval evaluation of
the partial derivative of gj w.r.t. xi. The idea is to (lower)
tighten gj(X), for every point X in [X], using an interval
Taylor form glj(X) expanded at a vertex of the box, e.g. X .

∀X ∈ [X] glj(X) = gj(X)+
∑
i

ai (xi − xi) ≤ gj(X) (2)

Thus, considering an inequality constraint gj(X) ≤ 0,
Expression (2) defines a hyper-plane glj(X)≤ 0 bounding
the solution set from below: glj(X)≤ gj(X)≤ 0. Note that,
contrarily to the usual case where the Taylor expansion point
is taken in the middle of the box, this interval Taylor form
is polyhedral because for all xi, (xi − xi) ≥ 0.
X-Newton defines a hyper-plane for the objective func-

tion, and for each constraint to obtain a polytope enclosing
the solution set. Then, X-Newton contracts the interval
of each variable xi by calling a Simplex algorithm twice,
improving potentially both bounds of [xi]. Improving xobj
performs lower bounding.

In-X-Newton [5] is a heuristic searching for a feasible
point (see Algorithm 2) which relies on an inner interval
linear form computing an inner region. An inner region rin

is a feasible subset of the box [X], i.e., rin ⊂ [X] and all
points X ∈ rin satisfy all the constraints g(X) ≤ 0. The

inner regions computed by In-X-Newton are polytopes.
Symmetrically to Eq. (2):

∀X ∈ [X] glj(X) = gj(X)+
∑
i

ai (xi − xi) ≥ gj(X) (3)

In-X-Newton defines a hyper-plane for each constraint
to obtain an inner region. Then, In-X-Newton defines a
hyper-plane for the objective function and calls a Simplex
algorithm minimizing xobj to find the best solution inside the
inner region. This solution is also a solution of the original
system. Even if it is generally not the optimal one, it can be
used to update the upper bound.

Both algorithms use an outer (resp. inner) interval linear
form. In fact, the generated polytope can greatly overes-
timate (resp. underestimate) the set of solutions. In some
cases, the overestimation may produce a polytope larger than
the box, and the underestimation may produce an empty
inner region even if the box contains solutions. In practice,
these cases occur more often in large boxes. This is mainly
explained by the first order interval Taylor form. Close to
the expansion point (e.g., X in Eq. (2)), the approximation
is tight, even exact at the expansion point. Thus, the smaller
the box is, the sharper will be the approximation of the
solution set.

B. TEC-UB

To improve the upper bounding, TEC-UB simply calls
In-X-Newton to search for a good feasible point in
a small leaf box of the TEC tree (see Fig. 1). Thus,
In-X-Newton is called twice:
• once on the contracted hull box (like in the standard

interval B&B), and
• another time on the selected leaf box of the TEC tree.
As explained in Section IV-A, the smaller the box is, the

smaller is the underestimation. Therefore, TEC-UB selects
the smallest box in the leaf boxes of the TEC tree (i.e.,
min[X] ω([X])). To break ties, the selection is made using
the objective function, i.e. minimizing xobj , for finding a
better solution.

Figure 1. Difference between TEC and TEC-UB on a system with
one variable x and the objective variable xobj . The region removed by
contraction appears light greyed out and the set of solutions is dark greyed
out (or red). [X]1, [X]2 and [X]3 are the leaf boxes of the TEC tree.
Left: Just one call to In-X-Newton is achieved on the contracted box
(i.e., the box hull of the leaf boxes). Right: Two calls to In-X-Newton
are performed, the second one on the selected leaf box [X]3.



C. Graham-TEC

Another possible way to improve the outer approximation
of the solution set is to add hyper-planes to the polytope
generated in ConvexContract. Graham-TEC uses the
additional information contained in the leaf boxes of the
TEC tree to learn implicit binary constraints. In other words,
Graham-TEC:

1) constructs the TEC tree in the same way as TEC,
2) computes, for each pair of variables, a polyhedral

convex hull of the leaf boxes of the TEC tree (see
Algorithm 4),

3) transmits to the ConvexContract operator the
polytope made of these binary constraints and the box
hull of the TEC tree leaves.

Finally, ConvexContract (e.g., X-Newton,
Quad [16]) enriches its polytope with the additional
constraints given in input, thus computing generally a
sharper contracted box than TEC would do.

Convex Hull of the TEC Tree Leaves

Let us detail hereafter how the polyhedral convex hull of
boxes is computed. Algorithm 4 is called at the end of TEC
(see Algorithm 3). The algorithm is launched with the set
L of the TEC tree leaf boxes and with the box hull [H] of
these leaf boxes. γ is a parameter used to decide whether a
constraint learned is kept or not. γ measures a gain relative
to each interval size of [H].

