
HAL Id: lirmm-01471093
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01471093v1

Submitted on 1 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NoSQL Graph-based OLAP Analysis
Arnaud Castelltort, Anne Laurent

To cite this version:
Arnaud Castelltort, Anne Laurent. NoSQL Graph-based OLAP Analysis. KDIR: Knowledge Dis-
covery and Information Retrieval, Oct 2014, Rome, Italy. pp.217-224, �10.5220/0005072902170224�.
�lirmm-01471093�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01471093v1
https://hal.archives-ouvertes.fr

NoSQL Graph-Based OLAP Analysis

Keywords: OLAP Analysis, NoSQL Graph Databases.

Abstract: OLAP is a leading technology for analysing data and decision making. It helps the users to discover relevant
information from large databases. Graph OLAP has been studied for several years in the OLAP framework.
In existing work, the authors study how to import graph data into OLAP cube models. In the meantime, graph
databases have emerged through NoSQL graph databases that have proven to be very efficient. In this paper,
we aim at providing an original model for managing cubes into NoSQL graphs. We show how cubes can be
represented in graphs and how these structures can then be used for graph OLAP queries to support decision
making.

1 Introduction

Graph NoSQL engines such as Neo4J are now tak-
ing more and more importance in the applications.
Their capacity to scale to large databases and complex
treatments are well-suited for many applications hav-
ing intensive needs for graph-oriented applications,
such as in chemistry, biology, social networks, etc.

Studies have shown that these technologies
present good performances, much better than classi-
cal relational databases (Board, 2013) for represent-
ing and querying such large graph databases, espe-
cially for connected data.

Retrieving relevant information from such graphs
in an efficient manner is a key feature. In this per-
spective, retrieving decisional information, as done in
the OLAP framework, appears to be a promising area.
OLAP allows to represent key indicators as measures
(e.g., number of sales) defined over dimensions (e.g.,
product, time, location) and to query this informa-
tion by selecting releveant pieces of information (e.g.,
slice and dice) or by navigating through hierarchies
(e.g., from years to decades, from regions to coun-
tries), thus helping decision makers to retrieve rele-
vant information.

We thus consider adding OLAP features to
NoSQL graph databases.

In the literature, works have considered coupling
graph and OLAP. Models have been proposed and
have been implemented. OLAP queries have been
translated to the graph framework. However, as far
as we know, no work has addressed the exploitation
of NoSQL graph databases for this purpose.

In this paper, we thus propose to study how
NoSQL databases can help retrieving relevant infor-
mation from data using the OLAP paradigms. We ad-

dress both the representation of data cubes through
NoSQL databases and the query processing. In our
work, we consider the Neo4j engine and the declara-
tive Cypher language.

The paper is organised as follows. Section 2 re-
views the related work, namely NoSQL databases
and graph OLAP databases. Section 3 introduces
our proposition for modeling NoSQL graph databases
while Section 4 presents the extension of Cypher
queries to OLAP NoSQL data cubes.

2 Related Work

We introduce below the foundation of NoSQL
graph databases and the existing work on graph
OLAP.

2.1 NoSQL Graph Databases

Graphs have been studied for centuries.

Definition 1 (Graph). A graph G is defined as a pair
(V,E) where V is a set of nodes and E is a set of rela-
tions, with E ⊆ (V ×V).

Most of databases consider oriented graphs (An-
gles and Gutiérrez, 2008; Reutter and Tan, 2011;
Robinson et al., 2013) and contain elements (nodes
and relations) together with properties on these el-
ements. These properties are represented through
(key,value) pairs. These concepts are often used in
NoSQL databases (Han et al., 2011).

Graphs are often represented graphically and are
powerful for visualising and analysing data. On the
one hand, they benefit from an easy human under-
standing. On the other hand, they offer excellent per-

Figure 1: Graph of a Company

formances thanks to their data structures and query
tools which are very relevant for many real-world
contexts (Rodriguez and Neubauer, 2010).

Fig. 2 shows a graph and its structure in
(key,values) pairs.

Figure 2: Properties of Nodes and Relations

Their exist several NoSQL graph database engines
(OrientDB, Neo4J,HyperGraphDB, etc.). Neo4J is
recognised as being one of the top ones regarding per-
formance (Board, 2013).

