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Comparing 1D and 2D Real Time on Cellular
Automata
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Abstract
We study the influence of the dimension of cellular automata (CA) for real time language recog-
nition of one-dimensional languages with parallel input. Specifically, we focus on the question of
determining whether every language that can be recognized in real time on a 2-dimensional CA
working on the Moore neighborhood can also be recognized in real time by a 1-dimensional CA
working on the standard two-way neighborhood. We show that 2-dimensional CA in real time
can perform a linear number of simulations of a 1-dimensional real time CA. If the two classes
are equal then the number of simulated instances can be polynomial.
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1 Introduction

Cellular automata (CA) were first introduced in the 1940s (published posthumously in 1966)
by J. von Neumann and S. Ulam as a mathematical model to study self-replication [7].
Although initially studied as a a dynamical system, A.R. Smith III proved that it was
possible to embed Turing machines in their behavior [5] and were as such a convenient
model for massively parallel computation.

Cellular automata are also well suited to work on various dimensions. The original CA
by von Neumann is 2-dimensional, but the natural simulation of Turing machines is on one
dimension. CA represent therefore a natural way to study how the dimension of the space
affects the computing power of the machines [1, 6].

This article presents some results comparing the computational power of 1-dimensional
and 2-dimensional CA on parallel input. The main open question in that respect is to
determine whether or not all languages that can be recognized in real time on 2-dimensional
CA can also be recognized in real time in 1 dimension [2].

The organization of the article is as follows. Section 2 recalls the basic definitions and
concepts about cellular automata that are used throughout the article. Section 3 presents
a construction on 1-dimensional CA that shows how it is possible to consider that a real
time CA knows approximately where the middle (or any other fixed rational proportion) of
the input word is from the start. This construction is used to prove the main theorem of
Section 5. In Section 4 we present a classic technique on cellular automata that compresses
the space-time diagram of a 1-dimensional CA. The main novelty here is that we perform
the compression not on the middle of the input word but on an approximate position “near
the center”. Section 5 presents and proves the main result of the article, which states in
essence that 2-dimensional CA can simulate in real time a linear number of simulations of
a 1-dimensional real time CA. Finally Section 6 discusses some consequences of the main
theorems.
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Figure 1 The standard 1-dimensional neighborhood (left) and the Moore 2-dimensional neigh-
borhood (right).

2 Definitions

2.1 Cellular Automata
I Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quadruple A =
(d,Q,N , δ) where:

d ∈ N is the dimension of A;
Q is a finite set whose elements are called states;
N ⊂ Zd is a finite set called neighborhood of A such that 0 ∈ N ;
δ : QN → Q is the local transition function of A.

A configuration of the automaton is a mapping C : Zd → Q. The elements of Zd are
called cells and for a given cell c ∈ Zd, we say that C(c) is the state of c in the configuration
C. The set of all configurations over Q is denoted Conf(Q). For a given configuration
C ∈ Conf(Q) and a cell c ∈ Zd, define the neighborhood of c in C

NC(c) =
{
N → Q

n 7→ C(c+ n)

From the local transition function δ, we define the global transition function ∆A of the
automaton. The image of a configuration C by ∆A is obtained by replacing the state of each
cell c by the image by δ of the neighborhood of c in C :

∆A :


Conf(Q) → Conf(Q)

C 7→
{

Zd → Q

c 7→ δ(NC(c))

In this article, we will only consider 1-dimensional CA working on the standard neighbor-
hood Nstd = {−1, 0, 1} and 2-dimensional cellular automata working on the Moore neigh-
borhood NM = {(x, y) | − 1 ≤ x, y ≤ 1} (see Figure 1).

2.2 Language Recognition
I Definition 2 (Language Recognizer). Given a finite alphabet Σ and a language L ⊆ Σ∗, a
d-dimensional CA A with states Q is said to recognize L in time f : N→ N with accepting
states Qa ⊆ Q and quiescent state q0 ∈ Q if, Σ ⊆ Q and for any word w = u0u1 . . . un−1 ∈
Σ∗, starting from the configuration

Zd → Q

(x, y1, y2, . . . , yd−1) 7→
{
ux if x ∈ J0, n− 1K and ∀i, yi = 0
q0 otherwise

the state of the origin at time f(n) is in Qa if and only if w ∈ L.
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I Definition 3 (Real and Linear Time). The real time function is the function n 7→ n − 1.
This time function corresponds to the minimal time necessary for information held on the
last letter of the input word to reach the origin and hence affect the recognition of the word.
The class of languages recognized in real time on 1 dimensional (resp. 2-dimensional) CA
will be denoted CA(n) (resp. CA2(n)).

