
HAL Id: lirmm-01477362
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01477362v1

Preprint submitted on 27 Feb 2017 (v1), last revised 12 Feb 2018 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

3D robust stability polyhedron in multi-contact
Hervé Audren, Abderrahmane Kheddar

To cite this version:
Hervé Audren, Abderrahmane Kheddar. 3D robust stability polyhedron in multi-contact. 2017.
�lirmm-01477362v1�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01477362v1
https://hal.archives-ouvertes.fr

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 1

3D robust stability polyhedron in multi-contact
Hervé Audren and Abderrahmane Kheddar

Abstract—We propose algorithms to compute the 3D robust
stability region in multi-contact. It is well known that the stability
region is a product of convex cones and hence is a convex
polyhedron. Our stability region extends existing recursive 2D
static stability approaches to 3D by accounting for possible center
of mass accelerations. We provide algorithms that construct the
region of robust stability in a systematic way. We compare our
algorithms and discuss possible computation of intermediary
shapes using morphing. Finally, we provide an example of usage
in generating robust static postures that can serve the purpose
of multi-contact planning.

Index Terms—Multi-contact, 3D Robust Static Stability.

I. INTRODUCTION

LEGGED robots have been substantially improved in the
last years in terms of hardware and control. For legged

robots, to hold stable postures in multi-contact is critical to
avoid falling under perturbations. Thus a criteria is necessary
to enforce the stability of the equilibrium for a given contact
stance. Ideally, this criteria will be in the form of a convex
function to be used in fast optimization programs.

The stability criteria are tightly linked to the dynamic
equations, that are known to be non-linear [17]. They define
a relationship between joint torque, acceleration and contact
forces through inertial parameters. Even when the whole-
body dynamics is reduced to its center-of-mass [38], [2], the
resulting equations exhibit the angular momentum of the body
as a cross-product between the contact forces and the CoM
position; an operation that is neither linear nor convex.

Our idea is to compute a hull P for the CoM, such that
∀ CoM ∈ P , the stability is guaranteed to be robust. We do
so for all possible CoM accelerations that lie within a given
convex set G. In fact, ∀ CoM ∈ P , there exist a set of contact
forces that can generate any acceleration in G. In other words,
we compute the intersection of G with the set of all possible
motions. We show that this intersection results in a convex
volume that we project in the CoM space. Hence, by defining
G, the CoM acceleration and its position are decoupled.

Manuscript received February XX, 2017; revised Xxxxx XX, 20XX;
accepted Xxxxxx XX, 20XX. Date of publication Xxxxxxxx X, 20XX; date
of current version Xxxxxxxxx X, 20XX. This paper was recommended for
publication by Associate Editor X. Xxxxxxxx and Editor X. XXXX upon
evaluation of the reviewers comments.

This work was partially supported by the EU H2020 COMANOID project.
H. Audren and A. Kheddar are with the CNRS-UM2 LIRMM Interactive

Digital Humans group, France, and the CNRS-AIST Joint Robotics Labora-
tory (JRL), UMI3218/RL, Japan

This paper has supplementary video downloadable material available at
http://ieeexplore.ieee.org.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 00.0000/TRO.201X.0000000

P
c

p

f

f

f

G
c̈

@
@

@
@
@@

Fig. 1. Illustration of the problem annotated with the variables. We propose
algorithms to compute the robust static stability P for the CoM c, knowing
the space G of the CoM’s accelerations c̈. The forces are all noted f , the set
to which they belong. Contact surfaces are represented by green disks with
the contact points and their normals, represented by the blue friction cones.
p is the static stability polygon as computed in [9].

In previous work, some restrictions have been set to obtain
such a decoupling. One of the most stringent is to set the
CoM acceleration to zero, resulting in the static stability
criterion [30]. Static stability (i.e. equilibrium) is used most
notably in multi-contact posture generation [16], [7], [11].

Static stability can be a function of the gravity orientation.
Indeed [29], [32] present a way to find all the gravity orienta-
tions (equivalently, all orientations of the assembly base) that
satisfy static stability of assemblies: as it is a convex region
defined by inequalities. They apply early vertex enumeration
techniques —that we also use, to compute the acceptable
region. Yet, the objects were fixed and not actuated.

The best known approach considers a virtual point that
accounts for both the CoM position and its acceleration: the
zero moment point (ZMP). The original ZMP criterion [43]
is the extension of the convex hull criterion and has been
widely used in biped locomotion on flat grounds assuming
high friction, e.g. [26]. The ZMP is better defined in [21], and
its commonalities to the Center of Pressure (CoP) highlighted
in [41]. The CoP is the local version of the ZMP criterion
which allows it to be used in multi-contact but entails control-

0000–0000/00$00.00 c© 201X IEEE

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 2

ling independently the CoP at each contact area. Yet, the CoP
is not defined when the normal force applied on the contact
is nil, and is not easily extensible to bilateral contacts. Even
with these drawbacks, CoPs was successfully applied in multi-
contact control schemes such as in [42], [24], [44], [34] when
combined with a CoM regulation policy for stabilization.

There are other multi-contact criteria. The resultant wrench
of the contact forces must remain in a polyhedral convex
cone. Pioneered by [40], it formed the basis of the work
in [23] ostensibly titled “Adios ZMP”. It is applicable to
multi-contact motion while remaining linear and global. This
criterion is more clearly and properly established and applied
to multi-contact motion in [13], [14]. In the latter works, a new
ZMP-like criterion (a pseudo-ZMP) that has to remain in the
two-dimensional projection of the convex polyhedral wrench
cone is proposed. It is applicable to multi-contact motion and
takes into account friction. Note that, similarly to the ZMP
and the CoP, the pseudo-ZMP support area depends on the
instantaneous CoM position. Instead, our approach imposes
constraints on the resultant acceleration and finds a linear,
global corresponding constraint on the CoM. It is an extension
of our previous work in [1]: instead of computing regular static
stability regions, we add explicit stability margins.

Computing wrench cones relies on the double description
method [19] to perform projections. We observed that when
the number of contacts increases slightly, the computation
times increases drastically. Alternatively, incremental projec-
tion [27], computes an arbitrary close polyhedral approxima-
tion of convex projections without the need of having the full-
dimensional polytope. As the static support area is a convex
shape, this technique computes fast and is used in stability
checks [9] and in multi-contact control [1]. Moreover, this
technique does not require friction cones discretization. A very
recent approach [37] suggests a quasi-analytic formulation
of this region but it cannot handle arbitrary arrangements of
contacts, and requires friction cones discretization in practice.

Constraining the CoM to remain in p is a global, CoM
based, and linear criterion. Unfortunately, static stability (equi-
librium) criterion does not imply dynamic stability [20], [1].
Indeed tracking a statically stable trajectory with changes
in acceleration may induce falling. Thus, static stability is
marginal, i.e. not robust to changes in the total acceleration.

We propose algorithms to compute a robust stability region
P for a given G. Our approach has commonalities with [5],
devised to check the robustness of a known trajectory and used
linearized friction cones. [13] noted that such a region exists,
but it was only sampled. In [36] a vertical cross-section of this
region was computed using a line-sweep algorithm, not unlike
that of [6] but of course not directly transposable to 3D.

We thus show the following:
• P is a three dimensional convex shape (section III);
• It can be efficiently approximated by convex polyhedrons

(section IV). Also, if G is limited to a convex polytope,
it is the intersection of non-right prisms;

• Our construction algorithm can be modified to quickly
test the equilibrium of many points (section VI)

• Changes in acceleration can be well approximated by
morphing polyhedrons (section VII).

• We exemplify our stability criteria with a robust posture
generation problem (section VIII).

We recall the recursive projection algorithm [9] that com-
putes the static stability polygon p, represented in Fig. 1; this
is because our work follows a similar methodology.