2.2 Graph OLAP

(Chen et al., 2009) has proposed to couple graphs with
OLAP in 2008. This approach consists in studying
how a set of several graphs can be aggregated into a
single summary graph.

(Zhao et al., 2011) has introduced the concept of
Graph Cube. This concept stands for a modeliza-
tion of data cubes from graphs where dimensions are
based on node attributes (e.g., age, sex, city of birth
for a people) and where facts are based on countings.
Fig. 3 shows the cube from the paper example consid-
ering a low level of granularity and aggregations with
OLAP operators.

These propositions are enhanced regarding perfor-
mances in (Denis et al., 2013) with the use of dis-
tributed computer architectures.

(Li et al., 2011) proposes a method for modelizing
cubes from network data, as for instance the network

of co-authors. Meta-data are distinguished depend-
ing on the elements they are linked to dimensions or
facts. If they depend on dimensions, then they are
considered as informational dimension tables as for
instance spatio-temporal dimensions or as topologi-
cal dimension tables. If they depend on facts, they
are said to be frame fact table or clique fact table. Ev-
ery cell in the cube contains a network. For instance,
with the dimensions conference and year, the cell at
position (VLDB,2010) contains the graph of all co-
authors from the papers at this event. The system has
been implemented in SQL Server and precomputa-
tions are possible in order to get better performances.
Two types of operations are proposed: I-OLAP op-
erations (Informative OLAP) when dimensions are
taken from node attributes and T-OLAP (Topological
OLAP) described in (Qu et al., 2011) when dimen-
sions are taken from nodes and relations attributes.
These operations allow to perform classical OLAP
operations such as roll-up, drill-down, for instance for
navigating through decades and years, slice/dice, etc.

Regarding OLAP operators, (Etcheverry and Vais-
man, 2012) works on the RDF Cube vocabulary called
QB to extend it. (Beheshti et al., 2012) extends the
QB syntax in the so-called QB4OLAP for supporting
OLAP operators directly in RDF.

(Kampgen et al., 2012) considers the execution of
OLAP queries through SPARQL over RDF data. Un-
fortunately, the paper does not demonstrate in details
how to express OLAP queries and how queries are
processed.

(Petermann et al., 2014) discusses the concept of
Business Intelligence in the context of graphs (stor-
ing information on commercial processes in this case,
within Business Transaction Graphs).

(Bachman, 2013) addresses the implementation
of precomputation componants over Neo4j databases
and also addresses efficient computation of node ar-
ity. This work is very important for OLAP features as
many operations rely on counting incoming and out-
going relations, as for instance for counting the num-
ber of friends in a social network. However, this work
is a low level implementation and does not detail how
OLAP queries can be written.

Our proposition in this paper is quite different
from the literature as we propose to use the graph
structure as a basis for OLAP analysis.

This original contribution relies on the use of
the performances and efficiency of NoSQL graph
databases engines to store and query OLAP data. We
first show how such NoSQL Graph OLAP data can
be modelised and we then address OLAP queries over
such data structures.

Figure 3: Graph Cube Model from (Zhao et al., 2011)

3 NoSQL Graph OLAP Databases

In this section, we present our contribution for
modelising cubes in NoSQL graph databases. The
case below serves as a running example.

Example 1. We consider a classical database de-
scribing sales of products in cities at given dates.
The dimensions are: the products described by their
ProductId regrouped into Categories, the cities or-
ganised along a hierarchy City-Region-Country and
the days organised along a hierarchy Day-Month-
Year.

3.1 NoSQL Graph Cubes

Our model relies on the modelisation of dimensions
and facts with typed nodes. These types represent the
granularity levels of the dimension, taking advantage
from the best practices from NoSQL graph databases
experts1. It should be noted that OLAP theoretical
models consider such granularity levels in the liter-
ature (Gyssens and Lakshmanan, 1997). Nodes are
linked by relations describing:

• links of type hierarchy (HIER) in the case of di-
mensions,

• links or type fact (FACT) in the case of a link from
a dimension to a fact.

