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Asynchronous Power Flow
on Graphic Processing Units

Manuel Marin, Student Member, IEEE, David Defour, and Federico Milano, Fellow, IEEE

Abstract—Asynchronous iterations can be used to implement
fixed-point methods such as Jacobi and Gauss-Seidel on parallel
computers with high synchronization costs. However, they are
rarely considered in practice due to the low convergence rate.
This paper describes an implementation on GPUs of a novel
Power Flow analysis model using asynchronous iterations. We
present our model for the solution of the Power Flow analysis
problem, prove its convergence and evaluate its performance for
a GPU execution.

Index Terms—Asynchronous iterations, fixed-point method,
power flow analysis, graphic processing units.

I. INTRODUCTION

Power Flow (PF) analysis refers to the steady-state analysis
of AC power networks, widely used in several applications
for power system operation and planning [1]. Traditional
PF analysis tools rely on matrix factorization using highly
optimized serial direct solvers [2], [3], [4]. More recently, a
parallel-friendly PF analysis tool has also been introduced,
based on an analogical representation of the system [5]. The
real power system is mapped onto a CMOS integrated circuit,
which allows one to physically simulate the system at a much
higher frequency. The efficiency of this approach is linked with
the intrinsic parallelism of the physical system, where every
element of the network is acting simultaneously. The main
drawback is the lack of flexibility since for every system that
one wants to simulate, a new analogue circuit has to be built.

In this paper we present a software implementation of the
same idea presented in [5], so that any arbitrary system can
be analyzed without extra effort. This allows us to propose
an intrinsically parallel PF analysis model. Our approach
is based on fixed-point iterations performed individually for
every element in the system. Results of succesive updates
are exchanged until an equilibrium point is reached, as in
the concept of team algorithms [6], [7]. The approach is
well-suited for parallel implementation using asynchronous

iterations, which have also been applied to the network flow
problem [8], [9].

The main reason why asynchronous iterations are not usu-
ally preferred over synchronous ones is that (i) they require
stronger assumptions in order to converge, and (ii) conver-
gence rate is smaller. However, massively parallel computing
environments can benefit from the asynchronous approach
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whenever the cost of synchronization becomes too high. For
instance, in the Graphic Processing Unit (GPU) synchroniza-
tion between threads from different blocks can consume up to
50% of the total execution time [10]. In order to target GPU
architectures, we study convergence properties of our model
and provide a sufficient condition for convergence.

The remainder of the paper is organized as follows. Sec-
tion II introduces fixed-point iterations and presents several al-
ternatives for parallel implementation, including synchronous,
asynchronous and partially asynchronous frameworks. In Sec-
tion III, the proposed intrinsically parallel method for PF
analysis is presented and its convergence properties are stud-
ied. Section IV describes the implementation and evaluation
of the proposed method on a set of benchmarks as well
as comparisons with existing approaches. Finally, Section V
draws conclusions and outlines future work.

II. FIXED-POINT ITERATIONS ON A PARALLEL COMPUTER

Let us first recall the concept of fixed-point iterations
defined as follows.

Definition 1 (Fixed-point iteration). Let f : Rn → Rn and
x ∈ Rn. Then, x is a fixed-point of f(·) if and only if x =
f(x). Furthermore, let x(0) ∈ Rn. Then, the iteration given
by:

x(k+1) = f(x(k)), k = 0, 1, . . . , (1)

is called a fixed-point iteration on f(·).

Examples of fixed-point iterations are the Jacobi and Gauss-
Seidel methods for solving systems of linear equations. Note
that these methods can be succesfully applied to PF analysis by
re-writing the (non-linear) PF equations in a suitable way [1].
In this article, we consider the PF problem in its original non-
linear form.

Fixed-point iterations can be implemented in parallel by
splitting the set of input element among threads. Each thread
updates its respective elements and communicates its results
to others with or without synchronization.