II. COMPUTATION OF THE STATIC STABILITY POLYGON

A. Recursive projection algorithm

The algorithm in [9] consists in building an inner and outer
approximation of the true polygon, p, by solving a sequence
of second-order cone programs:

max
c,f

dT c

s.t. A1f +A2(g)c = T (g) (1)

‖Bf‖ ≤ u(µ)T f

where (see also Fig. 1),
• f is the set of contact forces;
• c is the CoM position;
• d is the given search direction;
• A1 is the contact matrix that sums all forces and mo-

ments;
• A2 represents the gravity wrench at position c;
• B is the friction cone matrix;
• u is the matrix representing the contact normals and the

friction coefficient µ;
• T is the gravity wrench in function of the gravity g and

the robot mass m;
• ‖.‖ is the euclidian norm.
The solution c∗ is an extremal CoM position in the direction

d, and is thus added to the inner approximation. Conversely,
the half-plane defined by

{
c ∈ R2|dT c < dT c∗

}
is a facet

of the outer approximations. All points within the inner
approximation are thus stable, those outside of the outer ap-
proximation are unstable, whereas the stability is undetermined
for the points in-between the inner and outer approximations.

The main difficulty of this class of algorithms is the
choice of the search direction d. In statics, the undetermined
region between the inner and outer approximation is entirely
composed of triangles. The next search direction is chosen
to be perpendicular to the edge of the inner approximation
that belongs to the triangle of maximum area and pointing
outwards.

B. Problems associated with bilateral contacts

If we have opposite normals, there is no boundary on the
forces applied along the pair of contacts line, and the problem
is infeasible. Thus we limit the search region [1]:
• A bounding sphere on the CoM position: we add a

cone constraint ‖c‖ ≤ rmax, which can be set from the
kinematics limits of the robot;

• A limit on the forces: for each force, no single component
should be greater (in absolute value) than the weight of
the robot. As this is much of a heuristic, we rather set
a limit on the actuator torque generated by the forces at
each contact point.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 3

III. ROBUST STATIC STABILITY

The previously generated shape p gathers all the statically
stable CoM positions. For a given set of contacts, we would
like to know where the CoM can be, under a given set
of feasible accelerations1, that keeps the forces within their
friction cones. This is what we call the robust stability region,
illustrated by P in the Fig. 1.

A. Problem formulation

Definition 1 (Robust static equilibrium). A CoM position c
is in robust static equilibrium with respect to a given residual
radius r iff:

∀ g̃i such that ‖g̃i‖ < r, ∃ fi such that
A1fi +A2(g + g̃i)c = T (g + g̃i) (2)

‖Bfi‖ ≤ uT fi (3)

Where all notations are the same as Equation 1. Recall that
A2 represents the cross product with the gravity. In the non-
robust case, its last line is nil as g is aligned with the vertical
axis. Hence, the vertical component of c does not contribute
anything, and eq. (1) defines a two-dimensional shape. In
the robust case, g + g̃i will almost always not be aligned
with the vertical axis and eq. (2) defines a three dimensional
shape. Moreover, this three-dimensional volume is an infinite
intersection of convex shapes –one for each couple (fi, gi),
therefore it is a convex shape.

In [5], P is a given point, of a predefined CoM trajectory,
at which they compute G. The latter is a sphere, of unknown
radius r, centered on the acceleration that is obtained for a
given contact forces. They provide an algorithm to compute
r based on gravito-inertial wrench projections and use it as a
robustness measure for the given trajectory.

In [13] robust static stability was envisioned as the set
of CoM positions P , where a set of lateral accelerations
G, centered around g, could be generated by contact forces.
Here, P is only sampled, whereas our method systematically
computes P and allows us to fast test robust equilibrium of
any points (see section VI).

Another approach in [39] proposes a set of algorithms,
including a faster version of [9], to deal with postural robust-
ness. However, they considered robustness to contact force
errors. That is to say, for a given uncertainty of the force,
they seek if it can be balanced by the others. They thus
missed a point of the utmost importance: in the robust case,
the region describing all possible CoM positions is no longer
a 2-dimensional polygon, but a 3-dimensional polyhedron as
described previously.

In Definition (1), we state the problem ∀g̃i. In order to
compute P , it is necessary to reduce it to a tractable form.
We do so using two different approaches. The first approach
writes a more conservative constraint on eq. (2) and eq. (3).
The second approach discretizes G.

The goal of both approaches is to obtain a finite set of
convex constraints. Those constraints can then be used in a

1The said CoM accelerations can result from a perturbation, i.e. applied
external forces, or from the control, i.e. from the actuators.

convex optimization problem. Combining this problem with
the recursive projection algorithm [27], [9] allows to compute
the corresponding convex shape. Furthermore, if those con-
straints are linear they can also be used in a direct projection
algorithm as in [13].

B. Formulating a stricter constraint

In this section, we derive a new inequality (depending on
r but not individual g̃i), that will induce eq. (3). This new
constraint has the same form as eq. (1). Let us consider the
solution for the static problem:

A1f +A2(g)c = T (g) (4)

‖Bf‖ ≤ uT f (5)

Proposition 1. If ∃ (l, s) ∈ R2 such that ∀ fi:
uT fi ≥ uT f + l (6)
‖Bfi‖ ≤ ‖Bf‖+ s (7)

we have the following implication:

‖Bf‖ ≤ uT f + l − s⇒ ‖Bfi‖ ≤ uT fi (8)

Proof. ‖Bf‖ ≤ uT f + l − s writes ‖Bf‖ + s ≤ uT f + l
then ‖Bfi‖ ≤ ‖Bf‖+ s ≤ uT f + l ≤ uT fi from eq. (6) and
eq. (7).

In what follows, we show that bounds l and s exist and
subsequently eq. (8) holds.

We need intermediary results that will be used in expressing
both l and s.

Lemma 1. The only possible fi are given by:

fi = f +A†1 (T (g̃i)−A2(g̃i)c) + (I −A†1A1)w (9)

with .† the Moore-Penrose pseudo inverse, and w a vector
having the size of contact forces.

Proof. We first exploit the linearity of A2 (screw operator)
and T (stacking acceleration with zero angular momentum):

eq. (2) and eq. (4)⇔ A1 · (fi − f) +A2(g̃i)c = T (g̃i) (10)

Since A1 is full row-rank2, the only possible fi is given by:

fi = f +A†1 (T (g̃i)−A2(g̃i)c) + (I −A†1A1)w (11)

Theorem 1. A suitable lower bound l is given by:

uT fi − uT f ≥ l = −µrmσ̄(A†1)(1 + ‖c‖) (12)

Proof. We develop uT fi using Lemma 1, considering the
minimal norm solution: w = 0.

uT fi = uT f + uTA†1 (T (g̃i)−A2(g̃i)c) (13)

= uT f + uTA†1T (g̃i)− uTA†1A2(g̃i)c (14)

Now, we will use the following properties:

2Except the degenerate unlikely case where all the contact points are
aligned.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 4

• For any vectors a and b,
∣∣aT b∣∣ ≤ ‖a‖ ‖b‖ (Cauchy-

Schwarz inequality);
• ‖u‖ = µ (by definition);
• ‖Ax‖ ≤ σ̄(A) ‖x‖ with σ̄(A) the largest singular value

of A.
Firstly,

uTA†1T (g̃i) ≥ −‖u‖
∥∥∥A†1T (g̃i)

∥∥∥ (15)

≥ −µσ̄(A†1)mr (16)

Secondly,

uTA†1A2(g̃i)c ≤ ‖u‖
∥∥∥A†1A2(g̃i)c

∥∥∥ (17)

≤ µσ̄(A†1)mr ‖c‖ (18)

−uTA†1A2(g̃i)c ≥ −µσ̄(A†1)mr ‖c‖ (19)

Thus, from eq. (16) and eq. (19), we have

uT fi ≥ uT f − µrmσ̄(A†1)(1 + ‖c‖) (20)

Theorem 2. A suitable upper bound s is given by:

‖Bfi‖ − ‖Bf‖ ≤ s = rmσ̄(BA†1)(1 + ‖c‖) (21)

Proof. We develop ||Bf || using Lemma 1, considering the
minimal norm solution: w = 0.

