
HAL Id: lirmm-01471644
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01471644

Submitted on 20 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Grail Theorem Prover: Type Theory for Syntax
and Semantics

Richard Moot

To cite this version:
Richard Moot. The Grail Theorem Prover: Type Theory for Syntax and Semantics. Zhaohui Luo;
Stergios Chatzikyriakidis. Modern Perspectives in Type-Theoretical Semantics, Studies in Linguistics
and Philosophy (98), Springer, pp.247-277, 2017, Part III, 978-3-319-50420-9. �10.1007/978-3-319-
50422-3_10�. �lirmm-01471644�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01471644
https://hal.archives-ouvertes.fr

Chapter 9
The Grail theorem prover:
Type theory for syntax and semantics

Richard Moot

Abstract Type-logical grammars use a foundation of logic and type theory to model
natural language. These grammars have been particularly successful giving an ac-
count of several well-known phenomena on the syntax-semantics interface, such as
quantifier scope and its interaction with other phenomena. This chapter gives a high-
level description of a family of theorem provers designed for grammar development
in a variety of modern type-logical grammars. We discuss automated theorem prov-
ing for type-logical grammars from the perspective of proof nets, a graph-theoretic
way to represent (partial) proofs during proof search.

9.1 Introduction

This chapter describes a series of tools for developing and testing type-logical gram-
mars. The Grail family of theorem provers have been designed to work with a va-
riety of modern type-logical frameworks, including multimodal type-logical gram-
mars (Moortgat, 2011), NLcl (Barker and Shan, 2014), the Displacement calculus
(Morrill et al, 2011) and hybrid type-logical grammars (Kubota and Levine, 2012).

The tools give a transparent way of implementing grammars and testing their
consequences, providing a natural deduction proof in the specific type-logical gram-
mar for each of the readings of a sentence. None of this replaces careful reflection
by the grammar writer, of course, but in many cases, computational testing of hand-
written grammars will reveal surprises, showing unintended consequences of our
grammar and such unintended proofs (or unintended absences of proofs) help us
improve the grammar. Computational tools also help us speed up grammar devel-

Richard Moot
CNRS, LaBRI, Bordeaux University, 351 cours de la Libération, 33405 Talence, France

LIRMM, Montpellier University, 161 rue Ada, 34095 Montpellier cedex 5, France e-mail:
Richard.Moot@labri.fr

1

2 Richard Moot

opment, for example by allowing us to compare several alternative solutions to a
problem and investigate where they make different predictions.

This chapter describes the underlying formalism of the theorem provers, as it is
visible during an interactive proof trace, and present the general strategy followed
by the theorem provers. The presentation in this chapter is somewhat informal, re-
ferring the reader elsewhere for full proofs.

The rest of this chapter is structured as follows. Section 9.2 presents a general
introduction to type-logical grammars and illustrates its basic concepts using the
Lambek calculus, ending the section with some problems at the syntax-semantics
interface for the Lambek calculus. Section 9.3 looks at recent developments in
type-logical grammars and how they solve some of the problems at the syntax-
semantics interface. Section 9.4 looks at two general frameworks for automated
theorem proving for type-logical grammars, describing the internal representation
of partial proofs and giving a high-level overview of the proof search mechanism.

9.2 Type-logical grammars

Type-logical grammars are a family of grammar formalisms built on a foundation
of logic and type theory. Type-logical grammars originated when Lambek (1958)
introduced his Syntactic Calculus (called the Lambek calculus, L, by later authors).
Though Lambek built on the work of Ajdukiewicz (1935), Bar-Hillel (1953) and
others, Lambek’s main innovation was to cast the calculus as a logic, giving a se-
quent calculus and showing decidability by means of cut elimination. This combi-
nation of linguistic and computational applications has proved very influential.

In its general form, a type-logical grammar consists of following components:

1. a logic, which fulfils the role of “Universal Grammar” mainstream linguistics1,
2. a homomorphism from this logic to intuitionistic (linear) logic, this mapping is

the syntax-semantics interface, with intuitionistic linear logic — also called the
Lambek-van Benthem calculus, LP (van Benthem, 1995) — fulfilling the role of
“deep structure”.

3. a lexicon, which is a mapping from words of natural language to sets of formulas
in our logic,

4. a set of goal formulas, which specifies the formulas corresponding to different
types of sentences in our grammar.2

1 This is rather different from Montague’s use of the term “Universal Grammar” (Montague, 1970).
In Montague’s sense, the different components of a type-logical grammar together would be an
instantiation of Universal Grammar.
2 Many authors use a single designated goal formula, typically s, as is standard in formal language
theory. I prefer this slightly more general setup, since it allows us to distinguish between, for
example, declarative sentences, imperatives, yes/no questions, wh questions, etc., both syntactically
and semantically.

9 The Grail theorem prover: Type theory for syntax and semantics 3

A sentence w1, . . . ,wn is grammatical iff the statement A1, . . . ,An `C is provable
in our logic, for some Ai ∈ lex(wi) and for some goal formula C. In other words, we
use the lexicon to map words to formulas and then ask the logic whether the result-
ing sequence of formulas is a theorem. Parsing in a type-logical grammar is quite
literally a form of theorem proving, a very pure realisation of the slogan “parsing as
deduction”.

One of the attractive aspects of type-logical grammars is their simple and trans-
parent syntax-semantics interface. Though there is a variety of logics used for the
syntax of type-logical grammars (I will discuss the Lambek calculus in Section 9.2.1
and two generalisations of it in Sections 9.3.1 and 9.3.2), there is a large consensus
over the syntax-semantics interface. Figure 9.1 gives a picture of the standard archi-
tecture of type-logical grammars.

Syntax Semantics
Pragmatics

input text

categorial
grammar proof

multiplica-
tive linear
logic proof

linear
lambda term

logical
semantics
(formulas)

semantics and
pragmatics

homomorphism

isomorphism

lexical sub-
stitution,

normalization

lexical substi-
tution, parsing

theorem
proving

Fig. 9.1 The standard architecture of type-logical grammars

The “bridge” between syntax and semantics in the figure is the Curry-Howard
isomorphism between linear lambda terms and proofs in multiplicative intuitionistic
linear logic.

Theorem proving occurs in two places of the picture: first when parsing a sen-
tence in a given type-logical grammar and also at the end when we use the resulting
semantics for inferences. I will have little to say about this second type of theorem
proving (Chatzikyriakidis, 2015; Mineshima et al, 2015, provide some investiga-
tions into this question, in a way which seems compatible with the syntax-semantics
interface pursued here, though developing a full integrated system combining these
systems with the current work would be an interesting research project); theorem
proving for parsing will be discussed in Section 9.4.

The lexicon plays the role of translating words to syntactic formulas but also
specifies the semantic term which is used to compute the semantics later. The lexi-
con of a categorial grammar is “semantically informed”. The desired semantics of a

4 Richard Moot

sentence allows us to reverse-engineer the formula and lexical lambda-term which
produce it.

Many current semantic theories do not provide a semantic formula directly, but
first provide a proto-semantics on which further computations are performed to pro-
duce the final semantics (eg. for anaphora resolution, presuppositions projection
etc.). In the current context this means at least some inference is necessary to deter-
mine semantic and pragmatic wellformedness.

9.2.1 The Lambek calculus

To make things more concrete, I will start by presenting the Lambek calculus (Lam-
bek, 1958). Lambek introduced his calculus as a way to “obtain an effective rule (or
algorithm) for distinguishing sentences from nonsentences”, which would be appli-
cable both to formal and to (at least fragments of) natural languages (Lambek, 1958,
p. 154). The simplest formulas used in the Lambek calculus are atomic formulas,
which normally include s for sentence, n for common noun, np for noun phrase. We
then inductively define the set of formulas of the Lambek calculus by saying that,
they include the atomic formulas, and that, if A and B are formulas (atomic or not),
then A/B, A•B and B\A are also formulas.

The intended meaning of a formula A/B — called A over B — is that it is looking
for an expression of syntactic type B to its right to produce an expression of syntactic
type A. An example would be a word like “the” which is assigned the formula np/n
in the lexicon, indicating that it is looking for a common noun (like “student”) to its
right to form a noun phrase, meaning “the student” would be assigned syntactic type
np. Similarly, the intended meaning of a formula B\A — called B under A — is that
it is looking for an expression of syntactic type B to its left to produce an expression
of type A. This means an intransitive verb like “slept”, when assigned the formula
np\s in the lexicon, combines with a noun phrase to its left to form a sentence s. We
therefore predict that “the student slept” is a sentence, given the earlier assignment
of np to “the student”. Finally, a formula A • B denotes the concatenation of an
expression of type A to an expression of type B.

∆ ` A•B Γ ,A,B,Γ ′ `C
Γ ,∆ ,Γ ′ `C

[•E] Γ ` A ∆ ` B
Γ ,∆ ` A•B

[•I]

Γ ` A/B ∆ ` B
Γ ,∆ ` A

[/E]
Γ ,B ` A
Γ ` A/B

[/I]

Γ ` B ∆ ` B\A
Γ ,∆ ` A

[\E]
B,Γ ` A
Γ ` B\A

[\I]

Table 9.1 Natural deduction for L

9 The Grail theorem prover: Type theory for syntax and semantics 5

Basic statements of the Lambek calculus are of the form A1, . . . ,An ` C (with
n≥ 1), indicating a claim that the sequence of formulas A1, . . . ,An is of type C; the
sequent comma ‘,’ is implicitly associative and non-commutative. Table 9.1 shows
the natural deduction rules for the Lambek calculus. Γ , ∆ , etc. denote non-empty
sequences of formulas.