A. Synchronous iterations

With synchronous iterations, all the elements are updated
by block before the process moves as a whole into the next
step. The above requires to place a synchronization point at
the end of each iteration. As a consequence, threads that finish
their updates earlier are forced to wait for the others to catch
up. The reason for threads having different processing times
are various. Some of them may be intrinsic to the algorithm,
e.g., irregular memory access patterns, load imbalance. Some
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others may be related to the architecture, e.g., differences in
processor frequency, communication network constraints [11].

B. Asynchronous iterations

An alternative to the synchronous approach is the so-called
asynchronous iteration, where individual threads do not wait
for others and simply go ahead with their work. This means
that at every asynchronous iteration only a subset of the
elements are updated. No synchronization point is explicitly
added to the program. As a consequence, some of the updates
may be computed with data from several iterations back.

An asynchronous iteration is defined in terms of an update

function and a delay function. The update function, noted U(·),
receives the iteration counter k ∈ N, and returns a subset
of {1, . . . , n} indicating the list of threads that update their
elements at iteration k. The delay function, noted d(·), receives
the indices i, j ∈ {1, . . . , n} and the iteration counter k ∈
N, and returns the delay of thread j with respect to thread i

at iteration k. This delay represents the number of iterations
performed since the value of xj was last made visible to i.

Definition 2 (Asynchronous iteration). Let x ∈ Rn and
f : Rn → Rn. For k ∈ N, i, j ∈ {1, . . . , n}, let
U(k) ⊆ {1, . . . , n} and d(i, j, k) ∈ N0, such that

d(i, j, k) ≥ 0, ∀i, j, k, (2a)

lim
k→∞

d(i, j, k) <∞, ∀i, j, (2b)

|{k : i ∈ U(k)}| =∞, ∀i. (2c)

In addition, let x(0) ∈ Rn. Then, the iteration defined by:

x
(k+1)
i =

{

fi(x
(k−d(i,1,k))
1 , . . . , x

(k−d(i,n,k))
n ) if i ∈ U(k),

x
(k)
i if i 6∈ U(k),

(3)
is called an asynchronous iteration on f(·), with update
function U(·) and delay function d(·).

Assumptions in (2a), (2b) and (2c) ensure that the process
is well defined. Specifically, the assumption in (2a) states that
only values computed in previous iterations are used in any
update. The one in (2b) states that newer values of the elements
are eventually used. Finally, the assumption in (2c) states that
no element ceases to be updated during the course of the
iteration. In practical terms, if the updates are made visible as
soon as they are computed, then the third assumption implies
the second. This is the case, for example, of an application
that uses GPU global memory to store the data. Note that
a synchronous iteration is a special case of asynchronous
iteration with U(k) = {1, . . . , n} and d(i, j, k) = 0, for all
i, j, k. Due to the peculiarities introduced above, asynchronous
iterations converge differently from synchronous ones. The
following result considers the case of a linear application.

Theorem 1 (Necessary and sufficient condition for conver-
gence of linear asynchronous iterations [12]). Let f : Rn →
Rn, given by,

f(x) = Lx+ b, (4)

where L ∈ Rn×n, and b ∈ Rn. Let |L| denote the matrix

of absolute values of the entries of L, and ρ(|L|) its spectral

radius. If

ρ(|L|) < 1, (5)

then any asynchronous iteration on f(·) converges to x∗, the

unique fixed-point of f(·), regardless of the selection of U(·),
d(·) and x(0). Furthermore, if ρ(|L|) ≥ 1, then there exists

U(·), d(·) and x(0) such that the associated asynchronous

iteration does not converge to x∗.

Proof. See [12].

C. Partially asynchronous iterations

In some circumstances, convergence of asynchronous itera-
tions can be facilitated by making threads synchronize every
once in a while.

Definition 3 (Partially asynchronous iteration). Consider Def-
inition 2 of an asynchronous iteration. Replace assumptions
in (2b) and (2c) by the following:

∃ d̄ ∈ N : d(i, j, k) ≤ d̄, ∀i, j, k, (6a)

∃ s̄ ∈ N : i ∈
s̄
⋃

s=1

U(k + s), ∀i, k. (6b)

d(i, i, k) = 0, ∀i, k, (6c)

Then, the iteration given by equation (3) is now termed a
partially asynchronous iteration.

