
HAL Id: lirmm-01476307
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01476307

Submitted on 24 Feb 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Constant Acceleration Theorem for Extended von
Neumann Neighbourhoods

Anaël Grandjean

To cite this version:
Anaël Grandjean. Constant Acceleration Theorem for Extended von Neumann Neighbourhoods.
AUTOMATA, Jun 2016, Zurich, Switzerland. pp.149-158, �10.1007/978-3-319-39300-1_12�. �lirmm-
01476307�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01476307
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Constant acceleration theorem for extended von
Neumann Neighbourhoods

Anaël Grandjean

LIRMM, Université de Montpellier
161 rue Ada, 34392 Montpellier, France

anael.grandjean@lirmm.fr

Abstract. We study 2-dimensional cellular automata as language recog-
nizers. We are looking for closure properties, similar to the one existing
in one dimension. Some results are already known for the most used
neighbourhoods, however many problems remain open concerning more
general neighbourhoods. In this paper we provide a construction to prove
a constant acceleration theorem for extended von Neumann neighbour-
hoods. We then use this theorem and some classical tools to prove the
equivalence of those neighbourhoods, considering the set of languages
recognizable in real time.

Introduction

Cellular automata are deterministic dynamical models. Introduced in the 1940s
by S. Ulam and J. von Neumann [6] to study self replication in complex systems
they were rapidly considered as computation models and language recognizers
[4]. Contrary to some other classical computation models that inherently work
on words, they can be considered naturally in any dimension (the original cel-
lular automaton studied by Ulam and von Neumann were 2-dimensional) and
are therefore particularly well suited to recognize picture languages. Language
recognition is performed by encoding the input in an initial configuration and
studying the (deterministic) evolution of the automaton from that configuration.
Time and space complexities can be defined in the usual way.

One-dimensional cellular automata have been widely studied as language rec-
ognizers, and especially concerning real-time and linear time recognition. Some
of the most interesting results in this field have been several closure properties
as in [1,3,4]. This paper tries to expand two of those properties to 2-dimensional
cellular automata.

The first theorem we present is a constant acceleration theorem for some
specific set of neighbourhoods. Although such an acceleration is known in one
dimension for all neighbourhoods, it was only known in two dimensions for the
von Neumann and Moore neighborhoods. This result also extends the constant
acceleration theorem for the von Neumann Neighbourhood, based upon a con-
struction from V. Terrier. Althought some other proofs may exists, none is cur-
rently published.

The second theorem, which is a consequence of the first one, states the equiv-
alence, with respect to real time recognition, of some neighbourhoods (the ones
for which the first theorem is true). Althought in one dimension all complete
neighbourhoods are known to be equivalent [1], it has been shown by V. Terrier
in [5] that at least two classes of complete neighborhoods exist in two dimensions.

1 Definitions

1.1 Cellular Automata

Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quadru-
ple A = (d,Q,N , δ) where

– d ∈ N is the dimension of the automaton ;
– Q is a finite set whose elements are called states ;
– N is a finite subset of Zd called neighbourhood of the automaton ;
– δ : QN → Q is the local transition function of the automaton.

Definition 2 (Configuration). A d-dimensional configuration C over the set
of states Q is a mapping from Zd to Q.

The elements of Zd will be referred to as cells and the set of all d-dimensional
configurations over Q will be denoted as Confd(Q).

Given a CA A = (d,Q,N , δ), a configuration C ∈ Confd(Q) and a cell c ∈ Zd,
we denote by NC(c) the neighbourhood of c in C :

NC(c) :

{
N → Q
n 7→ C(c+ n)

From the local transition function δ of a CA A = (d,Q,N , δ), we can define
the global transition function of the automaton ∆ : Confd(Q) → Confd(Q)
obtained by applying the local rule on all cells :

∆(C) =

{
Zd → Q
c 7→ δ(NC(c))

The action of the global transition rule makes A a dynamical system over the set
Confd(Q). Because of this dynamics, in the following we will identify the CA A
with its global rule so that A(C) is the image of a configuration C by the action
of the CA A. More generally At(C) is the configuration resulting from applying
t times the global rule of the automaton from the initial configuration C.

Definition 3 (Von Neumann and Moore Neighbourhoods). In d di-
mensions, the most commonly considered neighbourhoods are the von Neumann
neighbourhood NvN = {c ∈ Zd, ||c||1 ≤ 1} and the Moore neighbourhood NM =
{c ∈ Zd, ||c||∞ ≤ 1}. Figure 1 illustrates these two neighbourhoods in 2 dimen-
sions.

Fig. 1. The von Neumann
(left) and Moore (right) neigh-
bourhoods in 2 dimensions.