We will say that a language is recognized in linear time if it can be recognized in time n 7→
2n. The class of languages recognized in linear time on 1-dimensional (resp. 2 dimensional)
CA will be denoted CA(2n) (resp. CA2(2n)).

Because there are linear acceleration theorems on 1-dimensional and 2-dimensional CA
[4] (on the simple neighborhoods that we consider), any language recognized in time n 7→ kn

for k > 0 is also recognized in time n 7→ 2n, which explains the denomination of linear time.
As for real time, it is a long open question to determine whether CA(n) = CA(2n).

In this article, we investigate whether adding a dimension to the automaton increases
linear and real time recognition power, namely if CA(n) = CA2(n) and CA(2n) = CA2(2n).
These questions are long open problems (see problem 26 in [2]).

2.3 Tools

2.3.1 Space-Time Diagram

A space-time diagram is a 2-dimensional representation of the evolution of a 1-dimensional
CA from a specific configuration. Each configuration in the evolution is represented by a line
of the diagram, with time going from bottom to top. We do not usually consider space-time
diagrams of 2-dimensional CA as these would be in 3 dimensions.

A specific point in space and time will be referred to as a site of the space-time diagram.

2.3.2 Layers

Given a CA A = (d,Q,N , δ), adding a layer to A that performs a certain task consists in
designing a specific CA working on a set of states Q′ that performs the task and extending
the set of states of A to the product Q×Q′. In doing so, the new product automaton can
mimic the behavior of A on its first coordinate and perform the new task on the second
coordinate. From there, it is possible to modify the behavior of the automaton by having
the two layers interact with each other.

As long as each layer requires only a finite number of states and there are only a finite
number of layers, the total number of states of the resulting automaton remains finite.

3 Markers

In this section we investigate whether “marking” specific positions on the input word can
help real time recognition of a language. The results in this section are a generalization of
a technique used by O. Ibarra and T. Jiang in their proof that if CA(n) is closed under
reversal then CA(n) = CA(2n) [3].

Given a finite alphabet Σ, we mark some letters of words of Σ∗ by considering the ex-
tended alphabet Σ×{0, 1}. We say that the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ corresponds
to the word (ui)i∈J0,n−1K where all the positions i such that δi = 1 have been marked (δi = 0
means that the letter has not been marked).

STACS 2015
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3.1 Exact and Fuzzy Marking
I Definition 4 (Proportional Marking). Given α ∈ [0, 1[ and a language L over an alphabet
Σ, we define L[α] ∈ (Σ× {0, 1})∗ as the language of words of L for which only the letter at
position bαnc has been marked (n is the length of the word).

Formally, the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ is in L[α] if and only if u0u1 . . . un−1 ∈
L, δbαnc = 1 and for all other i, δi = 0.

When working on real time CA algorithms it would sometimes be convenient to know
where the middle of the word is, or some other specific ratio. Whether marking the letter
of the input word corresponding to a fixed proportion of the word length can help recognize
in real time languages that were not in CA(n) is still an open question to our knowledge1.
Although an answer to this question would be very interesting, we can actually make many
constructions with a weaker version that we can prove : instead of requiring a mark on the
exact cell at position bαnc, it is enough to have a mark on one of the cells between positions
bαnc and bβnc for α < β.

I Definition 5 (Fuzzy Marking). Given α, β ∈ [0, 1[ with α ≤ β and a language L over an
alphabet Σ, we define L[α,β] ∈ (Σ×{0, 1})∗ as the language of words of L for which exactly
one letter between position bαnc and bβnc has been marked (n is the length of the word).