The assumption in (6a) establishes that not only newer
values of the vector elements are eventually used, but each
of these values is used before d̄ iterations have passed from
their calculation. The assumption in (6b), in turn, states that
each element is updated at least once in every s̄ consecutive
iterations. Finally, the assumption in (6c) establishes that every
element is updated using its own last calculated value. In
practical terms, the first two assumptions can be met by
performing a synchronization step every l iterations, where
l is the minimum of d̄ and s̄. The third assumption can be
met by having each element assigned to only one thread.

As mentioned above, partially asynchronous iterations con-
verge ‘more easily’ than totally asynchronous ones. The fol-
lowing result establishes a convergence criteria in the linear
case, with softer assumptions than the ones in Theorem 1.

Theorem 2 (Sufficient condition for convergence of linear
partially asynchronous iterations [13]). Let f : Rn → Rn,

given by,

f(x) = Lx+ b, (7)

where L ∈ Rn×n, and b ∈ Rn. Let g : Rn → Rn, given by:

g(x) = (1− α)x+ αf(x), (8)

where α ∈ (0, 1).
If L = (lij) is irreducible and

n
∑

j=1

|lij | ≤ 1, ∀i, (9)
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then any partially asynchronous iteration on g(·) converges to

x∗, fixed-point of f(·).

Proof. See [13].

In [14], the authors presented a special case in which con-
vergence occurs for α = 1, at a linear (geometric) rate. They
also determined a lower bound for the average convergence
rate (per iteration) in the long-term, τ , as follows:

τ ≥ (1 − σr)1/r, (10)

with

r = 1 + d̄+ (n− 1)(s̄+ d̄), (11a)

σ = min
i,j

+

(

x∗
i lij

x∗
j

)

, (11b)

where min+(·) refers to the minimum of the positive ele-
ments. This means that the error is scaled at most by a factor
of (1− σr)1/r in any average iteration. As σ is always lower
than 1, the convergence rate approaches 1 for increasing values
of n, d̄ and s̄. That is to say, the convergence becomes sub-
linear.

For illustration purposes, consider that d̄ = s̄ = 0 (syn-
chronous iteration). In this case, r = 1 and τ = 1 − σ. In
other words, the convergence rate is unaffected by the problem
size n and only depends on σ. Now consider that d̄ = s̄ = 1.
This corresponds to a partially asynchronous iteration with a
synchronization step every other iteration. In this case, r = 2n,
which means that convergence slows down as the problem
grows. Figure 1 shows the lower bound on the convergence
rate as a function of the problem size n. The different curves
represent different values of σ. Observe that, unless σ is very
high, convergence becomes sub-linear very quickly.
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Fig. 1. Bound on the convergence rate as a function of the problem size, for
different values of the parameter σ.

This might be a strong reason to prefer the synchronous
approach over the partially asynchronous. However, the par-
tially asynchronous approach can be a valid alternative in
some cases, e.g., if the costs of synchronization are relatively
high, or when the number of iterations required to converge
is relatively low.

III. PROPOSED METHOD FOR AC CIRCUIT ANALYSIS

This section presents how to perform PF analysis based
on partially asynchronous iterations. The method is designed
to be implemented on Single Instruction Multiple Thread
(SIMT) architectures such as GPUs, by exploiting regularity.
The method is presented through a top-down approach. The
network model is described first, specifying how the different
parts communicate and interact. Next, the models of the
different elements that compose the power system are specified
in their atomic behaviour. Finally, the convergence properties
of the proposed method are studied.

A. Network model

The proposed methodology distinguishes two fundamental
units in the power system: components and nodes. The com-
ponents are the electrical devices, and the nodes are the points
of interconnection. For sake of simplicity and also to facilitate
illustration of the method, the following three assumptions are
made:

1) Only dipole components, i.e., components connected to
two nodes, are present.