A simple Lambek calculus lexicon is shown in Table 9.2. I have adopted the stan-
dard convention in type-logical grammars of not using set notation for the lexicon,
but instead listing multiple lexical entries for a word separately. This corresponds to
treating lex as a non-deterministic function rather than as a set-valued function.

lex(Alyssa) = np lex(ran) = np\s
lex(Emory) = np lex(slept) = np\s

lex(logic) = np lex(loves) = (np\s)/np

lex(the) = np/n lex(aced) = (np\s)/np

lex(difficult) = n/n lex(passionately) = (np\s)\(np\s)
lex(erratic) = n/n lex(during) = ((np\s)\(np\s))/np

lex(student) = n lex(everyone) = s/(np\s)
lex(exam) = n lex(someone) = (s/np)\s
lex(who) = (n\n)/(np\s) lex(every) = (s/(np\s))/n

lex(whom) = (n\n)/(s/np) lex(some) = ((s/np)\s)/n

Table 9.2 Lambek calculus lexicon

Proper names, such as “Alyssa” and “Emory” are assigned the category np. Com-
mon nouns, such as “student” and “exam” are assigned the category n. Adjectives,
such as “difficult” or “erratic” are not assigned a basic syntactic category but rather
the category n/n, indicating they are looking for a common noun to their right to
form a new common noun, so we predict that both “difficult exam” and “exam” can
be assigned category n. For more complex entries, “someone” is looking to its right
for a verb phrase to produce a sentence, where np\s is the Lambek calculus equiva-
lent of verb phrase, whereas “whom” is first looking to its right for a sentence which
is itself missing a noun phrase to its right and then to its left for a noun.

Given the lexicon of Table 9.2, we can already derive some fairly complex sen-
tences, such as the following, and, as we will see in the next section, obtain the
correct semantics.

(1) Every student aced some exam.

(2) The student who slept during the exam loves Alyssa.

One of the two derivations of Sentence (1) is shown in Figure 9.2. To improve
readability, the figure uses a “sugared” notation: instead of writing the lexical hy-
pothesis corresponding to “exam” as n ` n, we have written it as exam ` n. The

6 Richard Moot

withdrawn np’s corresponding to the object and the subject are given a labels p0
and q0 respectively; the introduction rules are coindexed with the withdrawn hy-
potheses, even though this information can be inferred from the rule instantiation.

We can always uniquely reconstruct the antecedent from the labels. For example,
the sugared statement “p0 aced q0 ` s” in the proof corresponds to np,(np\s)/np,np`
s.

every ` (s/(np\s))/n student ` n

every student ` s/(np\s)
/E

[p0 ` np]2
aced ` (np\s)/np [q0 ` np]1

aced q0 ` np\s
/E

p0 aced q0 ` s
\E

p0 aced ` s/np
/I1

some ` ((s/np)\s)/n exam ` n

some exam ` (s/np)\s
/E

p0 aced some exam ` s
\E

aced some exam ` np\s
\I2

every student aced some exam ` s
/E

Fig. 9.2 “Every student aced some exam” with the subject wide scope reading.

Although it is easy to verify that the proof of Figure 9.2 has correctly applied
the rules of the Lambek calculus, finding such a proof from scratch may look a bit
complicated (the key steps at the beginning of the proof involve introducing two
np hypotheses and then deriving s/np to allow the object quantifier to take narrow
scope). We will defer the question “given a statement Γ ` C, how do we decide
whether or not it is derivable?” to Section 9.4 but will first discuss how this proof
corresponds to the following logical formula.

∀x.[student(x)⇒∃y.[exam(y)∧ace(x,y)]]

9.2.2 The syntax-semantics interface

For the Lambek calculus, specifying the homomorphism to multiplicative intuition-
istic linear logic is easy: we replace the two implications ‘\’ and ‘/’ by the linear
implication ‘(’ and the product ‘•’ by the tensor ‘⊗’. In a statement Γ `C, Γ is
now a multiset of formulas instead of a sequence. In other words, the sequent comma
‘,’ is now associative, commutative instead of associative, non-commutative. For the
proof of Figure 9.2 of the previous section, this mapping gives the proof shown in
Figure 9.3.

We have kept the order of the premisses of the rules as they were in Figure 9.2
to allow for an easier comparison. This deep structure still uses the same atomic
formulas as the Lambek calculus, it just forgets about the order of the formulas and
therefore can no longer distinguish between the leftward looking implication ‘\’ and
the rightward looking implication ‘/’.

To obtain a semantics in the tradition of Montague (1974), we use the following
mapping from syntactic types to semantic types, using Montague’s atomic types e
(for entity) and t (for truth value).

9 The Grail theorem prover: Type theory for syntax and semantics 7

n(((np(s)(s) n

(np(s)(s
(E

[np]2
np((np(s) [np]1

np(s (E

s (E
np(s (I1

n(((np(s)(s) n

(np(s)(s
(E

s (E
np(s (I2

s (E

Fig. 9.3 Deep structure of the derivation of Figure 9.2.

np∗ = e

n∗ = e→ t

s∗ = t

(A(B)∗ = A∗→ B∗

Applying this mapping to the deep structure proof of Figure 9.3 produces the in-
tuitionistic proof and the corresponding (linear) lambda term as shown in Figure 9.4

z(e→t)→(e→t)→t
0 ze→t

1

(z0 z1)
(e→t)→t

→ E

[xe]2
ze→(e→t)

2 [ye]1

(z2 y)e→t → E

((z2 y)x)t → E

λy.((z2 y)x)e→t → I1

z(e→t)→(e→t)→t
3 ze→t

4

(z3 z4)
(e→t)→t

→ E

((z3 z4)λy.((z2 y)x))t → E

λx.((z3 z4)λy.((z2 y)x))e→t → I2

((z0 z1)(λx.((z3 z4)λy.((z2 y)x))))t → E

Fig. 9.4 Intuitionistic proof and lambda term corresponding to the deep structure of Figure 9.3.

The computed term corresponds to the derivational semantics of the proof. To ob-
tain the complete meaning, we need to substitute, for each of z0, . . . ,z4, the meaning
assigned in the lexicon.

For example, “every” has syntactic type (s/(np\s))/n and its semantic type is
(e → t) → (e → t) → t. The corresponding lexical lambda term of this type is
λPe→t .λQe→t .(∀(λxe.((⇒ (Px))(Qx)))), with ‘∀’ a constant of type (e→ t)→ t
and ‘⇒’ a constant of type t→ (t→ t). In the more familiar Montague formulation,
this lexical term corresponds to λPe→t .λQe→t .∀x.[(Px)⇒ (Qx)], where we can see
the formula in higher-order logic we are constructing more clearly. Although the
derivational semantics is a linear lambda term, the lexical term assigned to “every”
is not, since the variable x has two bound occurrences.

The formula assigned to “some” has the same semantic type but a different term
λPe→t .λQe→t .(∃(λxe.((∧(Px))(Qx)))).

8 Richard Moot

The other words are simple, “exam” is assigned exame→t , “student” is assigned
studente→t , and “aced” is assigned acee→(e→t).

So to compute the meaning, we start with the derivational semantics, repeated
below.

((z0 z1)(λx.((z3 z4)λy.((z2 y)x))))

Then we substitute the lexical meanings, for z0, . . . ,z4.

z0 := λPe→t .λQe→t .(∀(λxe.((⇒ (Px))(Qx))))

z1 := studente→t

z2 := acee→(e→t)

z3 := λPe→t .λQe→t .(∃(λxe.((∧(Px))(Qx))))

z4 := exame→t

This produces the following lambda term.

((λPe→t .λQe→t .(∀(λxe.((⇒ (Px))(Qx))))studente→t)

(λx.((λPe→t .λQe→t .(∃(λxe.((∧(Px))(Qx))))exame→t)

λy.((acee→(e→t) y)x))))

Finally, when we normalise this lambda term, we obtain the following semantics
for this sentence.

(∀(λxe.((⇒ (studente→t)x))(∃(λye.((∧(exame→t y))(((acee→(e→t) y)x)))))

This lambda term represents the more readable higher-order logic formula3.

∀x.[student(x)⇒∃y.[exam(y)∧ace(x,y)]]

Proofs in the Lambek calculus, and in type-logical grammars are subsets of the
proofs in intuitionistic (linear) logic and these proofs are compatible with formal
semantics in the tradition initiated by Montague (1974).

For the example in this section, we have calculated the semantics of a simple
example in “slow motion”: many authors assign a lambda term directly to a proof
in their type-logical grammar, leaving the translation to intuitionistic linear logic
implicit.

3 We have used the standard convention in Montague grammar of writing (px) as p(x) and ((py)x)
as p(x,y), for a predicate symbol p.