Definition 4 (a-b-Neighbourhood).
We denote by a-b-Neighbourhood (shortly Na,b), the following two-dimensional

neighbourhood :

Na,b = {(x, y) ∈ Z2 | b|x|+ a|y| ≤ ab}

Note that such a neighbourhood is convex and symmetric with respect to the
origin. For completeness reasons we also require a and b to be strictly positive.
Furthermore, the neighbourhood N1,1 is exactly the von Neumann Neighbour-
hood. Some examples are depicted in Fig 2.

Fig. 2. N2,1 (left) and N2,3

(right)

1.2 Picture Recognition

From now on we will only consider 2-dimensional cellular automata (2DCA),
and the set of cells will always be Z2.

Definition 5 (Picture). For n,m ∈ N and Σ a finite alphabet, an (n,m)-
picture (picture of width n and height m) over Σ is a mapping

p : J0, n− 1K× J0,m− 1K→ Σ

Σn,m denotes the set of all (n,m)-pictures over Σ and Σ∗,∗ =
⋃
n,m∈NΣ

n,m

the set of all pictures over Σ. A picture language over Σ is a set of pictures
over Σ.

Definition 6 (Picture Configuration). Given an (n,m)-picture p over Σ,
we define the picture configuration associated to p with quiescent state q0 /∈ Σ
as

Cp,q0 :

 Z2 → Σ ∪ {q0}

x, y 7→
{
p(x, y) if (x, y) ∈ J0, n− 1K× J0,m− 1K

q0 otherwise

Definition 7 (Picture Recognizer). Given a picture language L over an al-
phabet Σ, we say that a 2DCA A = (2,Q,N , δ) such that Σ ⊆ Q recognizes L
with quiescent state q0 ∈ Q\Σ and accepting states Qa ⊆ Q in time τ : N2 → N
if, for any picture p (of size n×m), starting from the picture configuration Cp,q0
at time 0, the origin cell of the automaton is in an accepting state at time τ(n,m)
if and only if p ∈ L. Formally,

∀n,m ∈ N,∀p ∈ Σn,m, Aτ(n,m)(Cp,q0)(0, 0) ∈ Qa ⇔ p ∈ L

We then say that the language L can be recognized in time τ(n,m) with
neighbourhood N .

Since cellular automata work with a finite neighbourhood, the state of the
origin cell at time t (after t actions of the global rule) only depends on the initial
states on the cells in N t, where N 0 = {0} and for all n, Nn+1 = {x + y, x ∈
Nn, y ∈ N}. The real time function is informally defined as the smallest time
such that the state of the origin may depend on all letters of the input :

Definition 8 (Real Time). Given a neighbourhood N ⊂ Zd in d dimensions,
the real time function τN : Nd → N associated to N is defined as

τN (n1, n2, . . . , nd) = min{t, J0, n1 − 1K× J0, n2 − 1K× . . .× J0, nd − 1K ⊆ N t}

When considering the specific case of the 2-dimensional von Neumann neigh-
bourhood, the real time is defined by τNvN(n,m) = n+m− 2. There is however
a well known constant speed-up result :

Proposition 1 (folklore). For any k ∈ N, any language that can be recognized
in time (τNvN

+ k) by a 2DCA working on the von Neumann neighbourhood
can also be recognized in real time by a 2DCA working on the von Neumann
neighbourhood.

So, it will be enough to prove that a language is recognized in time (n,m) 7→
n+m+ k for some constant k to prove that it is recognized in real time.

2 Main Result

Theorem 1 (constant acceleration). For any a,b and k positive integers,
any language that can be recognized in time (τNa,b

+ k) by a 2DCA working
on Na,b can also be recognized in real time by a 2DCA working on the same
neighbourhood.

Proof. To prove the theorem one only needs to be able to accelerate one step of
the calculation (that is, recognize in real time any language recognized in real
time plus one). We then only have to repeat the process a finite number of times.

As in the one dimensional case, the idea is to make each cell "guess" the state
of some further cells, so that at real time, the origin cell guesses are correct, and
allow it to perform one more step of computation.

Fix some language L and some automaton A recognizing this language in real
time plus one step. This automaton works on the a-b-Neighbourhood Na,b. We
will now construct an automaton A′ with the same neighbourhood, recognizing
L in real time.

The potential initial configurations of both automata are the same, from now
on we fix one initial configuration and explain what happens on the run starting
from this configuration in A′, depending on what happens in the run starting
from this same configuration in A.