2) There is no more than one component connected be-
tween any two nodes.

3) Every node is connected to at least two components.

The circuit is well defined if there are components connect-
ing all the nodes in a closed path. Node h in the circuit is
noted nh. The component connected between nh and nm is
noted chm. The set of all nodes in the circuit is noted N , and
the set of components, C.

In addition, a set of influencers, Ih ⊂ N , is defined for
each non-ground node nh ∈ N . This set contains all the nodes
separated from nh by exactly one component. These are also
known as the fanin nodes [15].

For illustration purposes, consider the circuit
in Fig. 2. In this case, N = {n0, n1, n2, n3} and
C = {c01, c12, c02, c23, c03}. The circuit is well defined,
since c01, c12, c23 and c03 connect all the nodes in a closed
path. In addition, I1 = {n0, n2}, I2 = {n0, n1, n3}, and
I3 = {n0, n2}.

n0

n1 n2 n3

c01

c12

c02

c23

c03

Fig. 2. Example 4-node circuit.

In the proposed methodology, vh denotes the voltage at
node nh, and uhm denotes the voltage at node nh ‘according’
to component chm. The two are different during the course of
the iteration, and become equal at convergence. In addition,
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shm denotes the power injected to nh by component chm, and
∆sh denotes the power mismatch at nh.

At every iteration k, a component chm obtains v

(k)
h and

∆s

(k)
h from node nh, and returns u

(k)
hm and s

(k)
hm to it. A

similar exchange occurs with node nm at the other end of the
component. Next, at the same iteration k, node nh receives
u

(k)
hj and s

(k)
hj from each component chj connected to it, and

returns v(k+1)
h and ∆s

(k+1)
h to all of them. Then, the process

moves into a next iteration. Figure 3 illustrates the above for
component c12 and node n2 in the example 4-node circuit.

replacements

c12

v1,∆s1

v2,∆s2

u12

s12

u21

s21

n1 n2

v

s

u

s

u

s

(a)

c12

v s

v s

u

s

u21

s21

n0

n1

n3

c02

c23

n2

v2

∆s2

u20

s20

u23

s23

(b)

Fig. 3. Network model: (a) Component; and (b) Node.

B. Component and node models

1) Component model: For the purposes of the proposed
method, only three types of component are required: the gen-
erator, the branch and the shunt. The use of a universal model
improves instruction regularity of the GPU implementation, as
discussed in Section IV. The impedance of component chm is
noted zhm.

a) Generator: It is connected between the ground and
one node, say nh. The generator is there to ensure that the
reactive power mismatch at the node is equal to zero. In
this sense, the model assumes that generators are able to
provide as much reactive power as needed in order to maintain
the voltage. The slack generator also does the same for real
power. Accordingly, the iteration is the following: for non-
slack generators,

Im(s
(k)
h ) = 0. (12)

And for the slack generator,

s

(k)
h = 0. (13)

b) Branch: It is connected between two non-ground
nodes, say nh and nm. It consists of a constant impedance,
zhm. The branch iteration is defined as follows:

u

(k)
hm = v

(k)
h + zhm

(

∆s

(k)
h

v

(k)
h

)∗

, (14a)

s

(k)
hm = v

(k)
h

(

v

(k)
m − v

(k)
h

zhm

)∗

. (14b)

c) Shunt: It is connected between the ground and one
node, say nh. It represents an impedance to ground, noted zh0
(the subscript ‘0’ indicates the ground). The shunt iteration is
similar to the branch one. The main difference is that vm in
equation (14b) is replaced by zero (the ground voltage). The
iteration is the following:

u

(k)
h0 = v

(k)
h + zh0

(

∆s

(k)
h

v

(k)
h

)∗

, (15a)

s

(k)
h0 = −

|v
(k)
h |

2

(zhm)
∗ , (15b)

where |·| indicates the absolute value.
These equations are obtained by applying the Ohm Law

on component chm, and the Kirchhoff Current Law on node
nh. Note that if the power mismatch at nh is equal to zero
(i.e., ∆s

(k)
h = 0), then u

(k)
hm = v

(k)
h . That is to say, the

voltage according to component chm is the same as the one
according to node nh itself. This corresponds to a condition
of convergence at component level.