Algorithm 4: ConvexHull(L, [H], γ)

1 S ← ∅ /* a set of linear constraints */
2 foreach (xi, xj) ∈ X2 with i < j do
3 NE ← ∅; NW ← ∅; SW ← ∅; SE ← ∅ /* quadrant */
4 foreach [X] ∈ L do
5 NW ← NW ∪ (xi, xj); NE ← NE ∪ (xi, xj)
6 SW ← SW ∪ (xi, xj); SE ← SE ∪ (xi, xj)

7 foreach quadrant ∈ {NE,NW,SW,SE} do
8 if ¬Cover(quadrant, [H], γ) then
9 Front← GrahamFront(quadrant)

10 S←S ∪GetConstraints(Front, xi, xj , quadrant)

11 return S

For each pair of variables (xi, xj), Algorithm 4 constructs
the convex hull of the leaf boxes projected on (xi, xj) and
computes linear constraints from this (2-dimensional) con-
vex hull. The projection of a box on (xi, xj) is a rectangle,
in which each vertex belongs to a quadrant (see Fig. 2).
Thus, at lines 5 and 6, the 4 points of each projected leaf
box are pushed into 4 lists corresponding to the 4 quadrants.
Then, the 2-dimensional convex hull is constructed quadrant
by quadrant. Some quadrants are rapidly treated. Let [H]ij
be the rectangle projected from [H] onto the variables xi
and xj . When a vertex of [H]ij and a point of a projected
leaf box in L coincide, no constraint can be found on this
(covered) quadrant, as shown in Fig. 2. It is therefore useless

Figure 2. Illustration of ConvexHull on the projection of the leaf boxes
[X]1,...,[X]4 and the hull box [H] on (xi, xj). NW , SW , SE and NE
are the 4 quadrants. Left: The quadrants NW and SW are covered. SE
is also covered since on the xj -axis we have d < γ×ω([xj ]), and on the
xi-axis we have 0 < γ × ω([xi]). Only the 4 points of NE are handled
to learn constraints, the others are ignored. Right: The two lines represent
the two constraints learned. The dashed one does not give a sufficient gain
on one of the two dimensions (d′ < γ × ω([xi])). It is not learned.

to handle the points of this quadrant. Moreover, we consider
that a quadrant is also covered if a point of a projected leaf
box is too close (on each dimension) to the corresponding
vertex of [H]ij (see Fig. 2). The idea is to learn only
impacting constraints.

Then, the GrahamFront function, based on the Graham
Scan algorithm, is called on each non covered quadrant.
Graham Scan is a classical computational geometry algo-
rithm that constructs a convex hull of given 2-dimensional
points [17]. GrahamFront just computes the front of the
convex hull relative to the quadrant studied and returns
the corresponding list of points, in counterclockwise or-
der. We call this list of points the front of a quadrant.
Let r be the number of leaf boxes, the complexity of
GrahamFront is dominated by the sort (counterclockwise
order) in O(r.log(r)) [17].

Finally, GetConstraints is called to compute the
constraints corresponding to the front of a quadrant. Still
with the objective of only keeping impacting constraints,
when a constraint does not give a significant gain (see
Fig. 2), it is removed. The impacting constraints are added
to the ConvexContract polytope.

Computation of Rigorous Constraints

The algorithm GetConstraints (see Algorithm 5)
generates rigorous constraints from the front of a quadrant.
Each pair of consecutive points ((xi, yi), (xi+1, yi+1)) of the
Front list is iteratively handled. The goal is to rigorously
approximate the line y = ax + b that passes through the
2 points. Indeed, a = yi+1−yi

xi+1−xi
and b = yi − (xi × a) are

generally not floating-point numbers. The round-off error
may generate a constraint (halfspace) which does not include
one of both points. To avoid this drawback, a and b are
rigorously calculated using interval arithmetic [9]. From
the two points (xi, yi) and (xi+1, yi+1), interval arithmetic
calculates the intervals [a] and [b] enclosing the respective
real values. Then, to generate a rigorous constraint, the



Figure 3. Rigorous calculation on the quadrant SE. The dashed line
is the one with a, b ∈ R. The second line corresponds to the rigorous
approximation of the first line with a and b rounded to the floating-point
numbers a and b.

adequate bound of [a] and [b] is selected depending on the
quadrant (see line 7 to line 13). The reader will be able to
easily check the choice of bounds. Fig. 3 shows the principle
in the quadrant SE.

Algorithm 5: GetConstraints(Front, x, y, quadrant)

1 P ← ∅ /* a set of rigorous hyperplanes */
2 foreach (xi, yi) ∈ Front do
3 [a]← ([yi+1]− [yi])/([xi+1]− [xi])
4 [b]← [yi]− ([xi]× [a])
5 switch quadrant do
6 case SE
7 p← a× x− y ≤ −b
8 case NE
9 p← a× x− y ≥ −b

10 case NW
11 p← a× x− y ≥ −b
12 case SW
13 p← a× x− y ≤ −b

14 if the previous points satisfy p then P ← P ∪ {p}
15 return P ′ ⊆ P

The line 14 adds a condition to guarantee that the previous
points satisfy the constraint. Theoretically, the round-off of
a may produce this pathological case when the 3 points are
quasi-aligned. This case never occurred in our tests.

