P. Van-hentenryck, L. Michel, and Y. Deville, Numerica : A Modeling Language for Global Optimization, 1997.

R. B. Kearfott, Rigorous Global Search: Continuous Problems, 1996.
DOI : 10.1007/978-1-4757-2495-0

Y. Lebbah, C. Michel, and M. Rueher, An efficient and safe framework for solving optimization problems, Journal of Computational and Applied Mathematics, vol.199, issue.2, pp.372-377, 2007.
DOI : 10.1016/j.cam.2005.08.037

URL : https://hal.archives-ouvertes.fr/hal-00510304

J. Ninin, F. Messine, and P. Hansen, A reliable affine relaxation method for global optimization, 4OR, vol.55, issue.3???4, pp.247-277, 2015.
DOI : 10.1007/s10288-014-0269-0

URL : https://hal.archives-ouvertes.fr/hal-01194735

G. Trombettoni, I. Araya, B. Neveu, and G. Chabert, Inner Regions and Interval Linearizations for Global Optimization, AAAI, pp.99-104, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00648085

G. Trombettoni and G. Chabert, Constructive Interval Disjunction, Proc. CP, pp.635-650, 2007.
DOI : 10.1007/978-3-540-74970-7_45

URL : https://hal.archives-ouvertes.fr/hal-00936654

G. Chabert and L. Jaulin, Contractor programming, Artificial Intelligence, vol.173, issue.11, pp.1079-1100, 2009.
DOI : 10.1016/j.artint.2009.03.002

URL : https://hal.archives-ouvertes.fr/hal-00428957

O. Shcherbina, A. Neumaier, D. Sam-haroud, X. Vu, and T. Nguyen, Benchmarking Global Optimization and Constraint Satisfaction Codes, 2002.
DOI : 10.1007/978-3-540-39901-8_16

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

R. E. Moore, Interval Analysis, 1966.

F. Benhamou, F. Goualard, L. Granvilliers, and J. Puget, Revising Hull and Box Consistency, Proc. ICLP, pp.230-244, 1999.

I. Araya, G. Trombettoni, and B. Neveu, A Contractor Based on Convex Interval Taylor, CPAIOR 2012, ser, pp.1-16, 2012.
DOI : 10.1007/978-3-642-29828-8_1

URL : https://hal.archives-ouvertes.fr/hal-00673447

O. Lhomme, Consistency Techniques for Numeric CSPs, IJCAI, pp.232-238, 1993.

R. Debruyne and C. Bessiere, Some Practicable Filtering Techniques for the Constraint Satisfaction Problem, Proc. IJCAI, pp.412-417, 1997.

R. Kearfott, M. Novoa, and I. , Algorithm 681: INTBIS, a portable interval Newton/bisection package, ACM Transactions on Mathematical Software, vol.16, issue.2, pp.152-157, 1990.
DOI : 10.1145/78928.78931

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

Y. Lin and M. Stadtherr, LP Strategy for the Interval-Newton Method in Deterministic Global Optimization, Industrial & Engineering Chemistry Research, vol.43, issue.14, pp.3741-3749, 2004.
DOI : 10.1021/ie034073d

Y. Lebbah, C. Michel, M. Rueher, D. Daney, and J. Merlet, Efficient and Safe Global Constraints for Handling Numerical Constraint Systems, SIAM Journal on Numerical Analysis, vol.42, issue.5, pp.2076-2097, 2005.
DOI : 10.1137/S0036142903436174

URL : https://hal.archives-ouvertes.fr/hal-00907765

R. Graham, An efficient algorith for determining the convex hull of a finite planar set, Information Processing Letters, vol.1, issue.4, pp.132-133, 1972.
DOI : 10.1016/0020-0190(72)90045-2

I. Araya, G. Trombettoni, B. Neveu, and G. Chabert, Upper bounding in inner regions for global optimization under inequality constraints, Journal of Global Optimization, vol.103, issue.2, pp.145-164, 2014.
DOI : 10.1007/s10898-014-0145-7

URL : https://hal.archives-ouvertes.fr/hal-01061701

M. Pelleau, C. Truchet, and F. Benhamou, Octagonal Domains for Continuous Constraints, Proc. CP, Constraint Programming, pp.706-720, 2011.
DOI : 10.1007/978-3-642-23786-7_53

URL : https://hal.archives-ouvertes.fr/hal-00785598

I. Araya, G. Trombettoni, and B. Neveu, Filtering Numerical CSPs Using Well-Constrained Subsystems, Proc. CP'09, 2009.
DOI : 10.1007/978-3-540-74970-7_45