2) Node model: The node is simply modelled as a point
where different components exchange data and consolidate
their results. The node iteration is defined as follows:

v

(k+1)
h =

∑

m∈Ih

whmu
(k)
hm, (16a)

∆s

(k+1)
h =

∑

m∈Ih

s

(k)
hm, (16b)

where whm is defined as the weight of component chm within
node nh. These weights satisfy

∑

m∈Ih

whm = 1. (17)

In other words, the voltage at each node is updated with the
weighted sum of the voltages computed by each component
connected to it. Note that if convergence is attained at compo-
nent level (i.e., u(k)

hm = v

(k)
h , ∀m ∈ Ih), then v

(k+1)
h = v

(k)
h .

This happens when all the components agree on the value of
the node voltage, and corresponds to a condition of conver-
gence at node level.

A second node iteration is added to allow PQ loads to
become constant impedances, if the voltage at the node is
outside specific limits. This is a technique used in traditional
PF analysis [1]. In the proposed method, the power injected to
nh by loads is noted sL,h. If the voltage is outside the limits,
this variable is scaled by a factor depending on the current
voltage and the violated limit. Then, the power mismatch at the
node is adjusted to reflect the change in the load. In conclusion,



5

the iteration is composed of two parts. The first updates the
power injected by loads, as follows:

s

(k+1)
L,h =



























(

v
(k)
h

vmin
h

)2

s

(k)
L,h if v(k)h < vmin

h ,

(

v
(k)
h

vmax
h

)2

s

(k)
L,h if v(k)h > vmax

h ,

s

(k)
L,h otherwise,

(18)

where vmin
h and vmax

h are the voltage limits at nh. Then, the
second part updates the power mismatch, as follows:

∆s

(k+1)
h = ∆s

(k)
h − s

(k)
L,h + s

(k+1)
L,h . (19)

The use of the above iteration reduces instruction regularity,
as it needs to be performed only by nodes. However, it may
be required for convergence of the method and involves a
limited number of operations which can be acceptable in a
SIMT execution context.

C. Convergence study

This section investigates the convergence properties of the
proposed iterative method for two different synchronization
schemes.

Let n0 be the ground-node, and N ′ the set of all nodes in
the circuit minus the ground. That is to say, N ′ = N \ {n0}.
Also, let v ∈ Cn−1 be the vector of voltages at all non-ground
nodes. The iteration function, f : Cn−1 → Cn−1, is given by:

fh(v) = vh +
∑

m∈Ih

∑

j∈Ih

whmzhm
vj − vh

zhj
, h ∈ N ′. (20)

This expression is obtained by combining equa-
tions (14a), (14b), (16a), (16b) and (17). Equation (20)
is linear, thus, it can be written as follows:

f(v) = Lv, (21)

where L is given by:

lhh = 1−
∑

m∈Ih

∑

j∈Ih

whmzhm

zhj
,

lhj =







∑

m∈Ih

whmzhm

zhj
if j ∈ Ih,

0 otherwise.

(22)

However, one can notice that a totally asynchronous itera-
tion on f(·), as given by (21), is not guaranteed to converge.
This is linked with the fact that the sum of the elements in
any row of L, where L is given by (22), is equal to 1, then 1
is an eigenvalue of L and ρ(L) ≥ 1. Since for every matrix
A, ρ(|A|) ≥ ρ(A), then ρ(|L|) ≥ 1.

This implies that to ensure convergence of the proposed
iteration, further assumptions are needed. The following the-
orem establishes a sufficient condition for convergence based
on partially asynchronous iterations.