Formally, the word (ui, δi)i∈J0,n−1K ∈ (Σ×{0, 1})∗ is in L[α,β] if and only if u0u1 . . . un−1 ∈
L, there is exactly one i0 such that δi0 = 1 and i0 ∈ Jbαnc, bβncK.

The rest of this section will be devoted to the proof of the following theorem:

I Theorem 6. For any language L and any α, β ∈ [0, 1] with α < β,

L[α,β] ∈ CA(n)⇒ L ∈ CA(n)

First, notice that it is sufficient to prove the theorem for α and β rationals with 0 <

α < β < 1. Indeed, for any α, β ∈ [0, 1] and α′, β′ ∈ Q such that α ≤ α′ < β′ ≤ β if
L[α,β] ∈ CA(n) then we can recognize L[α′,β′] in real time by simulating the automaton A
that recognizes L[α,β] in real time while simultaneously verifying that the marker is placed
between bα′nc and bβ′nc, which can be done in real time because α′ and β′ are both rationals.
If the marker is in the right range then the input word is in L[α′,β′] if and only if A accepts
it. If the marker is not in the right range, then the word is not accepted. From now on, we
can therefore assume that α, β ∈ Q and 0 < α < β < 1.

To prove the theorem, we assume that we have a CA A that recognizes the language
L[α,β] in real time, for some α, β ∈ [0, 1], with α < β. We will show how to make a CA A′
that recognizes L in real time.

The construction will be done in two steps. First we describe a CA that starts with a
fixed set of positions marked (independently of the input length) and we show that with
these markers we can recognize L in real time. Then we transform this CA into one that
does not need the positions to be marked ahead of time.

3.2 Universal Markers
Let n0 be the smallest integer such that 1 + 1

2n0 < β
α and consider the set M of integers

whose binary representation is such that all the digits 1 are on the (n0 + 1) most significant

1 Note that if CA(n) = CA(2n) then proportional marking with a rational ratio does not help real time
recognition since the cell at position bαnc can be marked in n time steps for any rational α.
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Figure 2 The set M for n0 = 2.

bits (see Figure 2):

M = {x×2k | x ∈ K0, 2n0+1−1K, k ∈ N} = J0, 2n0−1K∪{x×2k | x ∈ J2n0 , 2n0+1−1K, k ∈ N}

The set M contains an initial segment J0, 2n0J and copies of J2n0 , 2n0+1J multiplied by
the powers of 2 (indicated as bracketed “blocks” in Figure 2).

Let us now consider the ratio between consecutive elements of M . Denote by (mi)i∈N
the elements of M in increasing order. For all mi ≥ 2n0 , we have

1 + 1
2n0+1 − 1 ≤

mi+1

mi
≤ 1 + 1

2n0
(1)

The lower bound corresponds to the ratio between the last element of a block and the
first of the next block (in the example with n0 = 2, this ratio is 8

7 ) and the upper bound
corresponds to the ratio between the two first elements of a block (in the example it is 5

4 ).
From the definition of n0, we have ∀mi ≥ 2n0 , mi+1

mi
< β

α and mi+1
β < mi

α so intervals

[mi

β ,
mi

α ] and [mi+1
β , mi+1

α ] overlap, and hence [2n0 ,+∞[ ⊆
⋃
m∈M

[
m
β ,

m
α

]
.

From this, we get ∀x ≥ 2n0 ,∃m ∈M, bαxc ≤ m ≤ bβxc.
Since M contains all the elements in the the missing initial segment J0, 2n0K, we have

proved the following lemma:

I Lemma 7. ∀n ∈ N,∃m ∈M, bαnc ≤ m ≤ bβnc

We now know that for any input word w of length n, at least one of the elements of M
lies between bαnc and bβnc and can therefore be used by A as a marker to know whether
w is in L.

Moreover, from Equation (1), we have ∀i, k ∈ N,

mi

(
1 + 1

2n0+1 − 1

)k
≤ mi+k (2)

Define k0 as the smallest integer such that

1
α
≤
(

1 + 1
2n0+1 − 1

)k0

(3)

Equations (2) and (3) state that for any i, if mi+k0+1 ≤ n then mi+1 ≤ bαnc and thus
mi < bαnc, which means that if a word is long enough to have a letter on mi+k0+1, then
mi is out of the range of valid markers. As a consequence, it is never necessary to consider
more than (k0 + 1) elements of M at any given time.