.
Fig. 4 shows such a representation and Fig. 5 dis-

plays an example of such a cube with three dimen-
sions (Time, Product, City) organized through hierar-

1http://blog.neo4j.org/2010/03/modeling-categories-in-
graph-database.html

Figure 5: A NoSQL Graph OLAP Cube

chies. For instance, there have been 5 units of Sales
of Canoes in New York City on March 3, 2014.

Our solution presents many advantages :

• Multidimensionsal data are easily ploted on the
user’s screen, as demonstrated by Fig. 5. Every
dimension can be colored so as to ease the user
visualization.

• The nodes can be adjusted (enlarged or reduced)
according to their value.

• Cells can be organized so as to cluster them and/or
bring them closer or farther.

• Only non null cells are managed, thus avoiding
sparse tables.

• OLAP navigation is eased. In particular, graph
queries can be used, as well as filters that can help
hiding or coloring in a different manner the data
being relevant for the user (e.g., displaying only
cells for low level of sales, or only sales associated
to NYC). The operators are detailed below.

Figure 4: Modelising cubes and dimensions in a NoSQL Graph (Neo4J)

Figure 6: Modelising a dimension with multiple hierarchy
in a NoSQL Graph (Neo4J)

Complex (multiple) hierarchies are modelised in
the same manner by defining several relations directed
to the parent nodes, as illustrated by Fig. 6. For in-
stance, NYC is both part of the East part from of the
US Region and in the category of Big Cities.

Facts are represented by nodes of type :NFACT
labeled (a label is a graph construct that is used to
group nodes into sets) by the type of fact they repre-
sent and are linked to dimension nodes through rela-
tions of type :FACT . Ony the cells for which values
are known are modelised, thus copping with the prob-
lem of cube sparsity (Niemi et al., 2003).

It should be noted that the value in the node is
valid only if it is considered in relation with all the di-
mensions. For instance, as stated above, Fig. 5 shows
that there have been 5 units of Sales of Canoes in New
York City on March 3, 2014. This value of 5 must be
associated with all these three dimension values, i.e.
Canoes, NYC, March3,2014.

If a dimension is omitted, then the value must be
re-computed. In such a case where one (or several)
dimension is omitted, a roll up operator has been ap-

Figure 7: Lattice of Cuboids

plied. In the OLAP framework, data analysis are in-
deed performed regarding dimensions in a so-called
data cube. Sales can be analysed with respect with
the three dimensions, or with respect with two di-
mensions out of these three, or with respect with one
dimension out of the three dimensions. The combi-
nations of dimensions are called cuboids, the set of
cuboids being the cube, as shown by Fig. 7 for the
Sales example. This example shows that in such a
case with 3 dimensions, there are 23 = 8 cuboids. All
cuboids form a lattice.

More complex schemas (e.g., constellations) are
easily modeled with the same concepts.

More formaly, we consider the definitions below.

3.2 Definitions

Definition 2 (NoSQL Graph - Dimension Level). Let
G be a NoSQL graph database. A dimension level of
G is defined as a possible value associated with the
property key Type.

For instance, we consider the dimension level
City.

Definition 3 (NoSQL Graph - Dimension Node). Let
G be a NoSQL graph database and L a set of associ-

ated dimension levels. A dimension node n is defined
as a node such as n.type ∈ L .

We consider for instance the set of levels {City}
and NYC as a node, with NYC.type =City.

Definition 4 (NoSQL Graph - Dimension Relation).
Let G be a NoSQL graph database and N a set of
dimension nodes. A dimension relation r is defined as
a pair (n1,n2) ∈N 2 such that:

• r.type=HIER

• n1.type 6= n2.type

.

We consider for instance:

• the set of levels {City,Region},

• the nodes NYC,East,

• the types NYC.type = City and East.type =
Region, and

• the hierarchical relation (NYC)− [: HIER]− >
(East).

Definition 5 (NoSQL Graph - Dimension). A NoSQL
graph dimension D is defined as a triplet (L,N,R)
with L a set of dimension levels, N a set of dimen-
sion nodes defined over L and R a set of dimension
relations defined over N.

Definition 6 (NoSQL Graph - Type of Fact). Let G
be a NoSQL graph database. A type of fact is defined
as a possible value on the key T Fact.

For example, we consider the type of fact Sales
which records the number of sales.