Theorem 3. Let g(·) defined by g(v) = (1− α)v+ αf (v),
where 0 < α < 1 and f(·) given by (20). Let the weights,

whm,m ∈ Ih, satisfy the following:

1−
∑

m∈Ih

∑

j∈Ih

whmzhm

zhj
≥ 0, ∀h. (23)

Then, any partially asynchronous iteration over g(·) converges

to v

∗, fixed-point of f(·).

Proof. See [16].

IV. CASE STUDY

The proposed method for PF analysis has been tested on the
Nvidia Kepler GPU architecture [17]. It has been evaluated on
a series of benchmarks, with the aim of exploring convergence,
performance and scalability issues.

A. Implementation

Regularity is one of the most powerful leverages for GPU
performance [18]. Algorithm 1 presents a regular implemen-
tation of the proposed method. In order to ensure asyn-
chronous evaluation of each component, we set the number
of blocks to be smaller that the number of blocks that can
be handled in parallel by the hardware. Therefore all threads
are continuously running until convergence of the system.
Threads are handling the set of components in a round-robin
manner, which leads to a similar amount of work per thread as
components are always connected to either one or two nodes.
If threads were assigned to nodes instead, then some threads
would perform much more work than others, as nodes can be
connected to any number of components.

Instructions 5 and 6 calculate the voltage at its component’s
terminals and updates the appropriate coordinates on vector
v. Instructions 7 and 8 calculate the power injections at each
terminal and updates the appropriate coordinates on vector ∆s.
The process is repeated after synchronizing all threads, until
convergence is reached.

Algorithm 1 Intrinsically parallel algorithm for PF analysis.
Input: Vector of initial power mismatches, ∆s; component

model parameters; tolerance for the error, ǫ, maximum
number of asynchronous iterations, K .

Output: Vector of node voltages, v.
1: v = 1∠0 # Initial guess
2: for all h,m : chm ∈ C in parallel do

3: k = 0
4: repeat

5: calculate uhm and umh

6: update vh and vm

7: calculate shm and smh

8: update ∆sh and ∆sm

9: k ← k + 1
10: if k > K then

11: synchronize threads
12: k = 0
13: until |∆sh|, |∆sm| < ǫ

As discussed in [19], coalesced global memory accesses can
drastically improve GPU performance by reducing the number
of memory transactions. In the proposed implementation, the
above is achieved by using a ‘structure of arrays’ approach.
In addition, performance can benefit of shared memory for
recurrent memory operations. However, shared memory is
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only accessible to threads within one thread-block, whereas
global memory is accessible to all threads. Accordingly, using
shared memory in the proposed method increases the delay
between threads, which affects convergence as discussed in
Section III-C. The point where shared memory usage brings
performance improvement is highly dependent of the problem
parameters and setting this point could benefit from previous
research conducted on flexible communication [20].

B. Evaluation

The implementation is evaluated using randomly generated
benchmarks from 1,024 to 8,192 nodes, which correspond to
real size networks. The benchmarks are obtained using the
random radial network generator provided by Dome [3]. We
used a Xeon E5645 CPU, with 12 cores at 2.4Ghz (1 used), a
Tesla K40c, with 2 880 cores at 0.7 Ghz and a GeForce GTX
680 with 1 536 cores at 1.06Ghz. All source code is compiled
using G++ 4.8.2 and CUDA 6.5.

1) Convergence: As discussed in Section II-C, partially
asynchronous fixed-point iterations typically exhibit a sub-
linear rate of convergence. This means that reducing the
convergence tolerance below a small threshold may require
a large number of iterations. Figure 4 illustrates the relation
between the convergence error and the number of iterations
for the proposed method using the K40c GPU. It shows
the mismatch (on a logarithmic scale) as a function of the
maximum number of iterations performed by any component.
The different curves represent different problem sizes. Note
that the behaviour is very similar on all 6 benchmarks, sug-
gesting that convergence is independent from the problem size.
However, the convergence rate for this experiment depends on
the targeted accuracy. For example, reducing the error from
10−3 to 10−4 requires about 555 iterations in average. This
corresponds to a convergence rate of 0.995. The convergence
rate has an asymptotic limit of 1 when the targeted accuracy
is increasing which is coherent with the theoretical study of
Section II-C,