‖Bfi‖ =
∥∥∥Bf +BA†1T (g̃i) +BA†1A2(g̃i)c

∥∥∥ (22)

We first apply the triangular inequality:

‖Bfi‖ ≤ ‖Bf‖+
∥∥∥BA†1T (g̃i)

∥∥∥+
∥∥∥BA†1A2(g̃i)c

∥∥∥ (23)

Firstly: ∥∥∥BA†1T (g̃i)
∥∥∥ ≤ rmσ̄(BA†1) (24)

Secondly: ∥∥∥BA†1A2(g̃i)c
∥∥∥ ≤ rmσ̄(BA†1) ‖c‖ (25)

We thus have:

‖Bfi‖ − ‖Bf‖ ≤ rmσ̄(BA†1)(1 + ‖c‖) (26)

Corollary 1. For a given CoM position c, if there exist contact
forces f that satisfy:

A1f +A2(g)c = T (g) (27)

‖Bf‖ ≤ uT f − rm(σ̄(BA†1) + µσ̄(A†1))(1 + ‖c‖) (28)

Then c is in robust static equilibrium.

Proof. The proof is straightforwardly obtained by combining
Theorem 2 and Theorem 1 using Proposition 1.

Unfortunately, eq. (28) is in general not tight, and the
converse of Corollary 1 is not true. Indeed, let us examine
under which conditions we achieve tightness:
• ‖Aa‖ ≤ σ̄ ‖a‖ is tight whenever a is aligned with the

singular vector associated with the maximum singular
value, say v̄. This gives us:

– g̃i = rv̄ thus g̃i is parallel to v̄.
– A2(g̃i)c = kv̄ i.e. g̃i × c = αr ‖c‖ v̄ that is to say a

vector perpendicular to g̃i is parallel to v̄.
• ‖A2(g̃i)c‖ ≤ mr ‖c‖ is equal iff c ⊥ g̃i
The three above conditions are incompatible in general

because g̃i has to be colinear with v̄ and perpendicular to
it. Moreover, c will be different at each iteration, but v̄ is a
constant.

Even if this constraint is the tightest conic constraint (in
terms of L2-norm) we found, it is sill conservative. However,
it allows to reduce the dimensionality of the problem substan-
tially as we only need to find a single set of forces associated
to a CoM position.

C. Discretizing the hypersphere

Instead of the conservative bound of Definition 1 described
previously, we approximate the sphere ‖g̃i‖ < r by a polytope
whose k vertices are selected among g̃i, that is:

gi = g + g̃i i ∈ [0 · · · k] (29)

The closer this polytope is to a sphere of radius r, the closer
the computed polyhedron will be to the real P .

The projection of the acceleration on the horizontal di-
rections is not null. Hence, we still cannot use the method
in [9]. Instead, we need to find 3D CoM positions that realize
every k accelerations. That is, can we find k sets of forces
F =

[
fT0 · · · fTk

]T
that produce G =

[
gT0 · · · gTk

]
at a given

CoM position c?

Proposition 2. If a CoM position c is in robust static equi-
librium (c ∈ P), there exists F that verifies:

ΦF + Ψc = Γ (30)
‖ΛF‖ ≤ ΥF

With:

Φ = diag(A1 · · ·A1) (31)

Ψ =
[
A2(g0)T · · ·A2(gk)T

]T
(32)

Γ =
[
T (g0)T · · ·T (gk)T

]T
(33)

Λ = diag(B · · ·B) (34)

Υ =
[
u · · · u

]T
(35)

Proof. We stack k problems given by Definition 1, one for
each g̃i. As a robust CoM position verifies the constraints
of Definition 1 for any g̃i, it does also for any k of them.

With this approach, the robustness of the static equilibrium
P is obtained w.r.t. the polytope G defined by the kg̃i.

In the next section, we introduce the algorithms that lever-
age those new constraints in order to compute P .

IV. COMPUTING THE ROBUST POLYHEDRON

We are using the double description in our algorithms,
therefore we briefly recall its principles.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 5

A. Double description

The Weyl-Minkowski theorem [45], [31] states that any
convex region defined by a finite number of inequalities is a
convex polyhedron with a finite number of vertices. Hence, any
convex region can be equivalently represented in two ways:
• hyperplanes representation (H-rep): a matrix H com-

posed of its normals and a vector b of associated offsets.
A point a is interior to this region iff Ha ≤ b;

• vertices representation (V-rep): a set of vertices V . A
point a is interior to this region iff there exists a vector ~α
having the size of V and with positive coefficients, such
that a = V Tα with

∑
i α(i) = 1.

A number of algorithms and implementations are available
to perform the H-rep to V-rep mapping and vice-versa. They
are referred to as the double description algorithms, and
vary in their capabilities and performance. Yet, none of them
is inherently superior to the others. Notable examples are
Qhull [4] that computes convex hull and half-space repre-
sentations from vertices using the Beneath-Beyond algorithm;
the Cddlib [19] and the Parma Polyhedra Library (PPL) [3]
both of which build on the Fourier-Motzkin elimination algo-
rithm [18], [33], the dual of the Beneath-Beyond algorithm.
Unfortunately, both algorithms have super-exponential com-
plexity in the worst case [8], [25].

B. Direct projection

To compute the direct projection of a set defined by convex
constraints, it is necessary to perform four steps:

1) Reduce the problem to a set of linear inequalities and
equalities;

2) Enumerate the vertices bounding that set (i.e. find the
V-rep from an the H-rep);

3) Project the V-rep in the given space, resulting in another
set of vertices.

4) Compute the convex hull of the previously obtained set
of vertices.

Following these steps, we can first reduce eq. (2) by
linearizing the friction cones and G. Unfortunately, a linear
G with N vertices, leads to searching for N sets of forces.
This is not an option since the double description has a
worst case complexity that is exponential is the number of
dimensions [22]. Plus, all iterative conversion algorithms are
super-polynomial in the combined size of input and output [8],
[25].

Moreover, eq. (28) has non-linear terms in both sides; its
linearization is far from being trivial. We thus investigate an
alternative: the recursive projection.

C. Recursive projection

1) Principle: The recursive projection technique consists
in approximating the projection of a convex set by linear
boundaries [27]. We seek for the approximation of P as a
projection in the 3D space, of a higher dimensional space.
The core process of the recursive projection is to iteratively
select directions d. The furthest point found along d (the CoM
c∗) will be part of the set (P). The others, i.e. {c|dT c > c∗}

will be outside of the set (P). The collection of c∗ will form an
inner (i.e. conservative) approximation of the set (P), while the
complementary of the collection of unacceptable points will
be a convex outer (i.e. over) approximation. The boundary of
the real set lies in-between those two approximations, and they
match exactly whenever all directions have been enumerated.
In practice, the number of iterations will be limited.

We also associate a stopping criterion that depends on a
measure of the error between the inner and outer approxima-
tion. Also, for fast convergence, we have to choose suitable
search directions.

We now present two ways to formulate an optimization
problem that yields the appropriate c∗: (i) using bounds
in subsection III-B and (ii) linearization in subsection III-C.

2) Using bounds: Unfortunately, the formulation (eq. (28))
obtained in subsection III-B is not suitable to an optimization
problem. To turn it into a second-order cone program (SOCP),
we need to transform eq. (28) into two single conic inequalities
by introducing an additional slack variable s:

‖c‖ ≤ s (36)

‖Bf‖ ≤ uT f − rm(1 + s)(σ̄(BA†1) + µσ̄(A†1)) (37)

Then, solving the following optimization problem gives us
an extremal point:

max
c,f,s

dT c

s.t. A1fi +A2(g)c = T (g) (38)
‖c‖ ≤ s
‖Bf‖ ≤ uT f − rm(1 + s)(σ̄(BA†1) + µσ̄(A†1))

3) Using linearization: It is much simpler as the constraints
presented in subsection III-C are already in a form that can
be combined with a linear cost function to form a SOCP:

max
c,F

dT c

s.t. ΦF + Ψc = Γ (39)
‖ΛF‖ ≤ ΥF

4) The projection algorithm: Given that we are dealing
with convex 3-dimensional sets, a natural measure of size is
the volume. Thus we use as a stopping criterion the volume
difference between the inner and outer approximations.