Definition 7 (NoSQL Graph - Fact). Let F be a set of
types of facts. A fact is defined as a pair (n,rd) with n
a node such that n.type = NFACT , n.t f act ∈ F and
rd a set of dimension relations {r = (n,x) s.t. r.type =
FACT}r∈rd .

The fact is said to be defined over dimensions D =
{x.type}.

Definition 8 (NoSQL Graph - Cube). A NoSQL
graph cube of type t is defined as

• the set of facts f such that f .t f act = t,

• the set of paths from the f nodes having type
FACT and HIER.

For example, the Sales cubes is the set of nodes
where the value for key value T Fact is Sales and
the set of paths from these nodes traversing relations
of type FACT and HIER, thus traversing (through
hierarchies) nodes of type Cities, Region, Country,
ProductId, Category, Month, Year.

3.3 Computing NoSQL Graph Cubes

OLAP engines are distinguished whether they pre-
compute or not all parts of the cubes, i.e. all the
cuboids from the lattice shown in Fig. 7. Mod-
els where all cuboids are pre-computed are known
as MOLAP models (Multidimensional OLAP), while
models where no cuboid is pre-computed are con-
sidered as ROLAP models (Relational Models). Hy-
brid models are possible (HOLAP) where highly re-
quested cuboids are pre-computed while other ones
are not. MOLAP engines are faster to deliver the in-
formation but have some limits as they require large
volumes of memory to load pre-computations, while
ROLAP engines can scale more easily as no mem-
ory is required to store pre-computations, but they are
slower.

The model we propose is similar to a MOLAP
representation as links are materialized. We indeed
claim that the performances of NoSQL databases al-
low for reconsidering MOLAP models. This model
has proven his capacity to scale to very large volumes
of data.

As a MOLAP model, our contribution is thus very
suitable for navigating through data and hierarchies.

The computation of such NoSQL graph cubes
is meant to be performed by importing source data
within the model. Hypergraphs may be built if the
data are already in NoSQL graph databases. Due to
lack of space, OLAP graph-ETL tools are not ex-
plored in this paper.

4 Extension of the Cypher Language
to OLAP queries

The model of OLAP cubes in NoSQL graph
databases proposed above allows us to define how
to navigate through such data structures in an
OLAP manner. OLAP has defined several opera-
tors, the most common ones being Slice, Dice, Roll
Up (Cabibbo and Torlone, 1997). Many works have
addressed how to query graphs (Wood, 2012). In this
paper, we consider the Cypher syntax, Cypher being
the declarative query language over Neo4J.

4.1 Basic Operators

4.1.1 Slice

In OLAP, the slice operator allows to select the data
with respect to a condition on the dimension values.
It is for instance used to reduce the data to the infor-
mation related to one city (e.g., New York) or to one

region (e.g., East). Note that the Cypher queries we
propose below in Listings 1 and 2 return the cell with
all its dimensional context.

Listing 1: Slice - Selecting Sales Results from the New York
City

1 MATCH (n) -[r1 : FACT] -> (x) , (n) -[r2 : FACT] -> (y)
2 WHERE x . name = ’NYC ’
3 RETURN n , r1 , r2 , x , y

Listing 2: Slice - Selecting Sales Results from the East

1 MATCH (n) -[r1 : FACT] -> (x) -[h : HIER∗] -> (e) , (n) -[r2←↩
: FACT] -> (y)

2 WHERE e . name = ’East ’
3 RETURN n , r1 , r2 , x , e , y

4.1.2 Dice

In OLAP, the dice operator allows to select the data
with respect to a condition on the cell values. It is
for instance used to reduce the data to the information
related to sales greater than 7 units.

The Dice operator does only apply on fact nodes
by specifying the possible values in the ARG clause
below in Listing 3.

Listing 3: Dice - Selecting Sales Results Greater than 7
units

1 MATCH (n)
2 WHERE n . value > 7
3 RETURN n

4.1.3 Roll Up

In the case of the roll up operator, the computation of
aggregated facts with respect to hierarchy levels and
:FACT links is modelised at the upper-level. All the
fact node values are aggregated by respecting the se-
mantic and the additivity properties of the measures
(Lenz and Thalheim, 2009).

For instance, the sum will be considered for sum-
ming up all number of sales from the fact Sales. A
new node is created for storing the new aggregate in-
tegrate this new node at the upper level of hierarchy
with relation FACT as shown in Listing 4.