We can now describe the first part of the construction. We assume that the automaton is
given as input a word w of Σ∗ on which all letters at indexes in M are marked. On such an

STACS 2015
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!

!

m1 m2 m3 m4 m5 m6 m7

Figure 3 Space-time diagram of the simulation. Each cone represents the area on which a
simulation corresponding to an element of M is done. The cones extend to the left until the origin,
but are interrupted to the right when there are too many simulations running at once.

input the automaton simulates the behavior of A on w (as if no letter was marked), but each
marked cell also starts a separate simulation of A that considers that the letter is the only
marked letter of the input. However, as previously observed, only the (k0 + 1) simulations
corresponding to the largest elements of M are significant, all others correspond to markers
at positions before the required range. This means that each cell only needs to simulate at
most (k0 + 1) computations of A and whenever a new computation should be taken into
account, the one corresponding to the lowest element of m is discarded.

This behavior is illustrated by Figure 3. This figure represents a space-time diagram
of the automaton. Each cone corresponds to a simulation of A for which the marked cell
is the origin of the cone. The figure corresponds to a case where k0 = 2, meaning that at
most 3 simulations are performed in parallel by each cell. The thick dashed line illustrates
the area of the space-time diagram on which the simulation corresponding to the marker
on m4 is performed. Since this specific simulation starts on the cell m4, all space-time
sites outside of the cone starting from that cell are not performing this specific simulation
(they are however simulating the behavior of A without any marker, wich coincides with the
behavior with a marker on m4 on said sites out of the cone). As time passes, more and more
cells are included in this cone and start performing this specific simulation. The two sites
indicated by ! correspond to events where a cell enters a fourth cone. Instead of starting a
fourth simulation, it discards the simulation corresponding to the lowest mi: on the left, the
simulation for a marker at m1 is discarded, on the right it’s the simulation corresponding to
the marker at m4 that is discontinued.

In each simulation of A, the automaton checks that the marker is located between bαnc
and bβnc by sending two signals from the marker towards the origin, one at speed α and
the other at speed β (it is possible if α and β are rationals). If the marker is in the correct
range, the signal moving at speed β will arrive before real time while the one moving at
speed α will arrive after real time.

From Lemma 7, we know that there is a marker m in the correct range and since A
properly recognizes L[α,β], the simulation of A for the marker m will let the automaton
know whether w is in L or not.

3.3 Construction of M

We now have to remove the requirement that the elements of M be marked on the input.
To do this, we use a space-time compression technique: instead of starting the computation
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countercomputation

Figure 4 The diagonal counter is added on
the compressed space-time diagram. Because
the diagonal indexes are of logarithmic length,
the counter and the main computation overlap
only on a finite number of cells. Diagonals of
indexes inM (here with n0 = 2) are represented
with a darker square.
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Figure 5 Detailed behavior of the diago-
nal counter. Least significant bits are on the
bottom right. For better readability the digits
of indexes on odd diagonals are represented in
light grey. Indexes in M are marked with a (*)
(here M is defined with n0 = 2) and the sig-
nal sent towards the main computation is rep-
resented by an arrow.

immediately, the automaton moves the states from the input word towards the orgin to group
them three by three, and only then simulates the behavior of the original (uncompressed)
CA. By performing such a compression, the initial configuration is mapped to the space-time
line of slope 2, and the computation takes place in the cone between this line and the vertical
axis (as illustrated by the green cone in Figure 4 in which each dark green cell on the right
border holds 3 states from the initial configuration). Although the space-time diagram is
strongly modified by the compression, the computation of the states on the origin cell does
not suffer any slow down.

To mark the elements of M for the compressed computation, the CA builds a binary
counter on the main diagonal of the space-time diagram to obtain the index of each transverse
diagonal (see Figures 4 and 5).

Since it is easy to recognize binary representations of elements in M (all bits but the
(n0 + 1) most significant must be 0), a signal can be sent along the diagonals whose index
is in M so that the letters of the input word at positions in M can be marked before the
compressed computation effectively starts.