To maximize the error reduction at each step, we took the
inspiration from [9] and choose the search direction to be
perpendicular to the facet of the inner approximation. We
associate to each facet of the inner approximation a convex
polyhedron called an uncertainty volume (νσ for short): it
is the set of points that are outside that facet but inside the
outer approximation. This νσ can be seen as a cut of the outer
approximation by the facet. A facet is defined by its normal
n and its offset o as

{
c ∈ R3|nT ≤ o

}
. Thus, the νσ is easily

computed if an H-rep of Pouter, (Houter, bouter) is available:

νσ(facet) =
{
c ∈ R3|c ∈ Pouter, n

T c > o
}

=
{
c ∈ R3|Houterc ≤ bouter, n

T c > o
}

(40)
= CUT(Pouter,facet)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 6

In [9], the difference between the inner and outer approxi-
mation was a disjoint union of triangles. Therefore, computing
their areas and adding and removing points and hyperplanes
was easy. Indeed, a simple list of ordered vertices is sufficient
and all operations can be performed without a dedicated
algorithm.

In our case, we need to use the double description. Indeed,
one iteration starting from the simplest volume, a tetrahedron,
does not generate a union of disjoint tetrahedrons, but an union
of intersecting prismatoids, see Figure 2.

For a given facet of the outer approximation, if we cut its νσ
with a parallel (to facet) hyperplane, there is no guarantee that
this hyperplane does not intersect another uncertainty volume.

Instead, we propose the following Algorithm 1:
• The input is the 6D contact positions and their friction

coefficients.
• We initialize Pinner, Pouter and the list ν of uncertainty

volumes, by solving eq. (39) or eq. (38). ν associates to
each facet its uncertainty volume.

• For all facets, we check if they are invalid. This can
happen in two cases: (i) the facet k was added at the
last iteration and has no νk or (ii) its νk was intersected
by the plane added at the previous iteration. In both cases
νk needs to be computed.

• We then select the direction d to be the normal to the
facet having the biggest uncertainty volume.

• Solve the SOCP eq. (39) or eq. (38).
• Resulting c∗ is added to the Pinner, and the plane normal

to this direction passing by c∗ is added to Pouter.
• Invalidate the uncertainty volumes νi that are cut by the

plane we just added.
A note on the polyhedral volume computation: computing

the volume of a set of points is equivalently difficult to finding
their convex hull. Indeed, to compute the volume of a random
set of points, it is necessary to decompose it into a set of
elementary volumes, the simplest being tetrahedrons. This is
exactly what a convex hull of a set of points does. Similarly,
finding the volume of a convex set defined by inequalities is
equivalently difficult to enumerating its vertices. The convex
hull operation is very well implemented in Qhull [4] when
taking vertices as input. But, we found that its performance
when taking inequalities as input is poor, so we used CDD [19].
However, Qhull was found to be slightly more numerically
stable, and can be used in incremental mode, which makes it
an attractive fallback. Still, numerical issues are inherent to the
double description computations, and in pathological cases we
switch to the PPL [3] that uses exact integer arithmetic and is
much faster than CDD in this setting.

5) Proof of convergence:

Lemma 2. (Pouter)
n is monotonous non-increasing.

Proof. Pn+1
outer = CUT(Pnouter, plane) thus, ∀a ∈ Pn+1

outer , a ∈
Pnouter and Pn+1

outer ⊆ Pnouter.

Lemma 3. (Pinner)
n is monotonous non-decreasing.

Proof. Pn+1
inner = CONV(Pninner, c

∗) thus, ∀a ∈ Pninner, a ∈ Pn+1
inner

and Pninner ⊆ Pn+1
inner .

Algorithm 1 Robust polyhedron computation by recursive
projection
contacts← the set of contacts
ε← the approximation difference precision
procedure ROBUST(contacts, ε)
Pinner,Pouter, ν ← INITIALIZE(contacts)
while V(Pouter)− V(Pinner) > ε do

for facet ∈ Pinner do
UVf← ν[facet]
if INVALID(UVf) then

if UVf exists then
ν[facet]← CUT(UVf,plane)

else
ν[facet]← CUT(Pouter,facet)

end if
end if
volumes[facet]← V(ν[facet])

end for
d← normal(argmax(volumes))
c∗ ← OPTIM(d)
plane← PLANE(d, c∗)
Pinner ← Pinner ∪ c∗
Pouter ← Pouter ∩ plane
INVALIDATE(ν,plane)

end while
return Pinner,Pouter

end procedure

Fig. 2. One iteration of the algorithm: the outer tetrahedron is cut by a plane
parallel to its base, forming an inner tetrahedron (transparent blue) and three
prismatoids with intersecting trapezoidal bases (thick orange, thin green, and
transparent grey)

Lemma 4. ∀n ∈ N,Pninner ⊆ P ⊆ Pnouter

Proof. ∀n ∈ N, c∗ ∈ P . We denote πn = {c|dTn c ≤ c∗n} Thus,
Pninner = CONV(c∗i |i ∈ [0 · · ·n]) ⊆ P . ∀n ∈ N, πcn ⊆ Pc. Thus
Pnouter =

⋂
0···n

πn ⊇ P .

Theorem 3. The sequences (Pouter)n and (Pinner)n converge
towards P .

Proof. By the Lemmas 2, 3 and 4, the sequences are

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 7

monotonous and bounded: they converge. Thus, we can con-
sider their limits, P∞outer and P∞inner. At this limit, we know that:
• c∗ ∈ Pinner∞
• π ∩ Pouter∞ = Pouter∞

Thus, in that direction d, V(νd) = 0. As we choose the max-
imum volume for the stepping direction, maxfacet V(ν) = 0.
Then, ∀facet,V(νk) = 0. As the difference between Pouter
and Pinner is exactly V(

⋃
νk), V(P∞outer \ P∞inner) = 0. As both

P∞inner and P∞outer are non-empty convex sets P∞inner = P∞outer.

P∞outer =

(⋃
i∈N

πcn

)c
, thus P∞outer is closed, and we have

P∞inner = P∞outer. As the sequence of c∗ is included in P , it is
bounded, and thus compact. Then, as P∞inner = CONV(c∗n|n ∈
N), P∞inner is also compact, and we get P∞inner = P∞inner = P∞outer,
which entails P∞inner = P∞outer = P by Lemma 4.

D. An intersection of prisms

The 3-dimensional shape described in Equation 38 is the
intersection of k shapes. We show that each of these shapes is
a prism, whose base can be computed as in subsection II-A.

Let us consider g̃i and the 3D vector, c0 that describes the
2D CoM position in the plane cz = 0:

c0 =

1 0 0
0 1 0
0 0 0

 c (41)

Let’s find which shape is described by the constraints:

A1f +A2(g + g̃i)c = T (g + g̃i) (42)

||Bf || ≤ uT f

Note that A2 is a function of gi = g + g̃i, and it is the only
part of the equation that affects c. We know that:

A2c =

[
0

−T (mg)c

]
= −m

[
0

g × c

]
(43)

Thus, for any c =
[
cx cy cz

]T
:

T (mg)c = m

−gzi cy + gyi cz
gzi cx − gxi cz
−gyi cx + gxi cy

 (44)

= m

 −gzi cy
gzi cx

−gyi cx + gxi cy

+m

 gyi cz
−gzxcz

0

 (45)

= T (mg)c0 +m

 gyi cz
−gxi cz

0

 (46)

Thus we can show that the solution at any altitude is the
translated of the solution at cz = 0. Indeed,

T (mg)

c0 −

gxi
gzi
cz

gyi
gzi
cz

0

 = T (mg)c0 +m

 gyi cz
−gxi cz

0

 = T (mg)c

(47)

Fig. 3. The robust static stability polyhedron as an intersection of non-right
prisms, for a residual radius 3.55m s−2

Thus, for any g̃i, the shape described by Equation 42 is an
infinite prism, whose base can be computed by finding the 2D
polyhedron described with a slightly different problem:

max
c2,f

dT c2

s.t. A1f +A2φc2 = T (g + g̃i) (48)

||Bf || ≤ uT f
Where c2 is the 2-dimensional CoM position in the plane cz =
0 and φ is a projection matrix:

φ =

[
1 0 0
0 1 0

]T
(49)

The axis of this prism is thus given by the ρi, colinear to
the gi:

ρi =
[
gxi
gzi

gyi
gzi

1
]T

=
1

gzi
gi (50)

Then, the resulting intersection of prisms can be easily
computed as follows:

1) Compute an approximation of each base using eq. (48)
and the recursive projection in subsection II-A.