9 The Grail theorem prover: Type theory for syntax and semantics 9

Given a semantic analysis without a corresponding syntactic proof, we can try
to reverse engineer the syntactic proof. For example, suppose we want to assign the
reflexive “himself” the lambda term λR(e→e→t)λxe.((Rx)x), that is, a term of type
(e→ e→ t)→ e→ t. Then, using some syntactic reasoning to eliminate implausible
candidates like (np(n)(n, the only reasonable deep structure formula is (np(
np(s)((np(s) and, reasoning a bit further about which of the implications is
left and right, we quickly end up with the quite reasonable (though far from perfect)
Lambek calculus formula ((np\s)/np)\(np\s).

9.2.3 Going further

Though the Lambek calculus is a beautiful and simple logic and though it gives a
reasonable account of many interesting phenomena on the syntax-semantics inter-
face, the Lambek calculus has a number of problems, which I will discuss briefly
below. The driving force of research in type-logical grammars since the eighties has
been to find solutions to these problems and some of these solutions will be the main
theme of the next section.

Formal language theory

The Lambek calculus generates only context-free languages (Pentus, 1997). There is
a rather large consensus that natural languages are best described by a class of lan-
guages at least slightly larger than the context-free languages. Classical examples
of phenomena better analysed using so-called mildly context-sensitive language in-
clude verb clusters in Dutch and in Swiss German (Huijbregts, 1984; Shieber, 1985).

The Syntax-Semantics Interface

Though our example grammar correctly predicted two readings for Sentence (1)
above, our treatment of quantifiers doesn’t scale well. For example, if we want to
predict two readings for the following sentence (which is just Sentence (1) where
“some” and “every” have exchanged position)

(3) Some student aced every exam.

then we need to add an additional lexical entry both for “some” and for “every”; this
is easily done, but we end up with two lexical formulas for both words. However, this
would still not be enough. For example, the following sentence is also grammatical.

(4) Alyssa gave every student a difficult exam.

(5) Alyssa believes a student committed perjury.

10 Richard Moot

In Sentence (4), “every student” does not occur in a peripheral position, and though
it is possible to add a more complex formula with the correct behaviour, we would
need yet another formula for Sentence (5). Sentence (5) is generally considered to
have two readings: a de dicto reading, where Alyssa doesn’t have a specific student
in mind (she could conclude this, for example, when two students make contradic-
tory statements under oath, this reading can be felicitously followed by “but she
doesn’t know which”), and a de re reading where Alyssa believes a specific student
perjured. The Lambek calculus cannot generate this second reading without adding
yet another formula for “a”.

It seems we are on the wrong track when we need to add a new lexical entry for
each different context in which a quantifier phrase occurs. Ideally, we would like
a single formula for “every”, “some” and “a” which applied in all these different
cases.

Another way to see this is that we want to keep the deep structure formula n(
((np(s)(s) and that we need to replace the Lambek calculus by another logic
such that the correct deep structures for the desired readings of sentences like (4)
and (5) are produced.

Lexical Semantics

The grammar above also overgenerates in several ways.

1. “ace” implies a (very positive) form of evaluation with respect to the object.
“aced the exam” is good, whereas “aced Emory”, outside of the context of a
tennis match is bad. “aced logic” can only mean something like “aced the exam
for the logic course”.

2. “during” and similar temporal adverbs imply its argument is a temporal interval:
“during the exam” is good, but “during the student” is bad, and “during logic”
can only mean something like “during the contextually understood logic lecture”

In the literature on semantics, there has been an influential movement towards
a richer ontology of types (compared to the “flat” Montagovian picture presented
above) but also towards a richer set of operations for combining terms of specific
types, notably allowing type coercions (Pustejovsky, 1995; Asher, 2011). So an
“exam” can be “difficult” (it subject matter, or informational content) but also “take
a long time” (the event of taking the exam). The theory of semantics outlined in the
previous section needs to be extended if we want to take these and other observa-
tions into account.

9.3 Modern type-logical grammars

We ended the last section with some problems with using the Lambek calculus as a
theory of the syntax-semantics interface. The problems are of two different kinds.

9 The Grail theorem prover: Type theory for syntax and semantics 11

1. The problems of the syntax-semantic interface, and, in a sense, also those of for-
mal language theory are problems where the deep structure is correct but our
syntactic calculus cannot produce an analysis mapping to the desired deep struc-
ture. We will present two solutions to these problems in Sections 9.3.1 and 9.3.2.

2. The problems of lexical semantics, on the other hand require a more sophisticated
type system than Montague’s simply typed type-logical with basic types e and t
and mechanisms like coercions which allow us to conditionally “repair” certain
type mismatches in this system. We will discuss a solution to this problem in
Section 9.3.3.

9.3.1 Multimodal grammars

Multimodal type-logical grammars (Moortgat, 2011) take the non-associative Lam-
bek calculus as its base, but allow multiple families of connectives.

For the basic statements Γ ` C of the Lambek calculus, we ask the question
whether we can derive formula C, the succedent, from a sequence of formulas Γ ,
the antecedent. In the multimodal Lambek calculus, the basic objects are labeled
binary trees4. The labels come from a separate set of indices or modes I. Multimodal
formulas are then of the form A/iB, A•i B and A\iB, and antecedent terms are of the
form Γ ◦i ∆ , with i an index from I (we have omitted the outer brackets for the rules,
but the operator ◦i is non-associative). Sequents are still written as Γ `C, but Γ is
now a binary branching, labeled tree with formulas as its leaves.

Given a set of words w1, . . . ,wn and a goal formula C, the question is now: is there
a labeled tree Γ with formulas A1, . . . ,An as its yield, such that Γ `C is derivable
and Ai ∈ lex(wi) for all i (the implementation of Section 9.4.1 will automatically
compute such a Γ).

The rules of multimodal type-logical grammars are shown in Table 9.3. In the
rules, Γ [∆] denotes an antecedent tree Γ with distinguished subtree ∆ — the subtree
notation is a non-associative version of the Lambek calculus antecedent Γ ,∆ ,Γ ′,
where ∆ is a subsequence instead of a subtree as it is in Γ [∆].

Each logical connective with mode i uses a structural connective ◦i in its rule. For
the /E, •I and \E rules, reading from premisses to conclusions, we build structure.
For the /I, •E and \I rules we remove a structural connective with the same mode
as the logical connective. The natural deduction rules use explicit antecedents, al-
though, for convenience, we will again use coindexation between the introduction
rules for the implications ‘/’ and ‘\’ and its withdrawn premiss (and similarly for
the •E rule and its two premisses).

4 We can also allow unary branches (and, more generally n-ary branches) and the corresponding
logical connectives. The unary connectives ♦ and � are widely used, but, since they will only play
a marginal role in what follows, I will not present them to keep the current presentation simple.
However, they form an essential part of the analysis of many phenomena and are consequently
available in the implementation.

12 Richard Moot

Logical Rules

∆ ` A•i B Γ [A◦i B] `C

Γ [∆] `C
[•iE]

Γ ` A ∆ ` B
Γ ◦i ∆ ` A•i B

[•iI]

Γ ` A/iB ∆ ` B
Γ ◦i ∆ ` A

[/iE]
Γ ◦i B ` A
Γ ` A/iB

[/iI]

Γ ` B ∆ ` B\iA
Γ ◦i ∆ ` A

[\iE]
B◦i Γ ` A
Γ ` B\iA

[\iI]

Structural Rules

Γ [Ξ ′[∆1, . . . ,∆n]] `C

Γ [Ξ [∆π1 , . . . ,∆πn]] `C
[SR]

Table 9.3 Natural deduction for NLR

The main advantage of adding modes to the logic is that modes allow us to control
the application of structural rules lexically. This gives us fine-grained control over
the structural rules in our logic.

For example, the base logic is non-associative. Without structural rules, the se-
quent a/b,b/c ` a/c, which is derivable in the Lambek calculus is not derivable
in its multimodal incarnation a/ab,b/ac ` a/ac. The proof attempt below, with the
failed rule application marked by the ‘E’ symbol, shows us that the elimination rules
and the introduction rule for this sequent do not match up correctly.

a/ab ` a/ab
b/ac ` b/ac c ` c

b/ac◦a c ` b
[/E]

a/ab◦a (b/ac◦a c) ` a
[/E]

(a/ab◦a b/ac)◦a c ` a
E

a/ab◦a b/ac ` a/ac
[/I]

This is where the structural rules, shown at the bottom of Table 9.3 come in. The
general form, read from top to bottom, states that we take a structure Γ containing
a distinguished subtree Ξ which itself has n subtrees ∆1, . . . ,∆n, and we replace this
subtree Ξ with a subtree Ξ ′ which has the same number of subtrees, though not
necessarily in the same order (π is a permutation on the leaves). In brief, we replace
a subtree Ξ by another subtree Ξ ′ and possibly rearrange the leaves (subtrees) of
Ξ , without deleting or copying any subtrees. Examples of structural rules are the
following.