Let us introduce some notations : A(c, t) represents the state of the cell c at
time t in the original automaton A. We denote as Gall the following set :

Gall = {(xa, yb) ∈ Z2‖1 < x+ y ≤ 2; 0 ≤ x; 0 ≤ y;x ≤ y + 1; y ≤ x+ 1}

This is a subset of the north east quarter of N2, depicted in green in Fig 3.
Similarly we define Gleft and Gbottom as follows, depicted in light blue in Fig 3 :

Gleft = {(xa, yb) ∈ Z2‖1 < x+ y ≤ 2; 0 ≤ x; 0 ≤ y;x ≤ y + 1; y ≥ x+ 1}

Gbottom = {(xa, yb) ∈ Z2‖1 < x+ y ≤ 2; 0 ≤ x; 0 ≤ y;x ≥ y + 1; y ≤ x+ 1}

Fig. 3. A partition of N2

Each cell c of the new automaton A′ will "contain" many states of cells of
A. More formally the state set of A′ is a power of the state set of A. A cell c of
A′ contains, at time t ≥ 1, the following informations :

– A(c, t)

– A(c′, t− 1) for every c′ ∈ N(c).
– g(c, c′, t− 1) for every c′ ∈ Gall(c).
– g(c, c′, t − 1) for every c′ ∈ Gbottom(c) if c is on the bottom border of the

input word.
– g(c, c′, t − 1) for every c′ ∈ Gleft(c) if c is on the left border of the imput

word.

We call E(c) (extended neighbourhood) the set of cells c′ such that c holds
either A(c′, t) or g(c, c′, t). Remark that E(0) is exactly the north east quarter
of N2.

The state g(c, c′, t) is some sort of guess, made by the cell c, of what could
be A(c′, t). For every cells c and c′, g(c, c′, 0) = #, the quescient state of A.
The update rule of g(c) will depend on the available information for the cell c.
The new state g(c, c′, t + 1), is the result of applying the local rule of A on the
neighbours of c′, using the state of A when it is available to c, and a guess of
another cell otherwise.

To better understand this update rule, we need to focus on what information
is available for each cell of A′ during the computation. A cell c can "see" every
information contained its neighbouring cells. This way, for example, at time t, a
cell c have access to all A(c′, t−1) for c′ ∈ N2(c), as each cell of its neighbourhood
contain this information for each cell of its own neighbourhood. This way it is
easy to update every state of A, directly using the local rule of A.

Remark that one cell can see several times the same information, as it is con-
tained in more than one cell of its neighbourhood. As the information about the
states of A(c, t) results from a direct simulation, all its occurences are coherent.
On the contrary, guesses about one cell state can depend on which cell is making
the guess. To avoid incoherence issues, a cell c will only use the information con-
tained in the guesses of its leftmost and uppermost neighbours, and completely
ignore all other guesses (including its own previous guesses).

Some quick math calculations shows that the neighbourhood of each cell in
E(c) is indeed contained in N2(c) ∪ E(c+ (a, 0)) ∪ E(c+ (0, b)), as depicted in
Fig 4. A cell whose state is # formally stays in this state, but is "read" as if its
extended neighbourhood was filled with #.

This equation is not true for the cells on the left border and on the bottom
border, those cells needs to use some guesses about cells outside the computa-
tion. However those cells will always remain in the quescient state, therefore no
information is actually missing.

We will say that a cell is correct if all the g(c, c′, t) in its extended neighbour-
hood are equal to A(c′, t). After the first time step, all the cells of the upmost
row and of the rightmost column are correct. Moreover all the cells with the top
right corner cell in its neighbourhood are correct. As all the cells outside the
computation also correct, we can note that each cell which is above or on the
right of a correct cell is also correct.

Fig. 4. Available and needed information for updating cells

At time t + 1 a cell c is correct if both c + a and c + b are correct. This is
also true for the cells on the borders, using the fact that every cell outside the
border is in state #.

Because of the shape of the set of correct cells at time 1, it is easy to see
that a time t, the set of correct cells will contain N−t((n,m)) where n and m
are respectively the length and height of the input.

Because of the shape of the neighbourhood, this cell is the farthest from the
origin. Then, the real time is equal to the minimal t such that the origin cell is
in N−t(n,m). Thus, at real time, denoted τ(n,m), the origin cell is correct, and
therefore knows the state of every cell of its extended neighbourhood at time
τ − 1, in the automaton A. The extended neighbourhood of the origin consists
of all the cells in N2(0) which are not in state #. This information is enough
to compute the state of all cells in N((0, 0)) at time τ in A. Then it is engouh
information to compute the state of the origin cell at time τ + 1 in A.

The accepting states of A′ are all the "configurations" of the extended neigh-
bourhood of the origin cell which lead to an acceptation in A at time τ + 1.

Theorem 2 (Equivalence of the a-b-Neighbourhoods). For any a, b, c, d
positive integers, any language that can be recognized in real time by an automa-
ton with Na,b can also be recognized in real time by an automaton with Nc,d.