2) Compute the convex hull of each prism using a fixed
height (possibly large) for the prism.

3) Compute the intersection of the prisms. It is the V-rep
of the stacked H-rep of each prism.

V. COMPARATIVE RESULTS

We tested the computation on a simple 3-contact scenario,
using an acceleration polytope G with 4 vertices. It is a
“lozenge” whose vertices are generated from adding and
removing an acceleration gm to each lateral component of
the gravity, that is gi = [±gm,±gm, g]. We use Algorithm 1
with the linearization (subsection III-C): at each step, the
problem contains 39 variables; 36 linear constraints that limit
the maximum amplitude of each force component; 13 conic

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 8

−1
0

1
−1 0

1

−1

0

1

x(m)y(m)

z
(m

)
gm = 0.55m s−2

−1
0

1
−1 0

1

−1

0

1

x(m)y(m)

z
(m

)

gm = 1.05m s−2

−1
0

1
−1 0

1

−1

0

1

x(m)y(m)

z
(m

)

gm = 1.55m s−2

Fig. 4. Comparison of different P for different acceleration polytopes G generated by gm. Only the inner approximations Pinner are rendered (in red), but
are almost superimposed with Pouter. The black dots with yellow cones represent contact points with associated friction cones.

−1
0

1
−1 0 1

−1

0

1

x(m)y(m)

z
(m

)

r = 0.05m s−2

−1
0

1
−1 0 1

−1

0

1

x(m)y(m)

z
(m

)

r = 0.125m s−2

−1
0

1
−1 0 1

−1

0

1

x(m)y(m)
z
(m

)

r = 0.3m s−2

Fig. 5. Comparison of different P for different acceleration spheres of radius r. Only the inner approximations Pinner are rendered (in red), but are almost
superimposed with Pouter. The black dots with yellow cones represent contact points with associated friction cones.

constraints that enforce friction and limit the CoM to a sphere
of unit radius.

The resulting Ps are presented in Figure 4. The obtained
Ps are not right prisms as those of the non-robust case
(displayed for reference in Figure 6); they have a diamond-like

−1
0

1

−1
0

1

−1

0

1

x(m)y(m)

z
(m

)

Fig. 6. Stability polygon in 2D (in red). The black dots with yellow cones
represent contact points with associated friction cones.

shape instead. When using the acceleration sphere developed
in subsection III-B, the polyhedron shrinks faster, see Figure 5.
Indeed, the constraint eq. (28) is isotropic: only the norm of c
intervenes. Hence, as the residual radius increases, the polyhe-
dron shrinks in all directions at the same rate. Because eq. (28)
uses maximum singular values, this shrinking rate is high. This

shows that eq. (28) is far from being tight, and should only
be used when fast computation is paramount.

0.10

0.136
0.213

0.616 0.165

Init
Volume
dd
socp

invalidate

Fig. 7. Computation times for 3 contacts, polytope with 4 vertices and 3
point contacts. 50 iterations, total time 1.29s (clock time, without interpreter
set-up and teardown). Final error: 0.043m3.

The Algorithm 1 converges in around 1 s to an acceptable
precision of 0.043 m3 (1, 02%), see Figure 7. The computation
time can be split in two halves: (i) solving the optimization
problems, and (ii) other operations. This proves that it is very
important to limit the number of the double-description oper-
ations, that we do in the invalidation function in Algorithm 1.

What is not apparent in Figure 7 is that the computation
time increases with the number of iterations. Indeed, as the

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 9

algorithm progresses, more volumes have to be compared and
potentially recomputed to find the best direction.

To assess the convergence characteristics of our algorithm,
we devised a worst-case scenario: P would be a sphere (we
took 6 contacts, one per each axis plus a limitation on the CoM
or the contact forces). The results in Figure 8 show that the
convergence is almost linear in the number of iterations. This
does not compare to the nice quadratic result of [9], which is
expected because our problem is 3D and not 2D.

100 101 102 103

10−2

10−1

100

n

ε
(m

3
)

ε

y = 14
7+(0.7x)1.1

Fig. 8. Precision reached as a function of the number of iterations while
approximating a sphere.

It is faster to compute P using the prism intersection method
(subsection IV-D). First, at each iteration we solve k SOCP,
each of which is approximately O(n3) in the number of
variables; whereas in Algorithm 1, we solve at each iteration a
single problem whose size grows with k and has a complexity
of about O((nk)3). Second, we need O(1

ε) iterations to reach
the desired precision ε in Algorithm 1, while only O(1√

ε
)

is need using the prism intersection method. Last, with the
prism intersection method, we do not need to keep track of
the uncertainty volumes ν. In practice, it takes about 0.83 s to
compute the same example as Figure 7 with a similar precision
using the prism intersection method; in this case, most of the
time is spent solving optimization problems. The intersection
computation is not significant. Another advantage in using
prisms is its robustness to numerical errors. In the other hand,
it is not possible to target exactly a desired precision ε. Indeed,
we do not know how large the intersection of prisms will be
before computing it.

VI. INCREMENTAL PROJECTION FOR TESTING

A. Why incremental projection?

Testing if a particular point ct is statically stable, can be
done by solving the SOCP derived from Equation 1 as follows:

max
f

1

s.t. A1f = T (g)−A2ct (51)

‖Bf‖ ≤ uT f

Hence, we would need to solve as many SOCP as there are
CoM to be tested. To circumvent this, one can leverage the fact
that a CoM position is in (resp. robust) static equilibrium iff it
is inside the (resp. robust) static polygon (resp. polyhedron).
To do so, a TEST-SAMPLE routine was introduced in [9] for
the static case. Their idea is to test if points are inside/outside
of the static stability polygone, or fall in-between the inner and
outer approximation. In that latter case, it is necessary to refine
the approximations until the position of ct is determined.

The difference between TEST-SAMPLE and the polygon
computation in subsection II-A is only in the choice of the
search direction: the point being tested is outside one (and
only one) of the facets of the inner approximation. Hence, the
search direction is chosen perpendicular to that facet.

By doing so, all the points are tested by two matrix
multiplications. The result of the latter operation can tell us if
points are in or out the stability polygon, otherwise they reside
in-between and need refinement. This leads to an interesting
observation: we can start with a very rough approximation of
the stability polygon and refine it with the tests as needed.

We present how to adapt this methodology to ct ∈ P .

B. Polyhedral case

We need to update Algorithm 1 for testing. In 3D, testing
ct ∈ P can also be done by two matrix multiplications.
However, when we need to update the approximations, ct
may lie outside of multiple facets of the Pinner. Randomly
selecting a facet gives us a direction. Hence, we get rid of
a the bookkeepings related to maintaining a map of the facets
to their corresponding uncertainty volumes ν.

Alternatively, the direction can be selected to be perpen-
dicular to the facet of Pinner forming the greatest uncertainty
volume ν containing ct. This however does not present any
significant reduction in the number of iterations (i.e. the
number of optimization problems being solved), but adds
overheads due to the volume computations.

We thus choose a random selection for its efficiency.

C. Prism case

To test a point while using the prisms intersection method
in subsection IV-D, we apply Algorithm 2, derived from Algo-
rithm 1. It takes as input a set of polygons, {pi} that contain
an inner and outer approximation. Each of these polygons uses
a different g̃i and is computed using Equation 48.