Γ [∆1 ◦a (∆2 ◦a ∆3)] `C
Γ [(∆1 ◦a ∆2)◦a ∆3] `C

Ass
Γ [(∆1 ◦1 ∆3)◦0 ∆2] `C
Γ [(∆1 ◦0 ∆2)◦1 ∆3] `C

MC

The first structural rule is one of the structural rules for associativity. It is the
simplest rule which will make the proof attempt above valid (with Γ [] the empty

9 The Grail theorem prover: Type theory for syntax and semantics 13

context, ∆1 = a/ab, ∆2 = b/ac and ∆3 = c). This structural rule keeps the order of
the ∆i the same.

The rule above on the right is slightly more complicated. There, the positions of
∆2 and ∆3 are swapped as are the relative positions of modes 0 and 1. Rules like this
are called “mixed commutativity”, they permit controlled access to permutation.
One way to see this rule, seen from top to bottom, is that is “moves out” a ∆3
constituent which is on the right branch of mode 1. Rules of this kind are part of the
solution to phenomena like Dutch verb clusters (Moortgat and Oehrle, 1994).

Many modern type-logical grammars, such as the Displacement calculus and
NLcl can be seen as multimodal grammars (Valentı́n, 2014; Barker and Shan, 2014).

9.3.2 First-order linear logic

We have seen that multimodal type-logical grammars generalise the Lambek calcu-
lus by offering the possibility of fine-tuned controlled over the application of struc-
tural rules. In this section, I will introduce a second way of extending the Lambek
calculus.

Many parsing algorithms use pairs of integers to represent the start and end po-
sition of substrings of the input string. For example, we can represent the sentence

(6) Alyssa believes someone committed perjury.

as follows (this is a slightly simplified version of Sentence (5) from Section 9.2.3);
we have treated “committed perjury” as a single word.

0 1 2 3 4
Alyssa believes someone committed perjury

The basic idea of first-order linear logic as a type-logical grammar is that we
can code strings as pairs (or, more generally, tuples) of integers representing string
positions. So for deciding the grammaticality of a sequence of words w1, . . . ,wn `C,
with a goal formula C, we now give a parametric translation from ‖Ai‖i−1,i for each
lexical entry wi and ‖C‖0,n for the conclusion formula.

Given these string positions, we can assign the noun phrase “Alyssa” the formula
np(0,1), that is a noun phrase from position 0 to position 1. The verb “believes”,
which occurs above between position 1 and 2, can then be assigned the complex
formula ∀x2.[s(2,x2)(∀x1.[np(x1,1)(s(x1,x2)]], meaning that it first selects a
sentence to its right (that is, starting at its right edge, position 2 and ending any-
where) and then a noun phrase to its left (that is, starting anywhere and ending at its
left edge, position 1) to produce a sentence from the left position of the noun phrase
argument to the right position of the sentence argument.

We can systematise this translation, following Moot and Piazza (2001), and ob-
tain the following translation from Lambek calculus formulas to first-order linear
logic formulas.

14 Richard Moot

‖p‖x,y = p(x,y)

‖A/B‖x,y = ∀z.‖B‖y,z(‖A‖x,z

‖B\A‖y,z = ∀x.‖B‖x,y(‖A‖x,z

‖A•B‖x,z = ∃y.‖A‖x,y⊗‖B‖y,z

Given this translation, the lexical entry for “believes” discussed above is simply
the translation of the Lambek calculus formula (np\s)/s, with position pair 1,2, to
first-order linear logic. Doing the same for “committed perjury” with formula np\s
and positions 3,4 gives ∀z.[np(z,3)(s(z,4)]. For “someone” we would simply
translate the Lambek calculus formula s/(np\s), but we can do better than that:
when we translate “someone” as ∀y1.∀y2.[(np(2,3)(s(y1,y2))(s(y1,y2)], we
improve upon the Lambek calculus analysis.

As we noted in Section 9.2.3, the Lambek calculus cannot generate the “de re”
reading, where the existential quantifier has wide scope. Figure 9.5 shows how the
simple first-order linear logic analysis does derive this reading.

np(0,1)

[np(2,3)]1
∀A.[np(A,3)(s(A,4)]

np(2,3)(s(2,4)
∀E

s(2,4)
(E

∀B.[s(2,B)(∀C.[np(C,1)(s(C,B)]]

s(2,4)(∀C.[np(C,1)(s(C,4)]
∀E

∀C.[np(C,1)(s(C,4)]
(E

np(0,1)(s(0,4)
∀E

s(0,4)
(E

np(2,3)(s(0,4)
(I1

∀D.∀E.[(np(2,3)(s(D,E))(s(D,E)]

∀E.[(np(2,3)(s(0,E))(s(0,E)]
∀E

(np(2,3)(s(0,4))(s(0,4)
∀E

s(0,4)
(E

Fig. 9.5 “De re” reading for the sentence “Alyssa believes someone committed perjury”.

Besides the Lambek calculus, first-order linear logic has many other modern
type-logical grammars as fragments. Examples include lambda grammars (Oehrle,
1994), the Displacement calculus (Morrill et al, 2011) and hybrid type-logical gram-
mars (Kubota and Levine, 2012). We can see first-order linear logic as a sort of
“machine language” underlying these different formalisms, with each formalism in-
troducing its own set of abbreviations convenient for the grammar writer. Seeing
first-order linear logic as an underlying language allows us to compare the analyses
proposed for different formalisms and find, in spite of different starting points, a
lot of convergence. In addition, as discussed in Section 9.4.2, we can use first-order
linear logic as a uniform proof strategy for these formalisms.

Syntax-Semantics Interface

As usual, we obtain the deep structure of a syntactic derivation by defining a homo-
morphism from the syntactic proof to a proof in multiplicative intuitionistic linear
logic. For first-order linear logic, the natural mapping simply forgets all first-order

9 The Grail theorem prover: Type theory for syntax and semantics 15

A⊗B

[A]i[B]i....
C

C
⊗Ei

A B
A⊗B

⊗I

A A(B
B (E

[A]i....
B

A(B (I

∃x.A

[A]i....
C

C
∃E∗i

A[x := t]
∃x.A ∃I

∀x.A
A[x := t]

∀E A
∀x.A ∀I

∗

∗ no free occurrences of x in any of the free hypotheses

Table 9.4 Natural deduction rules for MILL1

quantifiers and replaces all atomic predicates p(x1, . . . ,xn) by propositions p. Since
the first-order variables have, so far, only been used to encode string positions, such
a forgetful mapping makes sense.

However, other solutions are possible. When we add semantically meaningful
terms to first-order linear logic, the Curry-Howard isomorphism for the first-order
quantifiers will give us dependent types and this provides a natural connection to
the work using dependent types for formal semantics (Ranta, 1991; Pogodalla and
Pompigne, 2012; Luo, 2012b, 2015).

9.3.3 The Montagovian Generative Lexicon

In the previous sections, we have discussed two general solutions to the problems
of the syntax-semantics interface of the Lambek calculus. Both solutions proposed
a more flexible syntactic logic. In this section, we will discuss a different type of
added flexibility, namely in the syntax-semantics interface itself.

The basic motivating examples for a more flexible composition have been amply
debated in the literature (Pustejovsky, 1995; Asher, 2011). Our solution is essen-
tially the one proposed by Bassac et al (2010), called the Montagovian Generative
Lexicon. I will only give a brief presentation of this framework. More details can be
found in Chapter 6.

Like many other solutions, the first step consists of splitting Montague’s type
e for entities into several types: physical objects, locations, informational objects,

16 Richard Moot

eventualities, etc. Although there are different opinions with respect to the correct
granularity of types (Pustejovsky, 1995; Asher, 2011; Luo, 2012a), nothing much
hinges on this for the present discussion.

The second key element is the move to the second-order lambda calculus, sys-
tem F (Girard et al, 1995), which allows abstraction over types as well as over terms.
In our Lambek calculus, the determiner “the” was assigned the formula np/n and
the type of its lexical semantics was therefore (e→ t)→ e, which we implement
using the ι operators of type (e→ t)→ e, which, roughly speaking, selects a con-
textually salient entity from (a characteristic function of) a set. When we replace
the single type e by several different types, we want to avoid listing several separate
syntactically identical by semantically different entries for “the” in the lexicon, and
therefore assign it a polymorphic term Λα.ι(α→t)→α of type Πα.((α → t)→ α),
quantifying over all types α . Though this looks problematic, the problem is re-
solved once we realise that only certain function words (quantifiers, conjunctions
like “and”) are assigned polymorphic terms and that we simply use universal in-
stantiation to obtain the value of the quantifier variable. So if “student” is a noun of
type human, that is of type h→ t, then “the student” will be of type h, instantiating
α to h. Formally, we use β reduction as follows (this is substitution of types instead
of terms, substituting type h for α).

((Λα.ι(α→t)→α){h}studenth→t) =β (ι student)h

The final component of the Montagovian Generative Lexicon is a set of lexi-
cally specified, optional transformations. In case of a type mismatch, an optional
transformation can “repair” the term.

As an example from Moot and Retoré (2011) and Mery et al (2013), one of the
classic puzzles in semantics are plurals and collective and distributive readings. For
example, verbs like “meet” have collective readings, they apply to groups of individ-
uals collectively, so we have the following contrast, where collectives like commit-
tees and plurals like students can meet, but not singular or distributively quantified
noun phrases. The contrast with verbs like “sneeze”, which force a distributive read-
ing is clear.