The farther the method is from the exact solution, the
faster it approaches that solution. This is the opposite of the
Newton-Raphson (NR) method where the convergence rate is
improving at each iteration. From this point of view, it may be
interesting to combine both approaches into a hybrid solution
that switches methods depending on the error. For example,
the proposed method can be used to obtain a first solution
fast, and the NR method can be used to improve that solution
afterwards.

2) Performance: We compared the performance of the
proposed approach with serial NR provided by Dome [3]. The
Dome’s implementation uses KLU, a highly optimized library
for sparse matrix factorization, particularly suited to deal with
matrices from circuit analysis [21]. The proposed method is
tested on the Tesla K40c GPU, and the NR on the Xeon E5645
CPU.

Figure 5 shows the execution time of both methods (on
a logarithmic scale) as a function of the problem size, n,
for a targeted error of 10−4. The NR execution time grows
exponentially with the problem size, which is consistent with
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Fig. 5. Related performance of N-R and the proposed method (accuracy:
10

−4).

precedent results [1]. In the proposed method, in turn, the
execution time seems less affected by the size, and exhibits a
more flat profile. At about 3,000 nodes, there is a turning point
in which the proposed method becomes faster than NR. This
turning point is dependent of many parameters (architecture,
implementation, topology, ...) and it is expected to evolve
favorably for the proposed method as the number of embeded
cores per chip is increasing.

Note that the parallelization of the NR method on GPU is
out of the scope of this paper. Indeed, parallelizing the LU
matrix factorization on GPU is a very complicated task due to
irregular memory access patterns and strong data dependencies
[22]. For this reason, comparisons with traditional PF methods
implemented on GPU are left for future works.

3) Scalability: As mentioned in Section I, performance
of asynchronous methods should increase with the number
of computing cores. The above is confirmed by Fig. 6,
which shows the execution time of the proposed asynchronous
method on two Nvidia Kepler GPU architectures as a function
of the problem size. The Tesla K40c GPU, embedding 2,880
computing cores, allows for a performance gain of about 1.3
over the GTX 680, embedding 1,536 cores. This means that
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the proposed method almost achieve strong scalability.
Fig. 7 represents the number of iterations needed to con-

verge as a function of the number of blocks launched. We
compared the synchronous version (that synchronizes threads
after each iteration), with the asynchronous one (that does
not perform any synchronization at all). We observe that only
the latter benefits from increasing number of thread-blocks.
Moreover, we see a turning point in which performance does
not improve and rather decays as the number of blocks keeps
growing.
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V. CONCLUSIONS

This paper presents a partially asynchronous fixed-point
method for PF analysis. The method is designed to be imple-
mented on SIMT architectures such as the GPU. A theoretical
result is provided which shows that the method is guaranted
to converge, although convergence is generally sub-linear.
Simulation results show that: (i) the convergence rate of the
proposed method tends to be better at an early stage, which
makes it a good complement of the traditional NR method; (ii)
the proposed method becomes faster than the traditional NR
approach for problems of considerable size; (iii) the proposed
method scales well with the number of computing cores in the
GPU architecture.

Future works will consider the improvement of the proposed
CUDA implementation. In particular, the use of shared mem-
ory will be investigated. This addressing convergence of the
method in the case where an increasing number of iterations
are performed ‘asynchronously’, i.e., without communicating
the results to all threads.

REFERENCES

[1] F. Milano, Power system modelling and scripting. London, UK:
Springer, 2010.

[2] P. Simulator, “Version 10.0 scopf,” PVQV, PowerWorld Corporation,
Champaign, IL, vol. 61820, 2005.

[3] F. Milano, “A python-based software tool for power system analysis,”
in IEEE Power and Energy Society General Meeting, 2013, pp. 1–5.