For every operation, we do not compute the intersection of
prisms; we only store the polygons that form their bases.

To test if a point is inside or outside one of the prisms, we
compute its oblic projection along the prism axis, ρi, on the
plane cz = 0. We denote ψ the projection operator:

c2 = φ(ct − ρiczt) = φct −
czt

g + g̃zi

[
g̃xi
g̃yi

]
, ψ(g̃i)ct (52)

φ is defined in Equation 49.
Then we check if c2 is inside every polygon, or outside

any polygon. If it is neither inside nor outside, we refine
the appropriate polygons until c2 is determined. If it can not,

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 10

within a predefined iterations maxIter, we reject it. In fact
maxIter is reached only when a point is exactly on the
boundary. Alternatively, the area of the current triangle can be
used as a stopping criteria whenever it becomes very small.

Algorithm 2 Algorithm to test a sample while iteratively
improving the underlying polygons

procedure TEST-PRISMS({pi} , {g̃i} , ct,maxIter)
nrIter← 0
while nrIter ≤ maxIter do

if ct ∈ ∩
{
pinner
i

}
then

return true, {pi}
else if ct /∈ ∪{pouter

i } then
return false, {pi}

else
for pi, g̃i ∈ ({pi} , {g̃i}) do

c2 ← ψ(g̃i)ct
if c2 ∈ pouter

i and c2 /∈ pinner
i then

pi ← TEST-SAMPLE(pi, c2)
end if

end for
end if
nrIter + +

end while
return false, {pi}

end procedure

D. Results

We use the examples defined in section V for testing
one million uniformly sampled random points in a box of
dimensions 1 m× 1 m× 3 m. We used the incremental version
of Algorithm 1 presented in subsection VI-B. The results are
illustrated in Figure 9. Note that as the number of query points
increases, the number of the iterations –to determinate whether
they are robustly stable or not– increases but at a sub-linear
rate. The horizontal lines represent the number of iterations
necessary to reach a certain precision ε using Algorithm 1.

For testing, it is faster to use the polyhedral version rather
than the prism intersection one. Indeed, when testing many
samples, the performance bottleneck is no longer the number
of iterations, but rather the time necessary to test a sample.
In the polyhedral case, two matrix multiplications at most are
necessary to test a point, while in the prism intersection, at
most 2k multiplications are necessary. Moreover, to test a point
in the prism intersection, it is necessary to refine all polygons
in which the projected point lands between the inner and outer
approximation until it is outside of at least one of them or all
of them contain it.

On a mono-core, Python implementation, it takes about
40 s to test one million points, but this could of course be
greatly improved using parallelization. Parallel computing is
impractical to build P in Algorithm 1 because each iteration
will modify the approximations, but in the testing case, most
samples can be tested independently.

100 101 102 103 104 105 106

100

101

102

103

ε = 2.5e−1

ε = 2.5e−2

ε = 2.5e−3

ε = 2.5e−4

Number of query points

N
um

be
r

of
ite

ra
tio

ns

Fig. 9. Number of iterations required to test random points compared to
computing directly

VII. EXTENSIONS AND DISCUSSIONS

A. Morphing and change in robustness

We know how to compute P corresponding to a given G,
which allows us to known which CoM positions are robust
w.r.t this acceleration polytope.

Now, having (G0,P0) and (G1,P1), can we compute Pλ
from Gλ = λ0G0 + (1− λ)G1, λ ∈ [0, 1]?

Both P0, P1 are the projection of a high-dimensional convex
shapes that lives in the manifold of the contact forces and the
CoM position. Thus, deforming G induces non-linear changes
that are projected in the 3-dimensional space.

We propose to use interpolation (linear morphing) be-
tween convex polyhedrons to approximate changes in the
acceleration polytope Gλ. Hence, we consider scaling of the
acceleration polyhedron, i.e. changes in the residual radius
r but not in the linearization. To compute Pλ, we use the
morphing algorithm presented in [28]. Although the latter
presents strategies to morph non-convex polyhedrons, at its
core the algorithm is a 5-step process to find a common
topology of two convex polyhedrons:

1) Get two polyhedrons (vertices and associated topology)
and translate them to barycentric coordinates. Project
them on the unit sphere.

2) Using neighbouring information to limit the search
space, find every intersection of all spherical edges of
the projections.

3) Order the intersections according to topological infor-
mation and find in which facet of one polyhedron lie
the vertices of the other.

4) For each vertex on the unit sphere, use barycentric co-
ordinates to find its position on the original polyhedron.

5) Output the combined topology.
Then, we obtain intermediate polyhedrons by linearly interpo-
lating between matching topologies. The Figure 10 shows an
example of the results obtained by this algorithm.

We also compare the volumes obtained in Figure 4 with
those resulting from the morphing. To compare the volumes,

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 11

−0.5
0

−0.2 0
0.2

−1

0

1

x(m)y(m)

z
(m

)
λ = 0.2

−0.5
0

−0.2 0
0.2

−1

0

1

x(m)y(m)

z
(m

)

λ = 0.5

−0.5
0

−0.2 0
0.2

−1

0

1

x(m)y(m)

z
(m

)

λ = 0.8

Fig. 10. Morphing between two different robust static stability polyhedrons.

we select an interval [rl, ru] and a number of percentages
λ. For each point we compute the exact polyhedron Pe
corresponding to the discretization of the robust sphere of
radius r = (1−λ)rl +λru and the interpolated polyhedron at
λ, Pλ. We can then compute an error metric, δ, such that:

δ =
V(Pe) + V(Pλ)− 2V(Pe ∩ Pλ)

V(Pe) + V(Pλ)
(53)

This metric is the volume of the symmetric difference
Pe 	 Pλ normalized by the sum of volumes. We show
in Figure 11 how δ evolves as a function of r, given different
interpolation keypoints. The key main result is that morphing
is a good fit (less than 12 %) error as long as the distance
ru − rl between keypoints is less than 2 m s−2. In this case,
the problem becomes infeasible above r = 4.0 m s−2 meaning
that computing 3 keypoints is enough to cover the whole
acceptable range of residual radiuses. However, a drawback
of this morphing is that the obtained polyhedron is bigger
than the actual one, which may lead to false positives when
testing for robust stability.

B. Robust 2D and robust 3D

We present a serious limitation of the 2-dimensional ro-
bust approaches [36], [39]: the robust static region is a 3-
dimensional polyhedron, but they consider a 2-dimensional
region, and then extend it to a right prism. We show that this
approximation is a poor fit of the real volume, that only gets
worse as the residual radius increases.

In order to compare our method to 2-dimensional ap-
proaches, we compare the volumetric computation to right
(vertical) prisms whose bases are polygons. The right prism
will have the same height as the diameter of the limiting sphere
we use to bound the CoM accessible region section V.

We first ensure that the volume that we compute is always
included in the prism formed by the non-robust static stability
polygon. We then compute a “robust static stability polygon”
at height h, i.e. the recursive projection defined by:

ΦF + Ψ
(
φc2 +

[
0 0 h

]T)
= Γ (54)

||ΛF || ≤ ΥF (55)

where c2 is a 2D vector, φ is defined in Equation 49.

0

0.2

0.4

0.6

Vo
lu

m
e
m

3

Real
One
Two

Three

0.5 1 1.5 2 2.5 3 3.5

0

0.05

0.1

0.15

0.2

r (robust radius) ms−2

δ
(N

or
m

al
iz

ed
er

ro
r)

Fig. 11. Comparison of morphing with direct computation for different
keypoints.

We use our previous examples, for 20 residual radiuses
linearly spaced in the interval [0.55, 3.55], and for five different
heights we compute both forms (right prism and P). We
then compute the error metric δ between the right prism
and the 3D volume at each residual radius. We ensure that

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 12

both computations lead to the same result by comparing the
intersection of P and the plane cz = h with the robust
static stability polygon (2D). We use the same error metric
in eq. (53), replacing the volume with the area. An example
of the objects being compared is in Figure 12 while results are
shown in Figure 13. The area error remains low (less than 3 %)
at any margin while the volume error shoots towards 100 %.