(7) The committee met.

(8) All/the students met

(9) *A/each/the student met.

(10) All/the students sneezed.

(11) A/each/the student sneezed.

In the Montagovian Generative lexicon, we can models these fact as follows.
First, we assign the plural morphology “-s” the semantics ΛαλPα→tλQα→t .|Q| >
1∧∀xα .Q(x)⇒ P(x), then “students” is assigned the following term λQh→t .|Q| >
1∧∀xh.Q(x)⇒ student(x), that is the sets of cardinality greater than one such that
all its members are students. Unlike “student” which was assigned a term of type
h→ t, roughly a property of humans, the plural “students” is assigned a term of

9 The Grail theorem prover: Type theory for syntax and semantics 17

type (h→ t)→ t, roughly a property of sets of humans. Consequently, the contrast
between “the student” and “the students” is that the first is of type h (a human) and
the second of type h→ t (a set of humans) as indicated below.

phrase syntactic type lambda-term
the student np (ιstudent)h

the students np (ι(λQh→t .|Q|> 1∧∀xhQ(x)⇒ student(x)))h→t

Therefore, the meaning of “the students” is the contextually determined set of
humans, from the sets of more than one human such that all of them are students.

Then we distinguish the verbs “meet” and “sneeze” as follows, with the simpler
verb “sneeze” simply selecting for a human subject and the collective verb “meet”
selecting for a set of humans (of cardinality greater than one) as its subject.

word syntactic type lambda-term
met np\s λPh→t .|P|> 1∧meet(P)

ΛαλR(α→t)→tλS(α→t)→t∀Pα→t .S(P)⇒ R(P)
met# np\s λR(h→t)→t∀Ph→t .R(P)⇒ |P|> 1∧meet(P)

sneezed np\s λxh.sneeze(x)
* ΛαλPα→tλQα→t∀xα .Q(x)⇒ P(x)

sneezed∗ np\s λPh→t .∀xh.P(x)⇒ sneeze(x)

Given these basic lexical entries, we already correctly predict that “the student
met” is ill-formed semantically (there is an unresolvable type mismatch) but “the
students met” and “the student sneezed” are given the correct semantics.

The interesting case is “the students sneezed” which has as its only reading that
each student sneezed individually. Given that “the students” is of type h→ t and
that “sneezed” requires an argument of type h, there is a type mismatch when we
apply the two terms. However, “sneeze” has the optional distributivity operator ‘*’,
which when we apply it to the lexical semantics for “sneeze” produces the term
λPh→t .∀xh.P(x)⇒ sneeze(x), which combines with “the students” to produce the
reading.

∀xh.(ι(λQh→t .|Q|> 1∧∀yhQ(y)⇒ student(y))x)⇒ sneeze(x)

In other words, all of the members of the contextually determined set of more
than human which are all students, sneeze.

The basic idea for the Montagovian Generative Lexicon is that lexical entries
specify optional transformations which can repair certain sorts of type mismatches
in the syntax-semantics interface. This adaptability allows the framework to solve
many semantic puzzles.

Though a proof-of-concept application of these ideas exists, more robust and
scalable applications, as well as efforts incorporate these ideas into wide-coverage
semantics, are ongoing research.

18 Richard Moot

9.4 Theorem proving

When looking at the rules and examples for the different logics, the reader may have
wondered: how do we actually find proofs for type-logical grammars? This question
becomes especially urgent once our grammars become more complex and the con-
sequences of our lexical entries, given our logic, become hard to oversee. Though
pen and paper generally suffice to show that a given sentence is derivable for the
desired reading, it is generally much more laborious to show that a given sentence
is underivable or that it has only the desired readings. This is where automated the-
orem provers are useful: they allow more extensive and intensive testing of your
grammars, producing results more quickly and with less errors (though we should
be careful about too naively assuming the implementation we are using is correct:
when a proof is found it is generally easy to verify its correctness by hand, but when
a proof isn’t found because of a programming error this can be hard to detect).

Though the natural deduction calculi we have seen so far can be used for au-
tomated theorem proving (Carpenter, 1994; Moot and Retoré, 2012), and though
Lambek (1958) already gave a sequent calculus decision procedure, both logics have
important drawbacks for proof search.

Natural deduction proofs have a 1-1 correspondence between proofs and read-
ings, though this is somewhat complicated to enforce for a logic with the •E rule
(and the related ♦E rule). For the sequent calculus, the product rule is just like the
other rules, but sequent calculus suffers from the so-called “spurious ambiguity”
problem, which means that it generates many more proofs than readings.

Fortunately, there are proof systems which combine the good aspects of natural
deduction and sequent calculus, and which eliminate their respective drawbacks.
Proof nets are a graphical representation of proofs first introduced for linear logic
(Girard, 1987). Proof nets suffer neither from spurious ambiguity nor from compli-
cations for the product rules.

Proof nets are usually defined as a subset of a larger class, called proof struc-
tures. Proof structures are “candidate proofs”: part of the search space of a naive
proof search procedure which need not correspond to actual proofs. Proof nets are
those proof structures which correspond to sequent proofs. Perhaps surprisingly, we
can distinguish proof nets from other proof structures by looking only at graph-
theoretical properties of these structures.

Proof search for type-logical grammars using proof nets uses the following gen-
eral procedure.

1. For each of the words in the input sentence, find one of the formulas assigned to
it in the lexicon.

2. Unfold the formulas to produce a partial proof structure.
3. Enumerate all proof structures for the given formulas by identifying nodes in the

partial proof structure.
4. Check if the resulting proof structure is a proof net according to the correctness

condition.

9 The Grail theorem prover: Type theory for syntax and semantics 19

In Sections 9.4.1 and 9.4.2 we will instantiate this general procedure for multi-
modal type-logical grammar and for first-order linear logic respectively.

9.4.1 Multimodal proof nets

[/E]

C

C/iB B

i

[/I]

C/iB
i

B

C

[\E]
C

A\iCA

i

[\I]
A\iC

i
A

C

[•E]
A

i
B

A•i B

[•I]
A•i B

BA
i

Table 9.5 Links for multimodal proof nets

Table 9.5 presents the links for multimodal proof nets. The top row list the links
corresponding to the elimination rules of natural deduction, the bottom row those
corresponding to the introduction rules. There are two types of links: tensor links,
with an open center, and par links, with a filled center. Par links have a single arrow
pointing to the main formula of the link (the complex formula containing the prin-
cipal connective). The top and bottom row are up-down symmetric with tensor and
par reversed. The tensor links correspond to the logical rules which build structure
when we read them from top to bottom, the par links to those rules which remove
structure.

The formulas written above the central node of a link are its premisses, whereas
the formulas written below it are its conclusions. Left-to-right order of the premisses
as well as the conclusions is important.

A proof structure is a set of formula occurrences and a set of links such that:

1. each formula is at most once the premiss of a link,
2. each formula is at most once the conclusion of a link.

A formula which is not the premiss of any link is a conclusion of the proof
structure. A formula which is not the conclusion of any link is a hypothesis of the
proof structure. We say a proof structure with hypotheses Γ and conclusions ∆ is a
proof structure of Γ ` ∆ (we are overloading of the ‘`’ symbol here, though this use
should always be clear from the context; note that ∆ can contain multiple formulas).

After the first step of lexical lookup we have a sequent Γ `C, and we can enu-
merate its proof structures as follows: unfold the formulas in Γ ,C, unfolding them

20 Richard Moot

so that the formulas in Γ are hypotheses and the formula C is a conclusion of the
resulting structure, until we reach the atomic subformulas (this is step 2 of the gen-
eral procedure), then identify atomic subformulas (step 3 of the general procedure,
we turn to the last step, checking correctness, below). This identification step can,
by the conditions on proof structures only identify hypotheses with conclusions and
must leave all formulas of Γ , including atomic formulas, as hypotheses and C as a
conclusion.

a

a/ab b
a

b

b/ac c

a

a/ac
a

c

a

Fig. 9.6 Lexical unfolding of a/ab,b/ac ` a/ac

Figure 9.6 shows the lexical unfolding of the sequent a/ab,b/ac ` a/ac. It is
already a proof structure, though a proof structure of a,a/ab,b,b/ac,c ` a,a/ac,b,c
(to the reader familiar with the proof nets of linear logic: some other presentations of
proof nets use more restricted definitions of proof structures where a “partial proof
structure” such as shown in the figure is called a module).

a

a/ab b
a

b/ac c

a

a/ac
a

c

a

a/ab b
a

b/ac c

a

a/ac
a

Fig. 9.7 The proof structure of Figure 9.6 after identification of the a and b atoms (left) and after
identification of all atoms

To turn this proof structure into a proof structure of a/ab,b/ac` a/ac, we identify
the atomic formulas. In this case, there is only a single way to do this, since a, b and
c all occur once as a hypothesis and once as a conclusion, though in general there
may be many possible matchings. Figure 9.7 shows, on the left, the proof structure
after identifying the a and b formulas. Since left and right (linear order), up and
down (premiss, conclusion) have meaning in the graph, connecting the c formulas
is less obvious: c is a conclusion of the /I link and must therefore be below it, but

9 The Grail theorem prover: Type theory for syntax and semantics 21

a premiss of the /E link and must therefore be above it. This is hard to achieve in
the figure shown on the left. Though a possible solution would be to draw the figure
on a cylinder, where “going up” from the topmost c we arrive at the bottom one, for
ease of type-setting and reading the figure, I have chosen the representation shown
in Figure 9.7 on the right. The curved line goes up from the c premiss of the /E link
and arrives from below at the /I link, as desired. One way so see this strange curved
connection is as a graphical representation of the coindexation of a premiss with a
rule in the natural deduction rule for the implication.