D. The Lazy-Graham-TEC Auto-adaptive Algorithm

Lazy-Graham-TEC (LGT) is an advanced version of TEC
switching between TEC-UB and Graham-TEC in an auto-
adaptive way during the optimization process. The main
parameter of LGT is a number p of nodes in the search
tree.
LGT starts by using TEC-UB in order to better improve

the upper bounding. When LGT does not find a new upper
bound after a given number p of nodes, LGT is betting that
the best feasible point in a local minimum (or an optimal
solution) has been found. Therefore, the stronger filtering
operator Graham-TEC is called to more quickly reach
another region of the tree search, or prove optimality of the
solution by improving the lower bound.

When a new upper bound is found, LGT switches back to
TEC-UB for better intensifying the search. LGT performs
a new phase of at least p nodes with TEC-UB, before
switching again to Graham-TEC, and so on.

V. EXPERIMENTS

We have run experiments on constrained global opti-
mization instances. Section V-A reports the implementation
and the protocol used. Section V-B compares the different
versions of TEC and their settings. Section V-C presents the
results obtained by LGT, compared to HC4 and 3BCID.

A. Experimental Protocol and Implementation

All the versions of TEC have been implemented in
the Interval-Based EXplorer Ibex [7]. This free C++ li-
brary has facilitated the implementation of our filtering
operators by providing us a direct access to the interval
Branch & Bound IbexOpt [5] presented in Section II,
the X-Newton, In-X-Newton algorithms and filtering
operators as HC4 and 3BCID. All the experiments were run
on the same computer (IntelX64,2.6GHz,32GoRAM).

All the experiments were performed on constrained global
optimization instances solved by IbexOpt. All the pa-
rameters of IbexOpt have been fixed to a given set
of adequate values common to all the tested instances.
Thus, SmearSumRel was used as variable selection heuris-
tic, X-Newton as the algorithm used by the procedure
ConvexContract, and the algorithms In-HC4 [18] and
In-X-Newton as FeasibleSearch heuristic searching
for a good feasible point (upper bounding). The precision
settings were fixed to εobj = 1.e-8 and εsol =

εobj
100 . A

timeout of 1800 seconds was chosen. The parameters used
to construct the TEC tree were assigned with the values
specified in Section III-B, for all versions of TEC.

Tests have been performed on a benchmark of 82 sat-
isfiable instances of constrained optimization problems be-
longing to the Coconut benchmark [8]. These instances
correspond to all the instances from the series 1 and 2 of the
Coconut benchmark that have a reasonable size3 (between
6 and 50 variables) and are significant (solved in more than
1 second by at least one approach).

Note that the equations h(X) = 0 in these instances have
been relaxed by inequalities −1.e-8 ≤ h(X) ≤ +1.e-8
because IbexOpt needs to achieve upper bounding in non
empty feasible regions [18] (see Section IV-A). Note that
other interval Branch & Bound solvers like Icos [3]
and GlobSol [2] can provide a guaranteed optimum also
on problems having non relaxed equations. A comparison
between Ibex and these solvers can be found in [5].

3Instances with more than 50 variables are generally not solved in
reasonable time by Interval Branch&Bound algorithms without a tuning
of the algorithm specific to each instance.



B. Comparing the Different Versions of TEC

Table I shows a synthetic comparison between TEC and
the advanced versions of TEC, i.e. TEC-UB, Graham-TEC
and LGT. We report the time and number of nodes gain
ratios, comparing each strategy s with the reference strategy
TEC. We take into account the CPU time and the number
of nodes obtained by a strategy s on an instance i. These
experimental results are averaged over 10 trials obtained
with different seeds, due to the random choices made by
IbexOpt. The following formulas are used to display the
time comparison:
• Total Gain(s):∑

i TimeTEC(i)−
∑
i Times(i)∑

i TimeTEC(i)
(4)

• Max Loss(s):

max
i

(
Times(i)− TimeTEC(i)

Times(i)

)
(5)

• Max Gain(s):

max
i

(
TimeTEC(i)− Times(i)

TimeTEC(i)

)
(6)

Same formulas are used for comparing the number of nodes.

Table I
COMPARISON OF TEC-UB, GRAHAM-TEC AND LGT VERSUS TEC.