This means that using a 2D approach is equivalent to
approximating the 3D polyhedron by a prism formed by its
section at some constant height cz = h. This leads to a poor
approximation of the real volume because it is not similar to
a prism, and this similarity only diminishes with the increase
in the stability margin. Note that at any margin the robust 3D
polyhedron is not included in the prism formed by the “robust
polygon” so the “robust prism” is neither a conservative nor
optimistic approximation.

−0.2
0

−0.4
−0.2

0
0.2

0.4

−1

0

1

x(m) y(m)

z
(m

)

Prism

Real

Static

Fig. 12. Comparison between: the statically stable prism in light blue, the
robust static polyhedron with a G generated using gm = 2.6m s−2 in red
and the prism formed by the robust polygon at the same margin and height
0.1m in dark blue. Note that the scale is non-uniform across axes.

C. Recent work

Our approach is in a way the dual of the that shown
in [12]: instead of limiting the CoM positions to a known
convex polytope and finding the envelope of acceptable CoM
accelerations, we propose to limit the CoM acceleration and
find all acceptable CoM positions.

It is also more general than what is presented in [39]: they
only consider errors on the contact forces without considering
that the resulting acceleration could change.

Very recent works, developed in parallel to our approach
have pointed at ways to compute the proposed region: [35]
showed that when the CoM acceleration is not null, the
CoM accessible region, nicknamed CFR was a slanted prism,
while [15] has shown how to use a polyhedral or ellipsoidal
region, but this time to limit the CoM position.

0.5 1 1.5 2 2.5 3 3.5

0

0.2

0.4

0.6

0.8

Margin ms−2

E
rr

or
δ

h = −0.2 h = −0.1 h = 0.0
h = 0.1 h = 0.2

Fig. 13. Compare 2D robust and 3D robust at different heights (in meters).
Dashed lines represent volumes error, while solid lines represent areas error.

VIII. CASE STUDY IN MULTI-CONTACT POSTURE
GENERATION

A. Posture generation

We use the posture generation framework (PG) developed
in [10], [11] and add an extra constraint to maintain the CoM
in the robust static stability polyhedron. The core of the PG is
to solve a non-linear optimization problem in the generalized
robot coordinates q, and the contact forces f . We can thus add
our constraint by specifying:

Hc(q) ≤ b (56)

Where H and b represent the H-rep of the robust static
polyhedron. Other constraints encode:

• Contacts fixed to pre-defined locations;
• Forces in friction cones;
• Both torque and position limits for every joint;
• Self-collision constraints.

The objective function is the distance to a usual posture.
It is also possible to extend the state of the posture generator

to (q, F) and directly encode the robust stability by specifying
that for every fi ∈ F :

A1(q)fi +A2(g̃i)c(q) = T (g̃i) (57)

This is beneficial for the contact positions to depend on q and
thus be automatically determined. However, dimensionality re-
mains a problem in non-linear programming, and extending the
state increases drastically the computation times. Therefore,
we only only consider the effects of adding a constraint of the
form eq. (56).

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 13

S R S R S R

Fig. 14. Results obtained using posture generation. From left to right, both feet, feet and right forearm, left foot and right forearm, each pair is first non-robust,
labelled S, then robust, labelled R.

B. Results

We generated three random contact positions: one for each
foot and one for the right arm. Then we computed three pairs
of postures using:
• Both feet;
• Both feet and the arm;
• The left foot and the arm.

In each pair, the first posture is generated using the static
stability constraint while the second one is generated using
the same problem plus a constraint of the form eq. (56). The
results are shown in Figure 14. They qualitatively highlight
a problem with the regular static stability: the solver has
a tendency to stop on the edge of the constraint which
is an unstable equilibrium position. The postures generated
with the robust static stability look more resilient to external
perturbations.

IX. CONCLUSION

In this paper, we have thoroughly explored the notion of
robust static stability polyhedron: its nature and properties,
how to compute it and how to use it for testing robust
static equilibrium. We have also shown how to approximate
variations in the residual radius with polyhedral morphing.

An interesting property is that it is no longer a right
prism: approximating this shape by simply shrinking the static
stability polygon is not correct as the height of the CoM now
plays a role.

However, a lot of work remains in perspective. We first
have to integrate this computation in our planning and control
frameworks. We believe that adding the notion of robustness
margins will greatly increase the quality of planning and will
make our control more resilient to external perturbations. In
both cases the location of the contacts will vary by small
increments: it would be paramount to find a way to recompute,
in a few milliseconds, a new polyhedron based on the contact
displacement.

In general, the computation times needs to be improved
and it would be interesting to better exploit the particular
characteristics of the problem to compute it faster. Indeed,
the high-dimensional polyhedron whose projection we com-
pute is a cartesian product of cones cut by a 6-dimensional
hyperplane, but we only leverage the fact that it is a convex

shape. Similarly, it could prove highly beneficial to parallelize
some parts of our algorithm, most notably during sampling.

Finally, we have shown how to perform iterative sampling,
but this opens a new venue of research: we can choose the
search direction according to the problem rather than always
choosing the optimal direction. This would allow us to only
refine (or even only compute) the parts of the robust stability
polyhedron that are relevant to the problem being solved.

REFERENCES

[1] H. Audren, A. Kheddar, and P. Gergondet. Stability polygons reshaping
and morphing for smooth multi-contact transitions and force control of
humanoid robots. In IEEE-RAS International Conference on Humanoid
Robots, pages 1037–1044, Cancun, Mexico, Nov. 2016.

[2] H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and
E. Yoshida. Model preview control in multi-contact motion– applica-
tion to a humanoid robot. In IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4030–4035, 2014.

[3] R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer
Programming, 72(1–2):3–21, 2008.

[4] C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software,
22(4):469–483, 1996.

[5] S. Barthélemy and P. Bidaud. Stability measure of postural dynamic
equilibrium based on residual radius. Advances in Robot Kinematics:
Analysis and Design, pages 399–407, 2008.

[6] M. W. Bern, D. Eppstein, L. J. Guibas, J. Hershberger, S. Suri, and
J. Wolter. The centroid of points with approximate weights. In Proc.
ESA, volume 979, pages 460–472, 1995.

[7] K. Bouyarmane and A. Kheddar. Humanoid Robot Locomotion and
Manipulation Step Planning. Advanced Robotics, 26(10):1099–1126,
2012.

[8] D. Bremner, K. Fukuda, and A. Marzetta. Incremental Convex Hull
Algorithms Are Not Output Sensitive. Discrete & Computational
Geometry, 21(1):57–68, 1999.

[9] T. Bretl and S. Lall. Testing static equilibrium for legged robots. IEEE
Transactions on Robotics, 24(4):794–807, 2008.

[10] S. Brossette, A. Escande, G. Duchemin, B. Chretien, and A. Kheddar.
Humanoid posture generation on non-euclidean manifolds. In IEEE-RAS
15th International Conference on Humanoid Robots, pages 352–358,
Nov 2015.

[11] S. Brossette, A. Escande, and A. Kheddar. Multi-Contact Postures
Computation on Manifolds. IEEE Transactions on Robotics, Submitted,
under review, December 2016.

[12] S. Caron and A. Kheddar. Multi-contact walking pattern generation
based on model preview control of 3d com accelerations. In IEEE-RAS
International Conference on Humanoid Robots, pages 550–557, Cancun,
Mexico, November 2016.

[13] S. Caron, Q.-c. Pham, and Y. Nakamura. Leveraging Cone Double
Description for Multi-contact Stability of Humanoids with Applications
to Statics and Dynamics. In Robotics: Science and Systems, 2015.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 201X 14

[14] S. Caron, Q.-C. Pham, and Y. Nakamura. Zmp support areas for multi-
contact mobility under frictional constraints. IEEE Transactions on
Robotics, 2017.

[15] H. Dai and R. Tedrake. Planning robust walking motion on uneven
terrain via convex optimization. In IEEE-RAS International Conference
on Humanoid Robots, pages 579–586, Cancun, Mexico, 2016.