Figure 9.7 therefore shows, on the right, a proof structure for a/ab,b/ac ` a/ac.
However, is it also a proof net, that is, does it correspond to a proof? In a multi-
modal logic, the answer depends on the available structural rules. For example, if
no structural rules are applicable to mode a then a/ab,b/ac ` a/ac is underivable,
but if mode a is associative, then it is derivable.

a

a/ab b
a

b/ac c

a

a/ac
a

�

a/ab �

a

b/ac �

a

a/ac
a

Fig. 9.8 The proof structure of Figure 9.7 (left) and its abstract proof structure (right)

We decide whether a proof structure is a proof net based only on properties of
the graph. As a first step, we erase all formula information from the internal nodes
of the graph; for administrative reasons, we still need to be able to identify which of
the hypotheses and conclusion of the structure correspond to which formula occur-
rence5. All relevant information for correctness is present in this graph, which we
call an abstract proof structure.

We talked about how the curved line in proof structures (and abstract proof struc-
ture) corresponds to the coindexation of discharged hypotheses with rule names for

5 We make a slight simplification here. A single vertex abstract proof structure can have both
a hypothesis and a conclusion without these two formulas necessarily being identical, e.g. for

sequents like (a/b)•b ` a. Such a sequent would correspond to the abstract proof structure
(a/b)•b
·
a

.

So, formally, both the hypotheses and the conclusions of an abstract proof structure are assigned
a formula and when a node is both a hypothesis and a conclusion it can be assigned two different
formulas. In order not to make the notation of abstract proof structure more complex, we will stay
with the simpler notation. Moot and Puite (2002) present the full details.

22 Richard Moot

the implication introduction rules. However, the introduction rules for multimodal
type-logical grammars actually do more than just discharge a hypothesis, they also
check whether the discharged hypothesis is the immediate left (for \I) or right (for
/I) daughter of the root node, that is, that the withdrawn hypothesis A occurs as
A ◦i Γ (for \I and mode i) or Γ ◦i A (for /I and mode i). The par links in the (ab-
stract) proof structure represent a sort of “promise” that will produce the required
structure. We check whether it is satisfied by means of contractions on the abstract
proof structure.

[/I]

�

� �

i

�
i

[•E]

�

� �

i

�

i

[\I]

�

��

i

�
i

Table 9.6 Contractions — multimodal binary connectives

The multimodal contractions are shown in Table 9.6. All portrayed configurations
contract to a single vertex: we erase the two internal vertices and the paired links
and we identify the two external vertices, keeping all connections of the external
vertices to the rest of the abstract proof structure as they were: the vertex which is
the result of the contraction will be a conclusion of the same link as the top external
vertex (or a hypothesis of the abstract proof structure in case it wasn’t) and it will
be a premiss of the same link as the bottom external vertex (or a conclusion of the
abstract proof structure in case it wasn’t).

The contraction for /I checks if the withdrawn hypothesis is the right daughter
of a tensor link with the same mode information i, and symmetrically for the \I
contraction. The •E contraction contracts two hypotheses occurring as sister nodes.

All contractions are instantiations of the same pattern: a tensor link and a par
link are connected, respecting left-right and up-down the two vertices of the par link
without the arrow.

To get a better feel for the contractions, we will start with its simplest instances.
When we do pattern matching on the contraction for /I, we see that it corresponds
to the following patterns, depending on our choice for the tensor link (the par link is
always /I).

9 The Grail theorem prover: Type theory for syntax and semantics 23

C/iB `C/iB

A ` (A•i B)/iB

A `C/i(A\iC)

A proof structure is a proof net iff it contracts to a tree containing only tensor
links using the contractions of Table 9.6 and any structural rewrites, discussed below
— Moot and Puite (2002) present full proofs. In other words, we need to contract all
par links in the proof structure according to their contraction, each contraction en-
suring the correct application of the rule after which it is named. The abstract proof
structure on the right of Figure 9.8 does not contract, since there is no substructure
corresponding to the /I contraction: for a valid contraction, a par link is connected
to both “tentacles” of a single tensor link, and in the figure the two tentacles without
arrow are connected to different tensor links. This is correct, since a/ab,b/ac ` a/ac
is underivable in a logic without structural rules for a.

However, we have seen that this statement becomes derivable once we add asso-
ciativity of a and it is easily verified to be a theorem of the Lambek calculus. How
can we add a modally controlled version of associativity to the proof net calculus?
We can add such a rule by adding a rewrite from a tensor tree to another tensor tree
with the same set of leaves. The rewrite for associativity is shown in Figure 9.9. To
apply a structural rewrite, we replace the tree on the left hand side of the arrow by
the one on the right hand side, reattaching the leaves and the root to the rest of the
proof net.

Just like the structural rules, a structural rewrite always has the same leaves on
both sides of the arrow — neither copying nor deletion is allowed6, though we can
reorder the leaves in any way (the associativity rule doesn’t reorder the leaves).

v

x �

a

y z
a

v

� z
a

x y

a

Fig. 9.9 Structural rewrites for associativity of mode a.

Figure 9.10 shows how the contractions and the structural rewrites work together
to derive a/ab,b/ac ` a/ac.

We start with a structural rewrite, which rebrackets the pair of tensor links. The
two hypotheses are now the premisses of the same link, and this also produces a
contractible structure for the /I link. Hence, we have shown the proof structure to
be a proof net.

6 From the point of view of linear logic, we stay within the purely multiplicative fragment, which
is simplest proof-theoretically.

24 Richard Moot

�

a/ab �

a

b/ac �

a

a/ac
a

�

� �

a

a/ab b/ac
a

a/ac
a

a/ab b/ac
a

a/ac

Fig. 9.10 Structural rewrite and contraction for the abstract proof structure of Figure 9.8, showing
this is a proof net for a/ab◦a b/ac ` a/ac

the
1

n
1

exam
4

2

was
5

n

1

difficult
12

n
1

erratic
15

n
1

8
Goal

2

3

a
1

9

2

6

3

2

3

13

n

3

16

2

3

10

2

3

1

2

Fig. 9.11 Interactive Grail output

In the Grail theorem prover, the rep-
resentation of abstract proof structures
looks as shown in Figure 9.11 (this is an
automatically produced subgraph close
to the graph on the left of Figure 9.10,
though with a non-associative mode n
and therefore not derivable). This graph
is used during user interaction. The
graphs are drawn using GraphViz, an
external graph drawing program which
does not guarantee respecting our de-
sires for left, right and top/bottom, so
tentacles are labeled 1, 2 and 3 (for
left, right and top/bottom respectively)
to allow us to make these distinctions
regardless of the visual representation.
Vertices are given unique identifiers for
user interaction, for example to allow
specifying which pair of atoms should
be identified or which par link should
be contracted.

Although the structural rules give
the grammar writer a great deal of flexibility, such flexibility complicates proof
search. As discussed at the beginning of Section 9.4, theorem proving using proof
nets is a four step process, which in the current situation looks as follows: 1) lexical
lookup, 2) unfolding, 3) identification of atoms, 4) graph rewriting. In the current

9 The Grail theorem prover: Type theory for syntax and semantics 25

case, both the graph rewriting and the identification of atoms are complicated7 and
since we can interleave the atom connections and the graph rewriting it is not a
priori clear which strategy is optimal for which set of structural rules. The current
implementation does graph rewriting only once all atoms have been connected.

The Grail theorem prover implements some strategies for early failure. Since all
proofs in multimodal type-logical grammars are a subset of the proofs in multi-
plicative linear logic, we can reject (partial) proof structures which are invalid in
multiplicative linear logic, a condition which is both powerful and easy to check.

As a compromise between efficiency and flexibility, Grail allows the grammar
writer to specify a first-order approximation of her structural rules. Unlike the test
for validity in multiplicative linear logic which is valid for any set of structural rules,
specifying such a first-order approximation is valid only when there is a guarantee
that all derivable sequents in the multimodal grammar are a subset of their approx-
imations derivable in first-order linear logic. Errors made here can be rather subtle
and hard to detect. It is recommended to use such methods to improve parsing speed
only when a grammar has been sufficiently tested and where it is possible to verify
whether no valid readings are excluded, or, ideally, to prove that the subset relation
holds between the multimodal logic and its first-order approximation.

The next section will discuss first-order proof nets in their own right. Though
these proof nets have been used as an underlying mechanism in Grail for a long
time, we have seen in Section 9.3.2 that many modern type-logical grammars are
formulated in a way which permits a direct implementation without an explicit set
of structural rules.