Times Nodes
Total Gain Max Loss Max Gain Total Gain Max Loss Max Gain

TEC-UB 26.4 % 40.7 % 71.8 % 28.1 % 53.1 % 80.7 %
Graham-TEC 15.7 % 64.0 % 41.4 % 39.3 % 26.1 % 69.6 %
LGT 35.4 % 27.3 % 88.3 % 41.2 % 51.5 % 91.3 %

Graham-TEC shows the lowest gain on the total time
and the second best gain on the total number of nodes. This
confirms that the convex hull computed by Graham-TEC
produces a significant gain of contraction compared to
the box hull achieved by TEC, but at a high cost. The
improvement of the upper bounding brought by TEC-UB
also produces a gain on the total number of nodes, at
lower computational time than Graham-TEC. Finally, LGT
exploits these two approaches and obtains the best total
gain both in time and number of nodes. These results seem
to confirm the relevance of the adaptation policy proposed
and show a complementarity between the improvement of
the upper bounding (TEC-UB) and the improvement of the
contraction and the lower bounding (Graham-TEC) leading
to a drop in the number of nodes.

To reach a good value of the parameter p used by LGT
(number of nodes visited with no improvement of the upper
bound), we tested several values. Below p = 500, the results
did not show good performances and above p = 1500 too.
A robust tested value was 1000 with the γ parameter set to
0.05. Note that first attempts to tune p in an auto-adaptive
way during the optimization process were not successful.

Figure 4. Pairwise comparison between LGT and HC4. The coordinates of
each point represents the CPU time (in second) required by both competitors
to solve one instance.

C. Results Obtained by LGT

Compared to the HC4 constraint propagation algorithm,
LGT obtains better results (see Fig. 4). Three additional
instances (haldmads, ex6_2_10 and disc2) are solved
by LGT. When we extend the timeout to 7200 s, only
ex6_2_10 is solved in 2530 s by HC4.

Compared to the 3BCID state-of-the-art domain shaving
algorithm, LGT also obtains good results as shown in Fig. 5.
Two instances are solved by LGT whereas 3BCID solves
them with an extended timeout (disc2 in 3885 s and
ex_6_2_10 in 3463 s). However, one instance (ex8_4_5)
is solved by 3BCID but is not solved by LGT, even when
the timeout is extended to 7200 s. Among all the filtering
operators and all versions of TEC tested, only 3BCID
reaches the optimal solution of this instance in the extended
timeout 7200 s.

VI. RELATED WORK

Polyhedral convexification of the solution set consists in
computing an outer approximation of the solution space of
a system by convexifying each inequality constraint individ-
ually. A polyhedral enclosure of the solution set leads to a
reduction of the search space and/or an improvement of the
lower bound by using a call to a linear programming solver.

Figure 5. Pairwise comparison between LGT and 3BCID (parameter s=10
splits). The coordinates of each point represents the CPU time (in second)
required by competitors to solve an instance.



The idea behind Graham-TEC is significantly different
since the linear constraints learned depend on the filtering
operation. They do not correspond to the initial constraints.

In Pelleau et al. [19], the notion of box encountered in
continuous constraint programming is called into question.
Each pair (i, j) of variables is associated with an octagon.
This octagon can be viewed as the intersection of two boxes:
the initial box and a box rotated by 45 degrees. For each pair
(i, j), 4 constraints ±xi ± xj ≤ ck are added. To translate
the constraints in the rotated box, the variables xi and xj
are replaced by their expressions in the new base. Then,
domains are contracted with these additional constraints. The
principles are significantly different from LGT and TEC, but
a common point resides in the additional binary constraints
that are not defined by the user.

An arborescent filtering operator, called Box-k, was
proposed in 2009 [20]. Several well-constrained n × n
subsystems of equations were initially selected in the system.
At each node of the search tree, a contraction, based on an
arborescent exploration, is performed on each subsystem.
Unlike the TEC tree, an interval Newton is also called
at each node of the tree. Under some conditions, Newton
can use the property that the subsystem is well-constrained
to converge more quickly towards the solutions (Newton
behaves like a global constraint on the subsystem). The
main difference between TEC and Box-k is that TEC is
called at each node visited on all the system whereas the
subsystem handled by Box-k is structured. Box-k provides
good results only on very sparse systems.

VII. CONCLUSION

We have proposed a new filtering operator TEC and
several ways to exploit the TEC tree in global optimization:
TEC-UB and Graham-TEC which improve the upper and
the lower bounding, respectively. The adaptive version LGT
can switch between TEC-UB and Graham-TEC during
search. The experimental results underline that LGT is better
than each of them. Finally, results show that LGT brings
a significant speed-up on several state-of-the-art instances
compared to the filtering operators HC4 and 3BCID.
LGT is implemented in IbexOpt which is rigorous only

for inequalities. It would be interesting to adapt the current
algorithm for making it work in rigorous global optimization
codes (also for equations) like Icos [3] and GlobSol [2].
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