Listing 4: Roll Up - Summing up all number of sales from
the East

1 MATCH (n) -[r1 : FACT] -> (x) -[h : HIER∗] -> (East)
2 WHERE East . name = ’East ’
3 WITH sum (n . value) as aggregateValue , East

4 CREATE (aggregate { value : aggregateValue}) -[:←↩
FACT] -> (East)

5 RETURN aggregate , East

Precomputations can be considered in the same
way as the cuboid materialisation in order for instance
to precompute the number of sales per year, per cate-
gory, per region, etc.

4.2 Implementation Issues

The model we propose can be implemented in the
Neo4j graph engine.

As depicted by Fig. 8 and discussed in (Castell-
tort and Laurent, 2014), regarding queries, there exist
several ways to implement the extension of Cypher:

1. Creating a specific language (Cypher OLAP) ex-
tending the Cypher syntax and rewriting these
queries into well-formatted Cypher queries;

2. Extending the Cypher syntax and rewriting the
queries using the low level API which can interact
with the Neo4j engine;

3. Extending the API with advanced querying fea-
tures and proposing this extension to developers;

4. Combining the above-mentioned options for de-
veloping an OLAP extensions based on the OLAP
API.

Whatever the choice may be, the type of rewriting
is similar. This is the reason why we do not address
this topic in this paper. However, the impacts on per-
formances and on the user experience may be very
different depending on this choice.

Figure 8: Alternatives for Extending the Cypher Language
within Neo4J

Cubes can be created in the Neo4j engine by re-
specting the model proposed in this paper. Nodes and
relations are considered with their respective types,
depending on the case that they are facts, dimensions
or hierarchy. They can then be queried regarding

Figure 10: A Slice Operation over the NoSQL Graph Cube
in Neo4J

these types and/or some keys and values for defining
OLAP operations as defined above.

Fig. 9 shows how the cube from Fig. 5 can be cre-
ated in Neo4j.

Fig. 10 diplays the result of the Slice operation for
retrieving the sales from the East.

5 Conclusion and Further Work

In this paper, we address the topic of coupling
NoSQL graph databases and OLAP. These two sci-
entific domains are very active and important in
many real-worl applications. We claim that NoSQL
graph databases are a perfect candidate for support-
ing OLAP features, as they are both efficient and suit-
able for representing data in a very intuitive manner
for decisional purposes. Analysing data and retriev-
ing relevant information indeed rely on the capacity
to deal with big data and the capacity to help the de-
cision makers.

For this purpose, we propose an OLAP data struc-
ture based on NoSQL graph databases and we intro-
duce OLAP queries based on the Cypher declarative
language.

Some tests have been performed with the Neo4j
engine, showing the feasability of our proposition.

Further work will help us strengthening the im-
plementation and tests over large databases and com-
plex OLAP queries. Both incoming processes and
queries will be enhanced, by defining specific ETL
componants and by implementing the extension of the

Cypher language.
We also aim at exploiting the NoSQL graph

databases and the attributes on relationships in order
to better represent and manage fuzzy hierarchies (Ro-
gova et al., 2007; Laurent, 2003) that are very difficult
to deal with in existing engines.

REFERENCES

Angles, R. and Gutiérrez, C. (2008). Survey of graph
database models. ACM Comput. Surv., 40(1).

Bachman, M. (2013). GraphAware: Towards Online Ana-
lytical Processing in Graph Databases. PhD thesis,
MSc Degree in Computing (Distributed Systems) of
Imperial College London.

Beheshti, S.-M.-R., Benatallah, B., Nezhad, H. R. M., and
Allahbakhsh, M. (2012). A framework and a lan-
guage for on-line analytical processing on graphs. In
Wang, X. S., Cruz, I. F., Delis, A., and Huang, G.,
editors, Web Information Systems Engineering-WISE
2012, volume 7651 of Lecture Notes in Computer Sci-
ence, pages 213–227. Springer.

Board, T. T. A. (May 2013). Technology radar,
http://thoughtworks.fileburst.com/assets/technology-
radar-may-2013.pdf.

Cabibbo, L. and Torlone, R. (1997). Querying multidi-
mensional databases. In In Sixth Int. Workshop on
Database Programming Languages, pages 253–269.