As to the proof search strategy used by Grail, it is an instance of the “dancing
links” algorithm (Knuth, 2000): when connecting atomic formulas, we always link a
formula which has the least possibilities and we rewrite the abstract proof structures
only once a fully linked proof structure has been produced. Though the parser is
not extremely fast, evaluation both on randomly generated statements and on multi-
modal statements extracted from corpora show that the resulting algorithm performs
more than well enough (Moot, 2008).

9.4.2 First-order proof nets

Proof nets for first-order linear logic (Girard, 1991) are a simple extension of the
proof nets for standard, multiplicative linear logic (Danos and Regnier, 1989). Com-
pared to the multimodal proof nets of the previous section, all logical links have the
main formula of the link as their conclusion but there is now a notion of polarity,
corresponding to whether or not the formula occurs on the left hand side of the
turnstile (negative polarity) or on the right hand side (positive polarity).

7 Lexical ambiguity is a major problem for automatically extracted wide-coverage grammars as
well, though standard statistical methods can help alleviate this problem (Moot, 2010).

26 Richard Moot

We unfold a sequent A1, . . . ,An `C by using the negative unfolding for each of
the Ai and the positive unfolding for C. The links for first-order proof nets are shown
in Table 9.7.

−
A

+
A

−
A

+
A

−
∀x.A

−
A[x := t]

+
∀x.A

+
A

x

−
∃x.A

−
A

x

−
A⊗B

−
A

−
B

+
A⊗B

+
A

+
B

+
∃x.A

+

A[x := t]

−
A(B

+
A

−
B

+
A(B

−
A

+
B

Table 9.7 Logical links for MILL1 proof structures

Contrary to multimodal proof nets, where a tensor link was drawn with an open
central node and a par link with a filled central node, here par links are drawn as a
connected pair of dotted lines and tensor links as a pair of solid lines.

As before, premisses are drawn above the link and conclusions are drawn below
it. With the exception of the cut and axiom links, the order of the premisses and the
conclusions is important. We assume without loss of generality that every quantifier
link uses a distinct eigenvariable.

A set of formula occurrences connected by links is a proof structure if every
formula is at most once the premiss of a link and if every formula is exactly once
the conclusion of a link. Those formulas which are not the premiss of any link are
the conclusions of the proof structure — note the difference with multimodal proof
nets: a proof structure has conclusions but no hypotheses and, as a consequence,
each formula in the proof net must be the conclusion of exactly one (instead of at
most one) link.

For polarised proof nets, unfolding the formulas according to the links of Ta-
ble 9.7 no longer produces a proof structure, since the atomic formulas after unfold-
ing are not the conclusions of any link. Such “partial proof structures” are called a
modules. To turn a module into a proof structure, we connect atomic formulas of
opposite polarity by axiom links until we obtain a complete matching of the atomic
formulas, that is until every atomic formula is the conclusion of an axiom link.

9 The Grail theorem prover: Type theory for syntax and semantics 27

The negative ∀ and the positive ∃ link, are defined using substitution of an arbi-
trary term t for the eigenvariable of the link. In actual proof search, we use unifica-
tion of these variables when the axiom links are performed.

As usual, not all proof structures are proof nets. However, since the logical rules
for the quantifiers make essential use of the notion of “free occurrence of a variable”,
this should be reflected in out correctness condition. Girard (1991) uses a notion of
switching for proof structures which extends the switchings of Danos and Regnier
(1989).

A switching is, for each of the binary par links a choice of its left or right premiss
and for each of the unary par links with eigenvariable x a choice of one of the
formulas in the structure with a free occurrence of x or of the premiss of the rule.

Given a switching, a correction graph replaces a binary par link by a connection
from the conclusion of the link to the premiss chosen by the switching, and it re-
place a unary par link by a link from the conclusion to the formula chosen by the
switching.

Finally, a proof structure is a proof net when all its correction graphs are both
acyclic and connected (Girard, 1991).

As an example, look at the proof structure of a(∃x.b(x) ` ∃y.[a(b(y)] shown
in Figure 9.12. This statement is not derivable in first-order linear logic (nor in intu-
itionistic logic). Consider therefore the switching connecting the binary par link to
its left premiss a and the link for x to the formula a(b(x) (it has a free occurrence
of x, so this like is a valid switching).

−
a(∃x.b(x)

+
a

−
∃x.b(x)

−
b(x)

x

+

∃y.[a(b(y)]

+

a(b(x)

−
a

+

b(x)

Fig. 9.12 Proof structure for a(∃x.b(x) ` ∃y.[a(b(y)].

This switching produces the correction graph shown in Figure 9.13. It contains a
cycle, drawn with bold edges, and is therefore not a proof structure (in addition, the
b axiom is disconnected from the rest of the structure, giving a second reason for
rejecting the proof structure).

28 Richard Moot

−
a(∃x.b(x)

+
a

−
∃x.b(x)

−
b(x)

+

∃y.[a(b(y)]

+

a(b(x)

−
a

+

b(x)

Fig. 9.13 Correction graph for the proof structure of Figure 9.12 with the cycle indicated, showing
a(∃x.b(x) ` ∃y.[a(b(y)] is underivable

Contractions

Though switching conditions for proof nets are simple and elegant, they don’t lend
themselves to naive application: already for the example proof structure of Fig-
ure 9.12 there are six possible switchings to consider and, as the reader can verify,
only the switching shown in Figure 9.13 is cyclic (and disconnected). In general, it
is often the case that all switchings but one are acyclic and connected, as it is here.

Though there are efficient ways of testing acyclicity and connectedness for mul-
tiplicative proof nets (Guerrini, 1999; Murawski and Ong, 2000) and it seems these
can be adapted to the first-order case (though some care needs to be taken when we
allow complex terms), the theorem prover for first-order linear logic uses a extension
of the contraction criterion of Danos (1990).

Given a proof structure we erase all formulas from the vertices and keep only
a set of the free variables at this vertex. We then use the contractions of Table 9.8
to contract the edges of the graph. The resulting vertex of each contraction has
the union of the free variables of the two vertices of the redex (we remove the
eigenvariable x of a ∀ contraction, “ ⇒u”). A proof structure is a proof net iff it
contracts to a single vertex using the contractions of Table 9.8.

vi

v j

vi⇒p

vi

v j

x vi⇒u

vi

v j

vi⇒c

Table 9.8 Contractions for first-order linear logic. Conditions: vi 6= v j and, for the u contraction,
all free occurrences of x are at v j .

To give an example of the contractions, Figure 9.14 shows the contractions for the
underivable proof structure of Figure 9.12. The initial structure, which simply takes
the proof structure of Figure 9.12 and replaces the formulas by the corresponding

9 The Grail theorem prover: Type theory for syntax and semantics 29

set of free variables, is shown on the left. Contracting the five solid edges using the
c contraction produces the structure shown in the figure on the right.

⇒∗

{x}/0

{x}

x

/0

/0 /0

{x}

x

/0

{x}

/0 {x}

Fig. 9.14 Contractions for the underivable a(∃x.b(x) ` ∃y.[a(b(y)].

No further contractions apply: the two connected dotted links from the binary par
link do not end in the same vertex, so the par contraction p cannot apply. In addition,
the universal contraction u cannot apply either, since it requires all vertices with
its eigenvariable x to occur at the node from which the arrow is leaving and there
is another occurrence of x at the bottom node of the structure. We have therefore
shown that this is not a proof net.

Since there are no structural rewrites, the contractions for first-order linear logic
are easier to apply than those for multimodal type-logical grammars: it is rather easy
to show confluence for the contractions (the presence of structural rules, but also the
unary versions of the multimodal contractions, means confluence is not guaranteed
for multimodal proof nets). We already implicitly used confluence when we argued
that the proof structure in Figure 9.14 was not a proof net. The theorem prover uses
a maximally contracted representation of the proof structure to represent the current
state of proof search and this means less overhead and more opportunities for early
failure during proof search.

Like before, the theorem proving uses four steps, which look as follows in the
first-order case: 1) lexical lookup, 2) unfolding, 3) axiom links with unification, 4)
graph contraction. Unlike the multimodal proof nets of the previous section, the
graph contractions are now confluent and can be performed efficiently (the linear
time solutions for the multiplicative case may be adaptable, but a naive implemen-
tation already has an O(n2) worst-case performance). After lexical lookup, theorem
proving for first-order linear logic unfolds the formulas as before, but uses a greedy
contraction strategy. This maximally contracted partial proof net constrains further
axiom links: for example, a vertex containing a free variable x cannot be linked to
the conclusion of the edge of its eigenvariable (the vertex to which the arrow of
the edge with variable x points) or to one of its descendants, since such a structure
would fail to satisfy the condition that the two vertices of a ∀ link for the u contrac-
tion of Figure 9.8 are distinct. Another easily verified constraint is that two atomic

30 Richard Moot

formulas can only be connected by an axiom link if these formulas unify8. Like for
multimodal proof nets, the first-order linear logic theorem prover chooses an axiom
link for one of the atoms with the fewest possibilities.