[16] A. Escande, A. Kheddar, and S. Miossec. Planning contact points for
humanoid robots. Robotics and Autonomous Systems, 61(5):428–442,
2013.

[17] R. Featherstone. Rigid Body Dynamics Algorithms. Springer US, Boston,
MA, 2008.

[18] J. Fourier. Solution d’une question particulière du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomathique de Paris,
pages 317–319, 1826.

[19] K. Fukuda and A. Prodon. Double description method revisited, 1996.
[20] E. Garcia, J. Estremera, and P. G. de Santos. A comparative study

of stability margins for walking machines. Robotica, 20(06):595–606,
2002.

[21] A. Goswami. Postural stability of biped robots and the foot-rotation
indicator (fri) point. The International Journal of Robotics Research,
18(6):523–533, 1999.

[22] M. Henk, J. Richter-Gebert, and G. M. Ziegler. Basic properties
of convex polytopes. In Handbook of Discrete and Computational
Geometry, pages 243–270. CRC Press, Boca, 1997.

[23] H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa. A universal stability criterion of the foot
contact of legged robots - Adios ZMP. IEEE International Conference
on Robotics and Automation, pages 1976–1983, June 2006.

[24] S.-H. Hyon and G. Cheng. Disturbance rejection for biped humanoids.
In IEEE International Conference on Robotics and Automation, pages
2668–2675, April 2007.

[25] M. Joswig and N. Takayama, editors. Algebra, Geometry and Software
Systems, chapter Beneath-and-Beyond Revisited, pages 1–21. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

[26] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In IEEE International Conference on
Robotics and Automation, volume 2, pages 1620–1626, 2003.

[27] J. E. J. Kelley. The Cutting-Plane Method For Solving Convex programs.
Journal of the Society for Industrial and Applied Mathematics, 8(4):703–
712, 1960.

[28] J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation
for polyhedral objects. In ACM Transactions on Computer Graphics
(SIGGRAPH), pages 47–54, New York, NY, USA, 1992. ACM.

[29] R. Mattikalli, D. Baraff, and P. Khosla. Finding All Stable Orientations
of Assemblies with Friction. IEEE Transactions on Robotics and
Automation, 12(2):290–301, 1996.

[30] R. McGhee and A. Frank. On the stability properties of quadruped
creeping gaits. Mathematical Biosciences, 3:331–351, 1968.

[31] H. Minkowski. Allgemeine lehrsätze über die convexen polyeder.
Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen,
Mathematisch-Physikalische Klasse, pages 198–219, 1897.

[32] H. Mosemann, F. Röhrdanz, and F. M. Wahl. Stability analysis of
assemblies considering friction. IEEE Transactions on Robotics and
Automation, 13(6):805–813, 1997.

[33] T. Motzkin. Beitrage zur theorie der Linearen Ungleichungen. PhD
thesis, Universität Basel, 1936.

[34] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and D. Pucci.
iCub whole-body control through force regulation on rigid non-coplanar
contacts. Frontiers in Robotics and AI, 2(March):1–18, 2015.

[35] S. Nozawa, M. Kanazawa, Y. Kakiuchi, K. Okada, T. Yoshiike, and
M. Inaba. Three-dimensional Humanoid Motion Planning Using COM
Feasible Region and its Application to Ladder Climbing Tasks. In
IEEE-RAS International Conference on Humanoid Robots, pages 49–
56, Cancun, Mexico, 2016.

[36] Y. Or and E. Rimon. Computation and Graphical Characterization of Ro-
bust Multiple-Contact Postures in Two-Dimensional Gravitational Envi-
ronments. The International Journal of Robotics Research, 25(11):1071–
1086, 2006.

[37] Y. Or and E. Rimon. Characterization of Frictional Multi-Legged
Equilibrium Postures on Uneven Terrains. The International Journal
of Robotics Research, submitted, 2016.

[38] D. E. Orin, A. Goswami, and S. H. Lee. Centroidal dynamics of a
humanoid robot. Autonomous Robots, 35(2-3):161–176, 2013.

[39] A. D. Prete, S. Tonneau, and N. Mansard. Fast Algorithms to Test
Robust Static Equilibrium for Legged Robots. In IEEE International
Conference on Robotics and Automation, 2016.

[40] T. Saida, Y. Yokokohji, and T. Yoshikawa. FSW (feasible solution of
wrench) for multi-legged robots. IEEE International Conference on
Robotics and Automation, pages 3815–3820, 2003.

[41] P. Sardain and G. Bessonnet. Forces acting on a biped robot. center of
pressure-zero moment point. IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 34(5):630–637, Sept 2004.

[42] L. Sentis, J. Park, and O. Khatib. Compliant control of multicontact
and center-of-mass behaviors in humanoid robots. IEEE Transactions
on Robotics, 26(3):483–501, jun 2010.

[43] M. Vukobratović and B. Borovac. Zero-Moment Point — Thirty
Five Years of Its Life. International Journal of Humanoid Robotics,
01(01):157–173, 2004.

[44] P. M. Wensing, G. Bin Hammam, B. Dariush, and D. E. Orin. Optimiz-
ing Foot Centers of Pressure Through Force Distribution in a Humanoid
Robot. International Journal of Humanoid Robotics, 10(03):1350027,
2013.

[45] H. Weyl. Elementare theorie der konvexen polyeder. Commentarii
Mathematici Helvetici, 7:290–306, 1934.

Hervé Audren received the MS degree in sci-
ence and executive engineering from École des
Mines de Paris, France, in 2013. He is currently
working toward the PhD Degree in Robotics with
the CNRS-UM Laboratory of Informatics, Robotics,
and Microelectronics, Montpellier, France (LIRMM)
and the CNRS-AIST Joint Robotics Laboratory,
Tsukuba, Japan (JRL). His research interests encom-
pass whole-body motion and planning, numerical
optimization and human-robot interaction.

Abderrahmane Kheddar received the BSCS de-
gree from the Institut National d’Informatique (ESI),
Algiers, the MSc and PhD degrees in robotics, both
from the University of Pierre and Marie Curie, Paris
6. He is presently Directeur de Recherche at the
CNRS. He is the Codirector of the CNRS-AIST Joint
Robotic Laboratory (JRL), UMI3218/RL, Tsukuba,
Japan; and leader of the Interactive Digital Humans
(IDH) team at CNRS-UM2 LIRMM at Montpel-
lier, France. His research interests include humanoid
robotics, haptics, and recently thought-based control

using brain machine interfaces. He is a founding member of the IEEE/RAS
chapter on haptics (acting also as a senior advisor), the co-chair and co-
founding member of the IEEE/RAS Technical committee on model-based
optimization, and a member of the steering committee of the IEEE Brain
Initiative. He is presently Editor of the IEEE Transactions on Robotics, the
Journal of Intelligent and Robotic Systems, and Frontiers in Bionics; he is
a founding member of the IEEE Transactions on Haptics and served in its
editorial board during three years (2007-2010), he also served as associate
editor in the MIT Press Presence journal. He is a member of the National
Academy of Technologies of France (NATF), knight in the National Order of
Merit, and a Senior Member of the IEEE Society.

	Introduction
	Computation of the static stability polygon
	Recursive projection algorithm
	Problems associated with bilateral contacts

	Robust static stability
	Problem formulation
	Formulating a stricter constraint
	Discretizing the hypersphere

	Computing the robust polyhedron
	Double description
	Direct projection
	Recursive projection
	Principle
	Using bounds
	Using linearization
	The projection algorithm
	Proof of convergence

	An intersection of prisms

	Comparative results
	Incremental projection for testing
	Why incremental projection?
	Polyhedral case
	Prism case
	Results

	Extensions and discussions
	Morphing and change in robustness
	Robust 2D and robust 3D
	Recent work

	Case study in multi-contact posture generation
	Posture generation
	Results

	Conclusion
	References
	Biographies
	Hervé Audren
	Abderrahmane Kheddar