From an input word w in Σ∗, the automaton can therefore simulate the previously
described automaton as if the positions in M were marked from the start, and determine in
real time whether w is in L. This concludes the proof of Theorem 6.

4 Central Compression

In this section we describe a way to simulate the behavior of a 1-dimensional CA A on an
input w ∈ Σ∗ working in real time with another 1-dimensional CA A′ on input w with a
marked position, by compressing the space-time diagram of A.
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Figure 6 Simulation of a CA by compressing
its space-time diagram by a factor 3 around a
given mark (indicated by a thick dashed line).
Each cell in the simulating area holds 3 states
that correspond to states in the original space-
time diagram. Numbers on the cells indicate
which time step of the original automaton they
are currently simulating.

!

Figure 7 Diagram of the compression
around a mark (thick dashed line) at position
bαnc. The thick arrows illustrate the sites
where the letter of the input words are first
taken into account. The site where the result
of the simulated automaton is computed is in-
dicated by the exclamation mark.

4.1 General Description

Assume that a special position has been marked on the input word of A′. We want to
group the states of the original simulated CA by groups of 3 around the mark as illustrated
by Figure 6. To do so, the letters of the input word (represented as large circles in the
figure) are shifted towards the marked position (indicated by a thick dashed line). Because
the letters do not know in advance whether the mark is to their right or to their left, the
AC uses two separate layers, one that shifts the letters to the right and the other to the
left. Letters that move away from the mark will never be grouped and will not affect the
simulation.

When letters reach the marked position, they stack on the corresponding cell. When a
cell has 3 letters, it is considered full and its neighbors start gathering letters in turn. In
Figure 6, grouped states are represented by small circles.

Once a cell is fully grouped, it watches its neighbors until it has enough information to
simulate 3 steps of the original automaton at once on all its grouped states. This happens
when its neighbors are fully grouped and their simulated time is at least equal to its own.
During the compressed simulation, the difference between the simulated times of a cell and
its neighbor is at most 3 (it can be -3, 0 or 3 since the simulation advances by 3 steps at a
time). If a cell advances faster than its neighbor it has to memorize its previous state so that
the neighbor can use it when doing its own transition. In Figure 6, the number in each cell
represents the simulated time step: a cell numbered 3 for instance has to wait until both its
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neighbors are labelled 3 or more before it can compute step 6 for all 3 of its grouped states.
Cells represented with a grey square are cells that don’t contain any significant information
(they correspond to sites that are outside of the real time cone in the original space-time
diagram) so their neighbors do not need to wait for their information.

If the mark around which the cells are grouped is in the first half of the input word (which
is the case in Figure 6 as there are 9 letters left of the mark and 15 right) the simulation can
take place properly as the left part can compute its states faster and have the information
ready for the right part. The key point is that from the time when the rightmost cell is
fully grouped (this time is indicated by a thick horizontal line in Figure 6) all the sites on
the diagonal must be able to advance their computation by 3 steps. This guarantees that
the leftmost cell has eventually computed as many steps of the original diagram as if it had
started at the indicated time and advanced by 3 steps each time, which corresponds to the
whole computation of the original diagram.

In Figure 6, the leftmost cell of the compressed area seems to be 2 steps behind real time
at the end of the simulation (the initial configuration has 24 letters so the real time is 23).
However, because the cell holds the states of the 3 leftmost cells of the original configuration
at time 21, it has all the relevant information to determine the state of the origin at time
23.

There are of course many rounding problems when the number of letters left or right or
the mark is not a multiple of 3. However these roundings cause at most a constant delay,
which can be corrected by using a constant speed-up theorem [4].

4.2 Properties
By compressing the space-time diagram of the automaton around the marked position, we
are able to perform the same computation with some significant differences.

First, the letters of the input word are not taken into account from the start of the
computation, but rather in a sequential order. The time at which a given letter of the input
word is effectively considered to determine the result of a transition in the simulation is
proportional to its distance to the initial mark (see Figure 7 in which the sites where the
letters of the input word are first taken into account are along the thick arrows).

Second, the result of the computation is obtained significantly before real time, on a cell
that it not the origin. The site where the result is obtained is represented by ! in Figure 7.