9.4.3 Tools

Table 9.9 lists the different theorem provers which are available. Grail 0 (Moot
et al, 2015) and Grail 3 (Moot, 2015a) use the multimodal proof net calculus of
Section 9.4.1, whereas LinearOne (Moot, 2015c) uses the first-order proof nets of
Section 9.4.2. GrailLight (Moot, 2015b) is a special-purpose chart parser, intended
for use with an automatically extracted French grammar for wide-coverage parsing
and semantics (Moot, 2010, 2012). All provers are provided under the GNU Lesser
General Public License — this means, notably, there is no warranty, though I am
committed to making all software as useful as possible; so contact me for any com-
ments, feature requests or bug reports. All theorem provers can be downloaded from
the author’s GitHub site.

https://github.com/RichardMoot/

The columns of table Table 9.9 indicate whether the theorem provers provide
natural deduction output, graph output (of the partial proof nets), whether there is
an interactive mode for proof search, whether the implementation is complete and
whether the grammar can specify its own set of structural rules; “NA” means the
question doesn’t apply to the given system (GrailLight doesn’t use a graphs to rep-
resent proofs and first-order linear logic does not have a grammar-specific set of
structural rules). The table should help you select the most adequate tool for your
purposes.

LinearOne provides natural deduction output not only for first-order linear logic,
but also for the Displacement calculus, hybrid type-logical grammars and lambda
grammars. That is, the grammar writer can write a grammar in any of these for-
malisms, LinearOne will do proof search of the translation of this grammar in first-
order linear logic and then translate any resulting proofs back to the source language.

Prover ND Graph Interactive Complete User-defined SR
Grail 0 + – – + +
Grail 3 – + + + +
GrailLight + NA + – –
LinearOne + + – + NA

Table 9.9 The different theorem provers

8 As discussed in Section 9.4.1, the multimodal theorem prover allows the grammar writer to
specify first-order approximations of specific formulas. So underneath the surface of Grail there is
some first-order reasoning going on as well.

9 The Grail theorem prover: Type theory for syntax and semantics 31

The syntactic example proofs in this chapter have been automatically generated
using these tools and the corresponding grammars files, as well as many other ex-
ample grammars, are included in the repository.

References

Ajdukiewicz K (1935) Die syntaktische Konnexität. Studies in Philosophy 1:1–27
Asher N (2011) Lexical Meaning in Context: A Web of Words. Cambridge University Press
Bar-Hillel Y (1953) A quasi-arithmetical notation for syntactic description. Language 29(1):47–58
Barker C, Shan C (2014) Continuations and Natural Language. Oxford Studies in Theoretical

Linguistics, Oxford University Press
Bassac C, Mery B, Retoré C (2010) Towards a type-theoretical account of lexical semantics. Jour-

nal of Logic, Language and Information 19(2):229–245, DOI 10.1007/s10849-009-9113-x,
URL http://dx.doi.org/10.1007/s10849-009-9113-x

van Benthem J (1995) Language in Action: Categories, Lambdas and Dynamic Logic. MIT Press,
Cambridge, Massachusetts

Carpenter B (1994) A natural deduction theorem prover for type-theoretic categorial grammars.
Tech. rep., Carnegie Mellon Laboratory for Computational Linguistics, Pittsburgh, Pennsylva-
nia

Chatzikyriakidis S (2015) Natural language reasoning using Coq: Interaction and automation. In:
Proceedings of Traitement Automatique des Langues Naturelles (TALN 2015)

Danos V (1990) La logique linéaire appliquée à l’étude de divers processus de normalisation (prin-
cipalement du λ -calcul). PhD thesis, University of Paris VII

Danos V, Regnier L (1989) The structure of multiplicatives. Archive for Mathematical Logic
28:181–203

Girard JY (1987) Linear logic. Theoretical Computer Science 50:1–102
Girard JY (1991) Quantifiers in linear logic II. In: Corsi G, Sambin G (eds) Nuovi problemi della

logica e della filosofia della scienza, CLUEB, Bologna, Italy, vol II, proceedings of the confer-
ence with the same name, Viareggio, Italy, January 1990

Girard JY, Lafont Y, Regnier L (eds) (1995) Advances in Linear Logic. London Mathematical
Society Lecture Notes, Cambridge University Press

Guerrini S (1999) Correctness of multiplicative proof nets is linear. In: Fourteenth Annual IEEE
Symposium on Logic in Computer Science, IEEE Computer Science Society, pp 454–263

Huijbregts R (1984) The weak inadequacy of context-free phrase structure grammars. In: de Haan
G, Trommelen M, Zonneveld W (eds) Van Periferie naar Kern, Foris, Dordrecht

Knuth DE (2000) Dancing links. arXiv preprint cs/0011047
Kubota Y, Levine R (2012) Gapping as like-category coordination. In: Béchet D, Dikovsky A (eds)

Logical Aspects of Computational Linguistics, Springer, Nantes, Lecture Notes in Computer
Science, vol 7351, pp 135–150

Lambek J (1958) The mathematics of sentence structure. American Mathematical Monthly
65:154–170

Luo Z (2012a) Common nouns as types. In: Logical aspects of computational linguistics
(LACL2012), Springer, Lecture Notes in Artificial Intelligence, vol 7351

Luo Z (2012b) Formal semantics in modern type theories with coercive subtyping. Linguistics and
Philosophy 35(6):491–513

Luo Z (2015) A Lambek calculus with dependent types. In: Types for Proofs and Programs
(TYPES 2015), Tallinn

Mery B, Moot R, Retoré C (2013) Plurals: individuals and sets in a richly typed semantics. In:
The Tenth International Workshop of Logic and Engineering of Natural Language Semantics
10 (LENLS10)

32 Richard Moot

Mineshima K, Martı́nez-Gómez P, Miyao Y, Bekki D (2015) Higher-order logical inference with
compositional semantics. In: Proceedings of Empirical Method for Natural Language Process-
ing (EMNLP 2015)

Montague R (1970) Universal grammar. Theoria 36(3):373–398
Montague R (1974) The proper treatment of quantification in ordinary English. In: Thomason R

(ed) Formal Philosophy. Selected Papers of Richard Montague, Yale University Press, New
Haven

Moortgat M (2011) Categorial type logics. In: van Benthem J, ter Meulen A (eds) Handbook of
Logic and Language, North-Holland Elsevier, Amsterdam, chap 2, pp 95–179

Moortgat M, Oehrle RT (1994) Adjacency, dependency and order. In: Proceedings 9th Amsterdam
Colloquium, pp 447–466

Moot R (2008) Filtering axiom links for proof nets. Tech. rep., CNRS and Bordeaux University
Moot R (2010) Wide-coverage French syntax and semantics using Grail. In: Proceedings of Traite-

ment Automatique des Langues Naturelles (TALN), Montreal, system Demo
Moot R (2012) Wide-coverage semantics for spatio-temporal reasoning. Traitement Automatique

des Languages 53(2):115–142
Moot R (2015a) Grail. http://www.labri.fr/perso/moot/grail3.html, mature and

flexible parser for multimodal grammars
Moot R (2015b) Grail light. https://github.com/RichardMoot/GrailLight, fast,

lightweight version of the Grail parser
Moot R (2015c) Linear one: A theorem prover for first-order linear logic.

https://github.com/RichardMoot/LinearOne
Moot R, Piazza M (2001) Linguistic applications of first order multiplicative linear logic. Journal

of Logic, Language and Information 10(2):211–232
Moot R, Puite Q (2002) Proof nets for the multimodal Lambek calculus. Studia Logica 71(3):415–

442
Moot R, Retoré C (2011) Second order lambda calculus for meaning assembly: on the logical

syntax of plurals. In: Computing Natural Reasoning (COCONAT), Tilburg
Moot R, Retoré C (2012) The Logic of Categorial Grammars: A Deductive Account of Natural

Language Syntax and Semantics. No. 6850 in Lecture Notes in Artificial Intelligence, Springer
Moot R, Schrijen X, Verhoog GJ, Moortgat M (2015) Grail0: A theorem prover for multimodal

categorial grammars. https://github.com/RichardMoot/Grail0
Morrill G, Valentı́n O, Fadda M (2011) The displacement calculus. Journal of Logic, Language

and Information 20(1):1–48
Murawski AS, Ong CHL (2000) Dominator trees and fast verification of proof nets. In: Logic in

Computer Science, pp 181–191
Oehrle RT (1994) Term-labeled categorial type systems. Linguistics & Philosophy 17(6):633–678
Pentus M (1997) Product-free Lambek calculus and context-free grammars. Journal of Symbolic

Logic 62:648–660
Pogodalla S, Pompigne F (2012) Controlling extraction in abstract categorial grammars. In:

de Groote P, Nederhof MJ (eds) Proceedings of Formal Grammar 2010–2011, Springer, LNCS,
vol 7395, pp 162–177

Pustejovsky J (1995) The generative lexicon. M.I.T. Press
Ranta A (1991) Intuitionistic categorial grammar. Linguistics and Philosophy 14(2):203–239
Shieber S (1985) Evidence against the context-freeness of natural language. Linguistics & Philos-

ophy 8:333–343
Valentı́n O (2014) The hidden structural rules of the discontinuous Lambek calculus. In: Casadio C,

Coecke B, Moortgat M, Scott P (eds) Categories and Types in Logic, Language, and Physics:
Essays dedicated to Jim Lambek on the Occasion of this 90th Birthday, no. 8222 in Lecture
Notes in Artificial Intelligence, Springer, pp 402–420