Castelltort, A. and Laurent, A. (2014). Fuzzy queries
over nosql graph databases: Perspectives for extend-
ing the cypher language. In International Confer-
ence on Processing and Management of Uncertainty
in Knowledge-Based Systems. Springer.

Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P. (2009). Graph
olap: a multi-dimensional framework for graph data
analysis. Knowledge and Information System (KAIS).

Denis, B., Ghrab, A., and Skhiri, S. (2013). A distributed
approach for graph-oriented multidimensional analy-
sis. In Hu, X. et al., editors, Proceedings of the 2013
IEEE International Conference on Big Data, page
9–16, Santa Clara, CA, USA. IEEE Computer Soci-
ety Press, IEEE Computer Society Press.

Etcheverry, L. and Vaisman, A. A. (2012). Qb4olap: A
vocabulary for olap cubes on the semantic web. In
Sequeda, J., Harth, A., and Hartig, O., editors, COLD,
volume 905 of CEUR Workshop Proceedings. CEUR-
WS.org.

Gyssens, M. and Lakshmanan, L. V. S. (1997). A foun-
dation for multi-dimensional databases. In Jarke,
M., Carey, M. J., Dittrich, K. R., Lochovsky,
F. H., Loucopoulos, P., and Jeusfeld, M. A., editors,
VLDB’97, Proceedings of 23rd International Confer-
ence on Very Large Data Bases, August 25-29, 1997,
Athens, Greece, pages 106–115. Morgan Kaufmann.

Han, J., Haihong, E., Le, G., and Du, J. (2011). Survey
on nosql database. In Proc. of the 6th International

Figure 9: A NoSQL Graph Cube in Neo4J

Conference on Pervasive Computing and Applications
(ICPCA), pages 363–366.

Kampgen, B., O’Rain, S., and Harth, A. (2012). Interacting
with statistical linked data via olap operations. In In
Proceedings of the International Workshop on Inter-
acting with Linked Data, pages 36–49.

Laurent, A. (2003). A new approach for the generation
of fuzzy summaries based on fuzzy multidimensional
databases. Intell. Data Anal., 7(2):155–177.

Lenz, H.-J. and Thalheim, B. (2009). A formal frame-
work of aggregation for the olap-oltp model. J. UCS,
15(1):273–303.

Li, C., Yu, P. S., Zhao, L., Xie, Y., and Lin, W. (2011).
Infonetolaper: Integrating infonetwarehouse and in-
fonetcube with infonetolap. PVLDB, 4(12):1422–
1425.

Niemi, T., Nummenmaa, J., and Thanisch, P. (2003). Nor-
malising olap cubes for controlling sparsity. Data
Knowl. Eng., 46(3):317–343.

Petermann, A., Junghanns, M.and Mller, R., and Rahm,
E. (2014). BIIIG: enabling business intelligence
with integrated instance graphs. In 5th International
Workshop on Graph Data Management (GDM 2014),
pages 03–31.

Qu, Q., Zhu, F., Yan, X., Han, J., Yu, P. S., and Li, H.
(2011). Efficient topological olap on information net-
works. In Yu, J. X., Kim, M.-H., and Unland, R., ed-
itors, DASFAA (1), volume 6587 of Lecture Notes in
Computer Science, pages 389–403. Springer.

Reutter, J. L. and Tan, T. (2011). A formalism for graph
databases and its model of computation. In Barceló, P.
and Tannen, V., editors, AMW, volume 749 of CEUR
Workshop Proceedings. CEUR-WS.org.

Robinson, I., Webber, J., and Eifrem, E. (2013). Graph
Databases. O’Reilly.

Rodriguez, M. A. and Neubauer, P. (2010). The graph
traversal pattern. CoRR, abs/1004.1001.

Rogova, E., Chountas, P., and Atanassov, K. T. (2007).
Flexible hierarchies and fuzzy knowledge-based olap.
In FSKD (2), pages 7–11. IEEE Computer Society.

Wood, P. T. (2012). Query languages for graph databases.
SIGMOD Rec., 41(1):50–60.