Let us denote by α the proportion of the word at which the mark is set. When using
the compression in a later section, we will need the free space left of the compressed area
(which is of width 2α

3 ) to be larger than each of the sides of the compressed area. As said
before, we need α ≤ 1

2 for the simulation to work without delay, which means that the left
side of the compressed area is smaller than the right side. Since the right side is of width
1−α

3 , this means that we want 1−α
3 ≤ 2α

3 , which amounts to 1
3 ≤ α ≤

1
2 .

5 The Power of Space

In this section we compare the computational power of 2-dimensional CA working on the
Moore neighborhood to that of 1-dimensional CA working on the standard neighborhood.

I Definition 8. Given a marked language L ⊆ (Σ × {0, 1})∗, we define L̃ ⊆ Σ∗ as the
language obtained by removing the marks of words in L (L̃ can be seen as the result of the
first projection map on L).
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Figure 8 Running n simulations of a 1-
dimensional CA with a 2-dimensional CA.
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Figure 9 Real time parallel simulations of
a 1DCA. At each time, a new line copies the
current unmarked simulation of A and contin-
ues from the same point (no delay). Each line
has up to two special positions that are marked
when the line starts simulating A.

I Theorem 9. For any language L ⊆ (Σ × {0, 1})∗ of words having at most one marked
position, L ∈ CA(2n)⇒ L̃ ∈ CA2(2n).

Proof. Let L ⊆ (Σ×{0, 1})∗ be a language in CA(2n) of words having at most one marked
position and A be a 1-dimensional CA that recognizes L in time n 7→ 2n. Let us describe a
2-dimensional CA A′ that recognizes L̃ in linear time.

The input of A′ is an unmarked word w ∈ Σ∗ of length n. The idea is to use the second
dimension of A′ to run n simulations of A, one for each possible position of the mark as
shown on Figure 8.

At time t = 0, the input is on the first line and a simulation of A starts on that line
with a mark on the leftmost cell of the word. At each subsequent time, the original input is
copied on the next line (moving up), and a new simulation of A is started on that line with
the mark on the next position (moving right). At time t = n, the first line has simulated n
steps of A with a mark on the first cell, while the n-th line starts a new simulation with the
mark on the last cell.

When a simulation finishes, the result is sent back towards the origin (on the first line).
At time t = 3n the simulation on line n is finished, and at time t = 4n the results of
all simulations are available on the origin (to be complete, the automaton must also run
an extra simulation on the first line that simulates the behavior of A on input w without
any mark). The language L̃ is therefore recognized in time n 7→ 4n, and by using a linear
acceleration we get L̃ ∈ CA2(2n). J

I Theorem 10. For any language L ⊆ (Σ × {0, 1})∗ of words having at most one marked
position, L ∈ CA(n)⇒ L̃ ∈ CA2(n).

Proof. The basic idea is again to run parallel simulations of a 1-dimensional CA on the
lines of the 2-dimensional CA, but because the automaton must work in real time it is not
possible to waste a linear time starting the simulations, nor a linear time bringing back
the results of the farthest simulation to the origin, which is why we use the compressed
simulation presented in Section 4.

Consider a language L ∈ (Σ×{0, 1})∗ such that all words of L have at most one marked
position and a 1-dimensional CA A that recognizes L in real time. We want to describe a
2-dimensional CA A2 that takes an unmarked word w ∈ Σ∗ of length n and decides in real
time if by adding at most one mark to w we can obtain a word in L.

For now, let us assume that the input word w has a mark on a position between bn3 c and
bn2 c so that we can run the compressed simulation easily. This mark will be referred to as
the compression mark, it is different from the marks of L that we want to simulate on each
line.
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Instead of simulating A, A2 will simulate an automaton AC that simulates A with a
central compression on the compression mark as described in Section 4.