Proof. The proof of this theorem is based upon the two following lemmas :

Lemma 1. For any a, b and k positive integers, the sets of languages recognized
in real time with Na,b and with Nk

a,b are the same. We say that Na,b and Nk
a,b

are equivalent with respect to the real time.

Fig. 5. correct cells at the first steps

Lemma 2. For any a,b and k positive integers, any language recognized in real
time with Nka,b (symmetrically Na,kb) can also be recognized in real time with
Na,b. We say that Na,b is more powerful than Nka,b.

The first lemma is well known for one dimensional cellular automata, and is
an easy corollary of the constant acceleration theorem. First note that the real
time function for N and the one for Nk are very similar. Indeed τNk = d τNk e. As
an automaton A′ with neighbourhood Nk can simulate k steps of computation
of an automaton A with neighbourhood N in a single step, in real time it can
simulate at least τN steps of A, proving one inclusion.

The other inclusion needs the constant acceleration theorem. Indeed, an au-
tomaton A′ with neighbourhood N needs k steps to simulate one step of an
automaton A with the neighbourhood Nk. Thus it needs at most τN + k steps
to compute τnk steps of A. Thanks to the first theorem of this paper, we can
build another automaton with neighbourhood N recognizing the same language
in real time, completing the proof.

In order to prove the second lemma, we will have to perform a compression
of the input. Let A be an automaton recognizing L with neighbourhood Nka,b
in real time. Once again the two neighbourhoods we consider have very similar
real time :

τNka,b
(n,m) = d n

ka
e+ dm

b
e

τNa,b
(n,m) = dn

a
e+ dm

b
e

Now consider the following neighbourhood :

M = {(x, 0)| − ka ≤ x ≤ ka} ∪ {(0, y)| − b ≤ y ≤ b}

M have exactly the same convex hull as Nka,b, but is not convex. However
thanks to Delacourt and Poupet [2] we know that there is an automaton A′

with neighbourhood M which recognizes L in time at most τNka,b
+ c for some

constant c.
We will now build an automaton B which simulates A′. Each cell of B will be

able to store up to k states of A′. First the automaton will perform a compression
of the input, line by line, by a factor k. This takes d ((k−1)nka e time steps.

After the compression each cell of B contains k cells of A′, and can simulate
the computation of A′ for each of those cells without losing any time. In Fig 6
the automaton B is represented after a compression by factor 3. Each blue
dot in a cell correspond to a cell of A′. Here, N1,2 is the neighbourhood of B,
depicted in red. N3,2 is the neighbourhood of A. The green dots represents the
neighbourhood of the blue dot circled in green. The four light green dots are the
one which are in N3,2 but not in M with respect to the circled dot.

Fig. 6. Available information after compression

By doing this simulation, at time τNa,b
+ c the automaton B have simulated

τM + c steps of A′, recognizing language L. Thanks to the constant acceleration
theorem, there is an automaton B′ which can also recognize L in real time with
neighbourhood Na,b.

Now lets go back to the proof of our theorem. Consider four integers a, b, c
and d, N the a-b-Neighbourhood, and M the c-d-Neighbourhood. We denote
by M ′ the abc-abd-Neighbourhood and N ′ the abc-b-neighbourhood. By the
second lemma, we know that Na,b is more powerful than Nabc,b. By applying
this lemma again we have that Nabc,b is more powerful than Nabc,abd. Therefore

Na,b is more powerful than Nabc,abd. Remark that Nab
c,d = Nabc,abd. Thanks to

the first lemma we know that Nc,d and Nabc,abd are equivalent with respect to
real time recognition. Thus Na,b is more powerful than Nc,d.

With similar ideas we can prove that Nc,d is more powerful than Na,b, proving
the announced result.

References

1. Victor Poupet. Cellular Automata: Real-Time Equivalence Between One-
Dimensional Neighborhoods Theory of Computing Systems, vol 40 n4 : 409– 421,
2007.

2. Delacourt M., Poupet V. Real Time Language Recognition on 2D Cellular Au-
tomata: Dealing with Non-Convex Neighborhoods MFCS, 298–309, 2007

3. Mazoyer J., Reimen N. A linear speed-up theorem for cellular automata Theor.
Comput. Sci., 101: 59– 98, 1991.

4. Alvy R. Smith III. Real-time language recognition by one-dimensional cellular au-
tomata. Journal of the ACM, 6:233–253, 1972.

5. Véronique Terrier. Two-dimensional cellular automata recognizer. Theor. Comput.
Sci., 218(2):325–346, 1999.

6. John von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Urbana, IL, USA, 1966.