Zhao, P., Li, X., Xin, D., and Han, J. (2011). Graph cube:
On warehousing and olap multidimensional networks.
In Proceedings of the 2011 ACM SIGMOD Interna-
tional Conference on Management of Data, SIGMOD
’11, pages 853–864, New York, NY, USA. ACM.

APPENDIX

Below is the script for creating the database from Fig.
5.

1 CREATE (Product : Product {name : ’ Product ’ }) ,
2 (Outdoor : Category {name : ’ Outdoor ’ }) ,
3 (Indoor : Category {name : ’ Indoor ’ }) ,
4 (Canoe : Prod {name : ’ Canoe ’ }) , (Tent : Prod {name : ’←↩

Tent ’ }) ,
5 (Bed : Prod {name : ’Bed ’ }) , (Cupboard : Prod {name : ’←↩

cupboard ’ }) ,
6 (Tent) -[: HIER] -> (Outdoor) , (Canoe) -[: HIER] -> (←↩

Outdoor) ,
7 (Bed) -[: HIER] -> (Indoor) , (Cupboard) -[: HIER] -> (←↩

Indoor) ,
8 (Indoor) -[: HIER] -> (Product) , (Outdoor) -[: HIER] -> (←↩

Product) ,
9 (US : Country {name : ’US ’ }) ,

10 (East : Region {name : ’East ’ }) , (West : Region {name : ’←↩
West ’ }) ,

11 (NYC : City { name : ’NYC ’ }) , (LA : City { name : ’LA ’ })←↩
,

12 (Boston : City { name : ’ Boston ’ }) , (SF : City { name :←↩
’SF ’ }) ,

13 (East) -[: HIER] -> (US) , (West) -[: HIER] -> (US) ,
14 (NYC) -[: HIER] -> (East) , (Boston) -[: HIER] -> (East) ,
15 (LA) -[: HIER] -> (West) , (SF) -[: HIER] -> (West) ,
16 (Y2014 : Year { name : ’Y2014 ’ }) ,
17 (Jan14 : Month { name : ’ Jan14 ’ }) , (Feb14 : Month { ←↩

name : ’ Feb14 ’}) ,
18 (Jan0114 : Day {name : ’ Jan0114 ’}) , (Jan0214 : Day {←↩

name : ’ Jan0214 ’}) ,
19 (Feb0114 : Day {name : ’ Feb0114 ’}) , (Feb0214 : Day {←↩

name : ’ Feb0214 ’}) ,
20 (Jan0114) -[: HIER] -> (Jan14) , (Jan0214) -[: HIER] -> (←↩

Jan14) ,
21 (Feb0114) -[: HIER] -> (Feb14) , (Feb0214) -[: HIER] -> (←↩

Feb14) ,
22 (Jan14) -[: HIER] -> (Y2014) , (Feb14) -[: HIER] -> (Y2014←↩

) ,
23 (TJ0114Boston {name : ’TJ0114Boston ’ , tfact : ’ Sales←↩

’ , value : 9}) ,
24 (CaF0314NYC {name : ’ CaF0314NYC ’ , tfact : ’ Sales ’ , ←↩

value : 5}) ,
25 (CuJ0214LA {name : ’ CuJ0214LA ’ , tfact : ’ Sales ’ , ←↩

value : 3}) ,
26 (CuF0114LA {name : ’ CuF0114LA ’ , tfact : ’ Sales ’ , ←↩

value : 3}) ,
27 (TJ0114Boston) -[: FACT] -> (Tent) ,
28 (TJ0114Boston) -[: FACT] -> (Boston) ,
29 (TJ0114Boston) -[: FACT] -> (Jan0114) ,
30 (CaF0314NYC) -[: FACT] -> (Canoe) ,
31 (CaF0314NYC) -[: FACT] -> (NYC) ,
32 (CaF0314NYC) -[: FACT] -> (Feb0314) ,
33 (CuJ0214LA) -[: FACT] -> (Cupboard) ,
34 (CuJ0214LA) -[: FACT] -> (LA) ,
35 (CuJ0214LA) -[: FACT] -> (Jan0214) ,
36 (CuF0114LA) -[: FACT] -> (Cupboard) ,
37 (CuF0114LA) -[: FACT] -> (LA) ,
38 (CuF0114LA) -[: FACT] -> (Feb0114)
39 RETURN ∗