The behavior of A2 is as follows:
at time t = 0, the first line of A2 starts a simulation of AC as if no letter of the input
was marked;
at each time, this “unmarked” simulation is copied to the next line (moving up), each
line continues the simulation from the step at which it is when copied (so that more and
more lines are performing the same simulation of AC , without suffering any delay);
meanwhile, each line has one or two special positions. The special position of the first
line is the one where the compression mark is, and the special positions of line (i + 1)
are the one left of the leftmost special position of i, and the one right of the rightmost
position of i (see Figure 9). Special positions on each line are marked when the line
copies the simulation from the previous line.
during the simulation of AC by a line, when one of the cells at a special position finishes
grouping 3 letters of the input word, 3 new simulations of AC are started on this line,
each considering that there was a mark on one of the letters of the input word that was
grouped on the special position. Because each line has at most two special positions, at
most 7 simulations of AC are run in parallel on each line (3 for each special position and
the unmarked one).

This construction works because of the properties of the central compression discussed
in Section 4.

First, the simulations of AC on each line can be performed properly without any delay
because the time at which an input letter that eventually is grouped on a special position of
the line becomes significant is after the activation of the line and the marking of its special
positions. Therefore, all simulations of AC on all lines are synchronized, and the farther
lines do not suffer any delay.

Second, the number of lines really used (on which significant simulations that correspond
to a potential mark on an input letter) is equal to the length of the largest side of the
compressed area (which is 1−α

3 , see Figure 7). This length is less than the time remaining
when the simulations of AC obtain their result ( 2α

3 ), so it means that there is enough time
to send back the result of the parallel simulations to the origin in real time.

The last detail is now to remove the requirement for the compression mark to be given
as input. From Theorem 6, we know that if the computation can be performed in real time
with a mark anywhere between positions bn3 c and bn2 c then it can be done in real time
without previous marking. Technically, Theorem 6 only applies to 1-dimensional CA, but
in this case the 2-dimensional CA performs 1-dimensional computations on each line almost
independently so by having each line perform the construction from the proof of Theorem 6
we obtain the result for this specific 2-dimensional CA. J

6 Consequences

Let us now discuss some consequences of Theorem 10.

I Corollary 11. The concatenation L1L2 of two 1-dimensional real time languages L1 and
L2 is recognizable in real time by a 2-dimensional CA working on the Moore neighborhood.

Proof. Given a word w = uv with a mark between u and v, it is easy to check in real time
if u ∈ L1 and v ∈ L2, so from Theorem 10 the unmarked language is in CA2(n). J
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I Corollary 12. If CA(n) = CA2(n), CA(n) is closed under concatenation.

Without the assumption that CA(n) = CA2(n), it is still unknown whether CA(n) is
closed under concatenation. Actually, it is also unknown whether CA(2n) is closed under
concatenation and even if the concatenation of two languages in CA(n) is in CA(2n).

I Corollary 13. For any language L and any α ∈ Q ∩ [0, 1], L[α] ∈ CA(n)⇒ L ∈ CA2(n).

Proof. Given a word with one marked position, it is easy to check simultaneously in real
time if the mark is at position bαnc and if the marked word is in L[α]. J

I Corollary 14. If CA(n) = CA2(n), for any language L and any α ∈ Q ∩ [0, 1], L[α] ∈
CA(n)⇒ L ∈ CA(n).

Under the assumption that CA(n) = CA2(n), Theorem 10 can also be strengthened:

I Corollary 15. If CA(n) = CA2(n), for any k ∈ N and any language L ⊆ (Σ× {0, 1})∗ of
words having up to k marked positions, L ∈ CA(n)⇒ L̃ ∈ CA(n).

Proof. By induction on k. The case k = 1 is a direct consequence of Theorem 10 and the
assumption that CA(n) = CA2(n).

If the corollary is true for up to k marks, and L is a language of words with up to
(k+ 1) marks, let us consider the language L′ ⊆ (Σ×{0, 1}2)∗ obtained from L by changing
the first marked letter (ui, 1) to (ui, 0, 1), all other marked letters (ui, 1) into (ui, 1, 0) and
all unmarked letters (ui, 0) into (ui, 0, 0) (effectively distinguishing the first mark from the
others).

If L ∈ CA(n) then L′ ∈ CA(n) since it’s possible to simulate the recognition of L by
considering that all marks are the same, while independently checking in real time that the
distinguished mark is the first marked position. From Theorem 10 the language of words
in L in which the first mark has been removed is therefore in CA2(n) and hence also in
CA(n). The words of this language have at most k marks so from the induction hypothesis,
L ∈ CA(n). J
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