[4] M. Simulink and M. Natick, “The mathworks,” 1993.
[5] I. Nagel, “Analog microelectronic emulation for dynamic power sys-

tem computation,” Ph.D. dissertation, École Polytechnique Fédérale de
Lausanne, 2013.

[6] S. Talukdar, S. Pyo, and R. Mehrotra, Designing algorithms and assign-

ments for distributed processing. Electric Power Research Institute,
1983.

[7] J. Tsitsiklis, “Problems in decentralized decision making and computa-
tion.” DTIC Document, Tech. Rep., 1984.

[8] D. Bertsekas and D. El Baz, “Distributed asynchronous relaxation
methods for convex network flow problems,” SIAM Journal on Control
and Optimization, vol. 25, no. 1, pp. 74–85, 1987.

[9] D. El Baz, P. Spiteri, J.-C. Miellou, and D. Gazen, “Asynchronous
iterative algorithms with flexible communication for nonlinear network
flow problems,” Journal of Parallel and Distributed Computing, vol. 38,
pp. 1–15, 1996.

[10] S. Xiao and W.-c. Feng, “Inter-block gpu communication via fast barrier
synchronization,” in Parallel & Distributed Processing (IPDPS), 2010
IEEE International Symposium on. IEEE, 2010, pp. 1–12.

[11] A. Frommer and D. Szyld, “On asynchronous iterations,”
Journal of Computational and Applied Mathematics, vol.
123, no. 1–2, pp. 201 – 216, 2000, numerical Anal-
ysis 2000. Vol. III: Linear Algebra. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S037704270000409X

[12] D. Chazan and W. Miranker, “Chaotic relaxation,” Linear algebra and
its applications, vol. 2, no. 2, pp. 199–222, 1969.

[13] P. Tseng, D. Bertsekas, and J. Tsitsiklis, “Partially asynchronous, parallel
algorithms for network flow and other problems,” SIAM Journal on

Control and Optimization, vol. 28, no. 3, pp. 678–710, 1990.
[14] B. Lubachevsky and D. Mitra, “A chaotic asynchronous algorithm for

computing the fixed-point of a nonnegative matrix of unit spectral
radius,” Journal of the ACM, vol. 33, no. 1, pp. 130–150, 1986.

[15] A. Newton and A. Sangiovanni-Vincentelli, “Relaxation-based electrical
simulation,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 3, no. 4, pp. 308–331, 1984.
[16] M. Marin, “Gpu-enhanced power flow analysis,” Ph.D. dissertation,

Informatique Perpignan and University college Dublin, 2015, thèse
de doctorat dirigée par Defour, David et Milano, Federico. [Online].
Available: http://www.theses.fr/2015PERP0041

[17] “Nvidia’s next generation CUDA compute architecture: Kepler GK110,”
2012.

[18] S. Collange, “Design challenges of GPGPU architectures: specialized
arithmetic units and exploitation of regularity,” Ph.D. dissertation,
Univ. de Perpignan, Nov. 2010. [Online]. Available: https://tel.archives-
ouvertes.fr/tel-00567267

[19] C. Cuda, “Programming guide,” Nvidia Corporation, July, 2012.
[20] J. Miellou, D. El Baz, and P. Spiteri, “A new class of asynchronous

iterative algorithms with order intervals,” Mathematics of Computation

of the American Mathematical Society, vol. 67, no. 221, pp. 237–255,
1998.

[21] T. Davis and E. Palamadai Natarajan, “Algorithm 907: KLU, a direct
sparse solver for circuit simulation problems,” ACM Transactions on

Mathematical Software, vol. 37, no. 3, pp. 36:1–36:17, Sep. 2010.
[Online]. Available: http://doi.acm.org/10.1145/1824801.1824814

[22] K. He, S. X.-D. Tan, H. Wang, and G. Shi, “GPU-accelerated parallel
sparse lu factorization method for fast circuit analysis,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 3,
pp. 1140–1150, 2016.


