IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

3D robust stability polyhedron in multi-contact

Hervé Audren and Abderrahmane Kheddar

Abstract—We propose algorithms to compute the 3D robust
stability region in multi-contact. It is well known that the stability
region is a product of convex cones and hence is a convex
polyhedron. Our stability region extends existing recursive 2D
static stability approaches to 3D by accounting for possible center
of mass accelerations. We provide algorithms that construct the
region of robust stability in a systematic way. We compare our
algorithms and discuss possible computation of intermediary
shapes using morphing. Finally, we provide an example of usage
in generating robust static postures that can serve the purpose
of multi-contact planning.

Index Terms—Multi-contact, 3D Robust Static Stability.

I. INTRODUCTION

EGGED robots have been substantially improved in the

last years in terms of hardware and control. For legged
robots, holding stable postures in multi-contact is critical to
avoid falling under perturbations. Thus a criteria is necessary
to enforce the stability of the equilibrium for a given contact
stance/configuration. Ideally, this criteria would take the form
of a convex function to be used in fast optimization programs.
This function also depends on the bounded set of perturbations
that is considered a priori: if the criteria is true, any perturba-
tion within that set can be sustained. In that sense, our criteria
will be robust w.r.t this set of perturbations.

The stability criteria are tightly linked to the dynamic
equations that are known to be non-linear [19]. They establish
a relation between joint torques, accelerations and contact
forces through inertial parameters. Even when the whole-body
dynamics is simplified to its center-of-mass (CoM) [41]], [3l,
the angular momentum of the body is a cross-product between
the contact forces and the CoM position; an operation that is
neither linear nor convex.

Our idea is to compute a hull P for the CoM noted c,
such that V ¢ € P, the stability is guaranteed to be robust
w.r.t. a given convex set G of CoM accelerations ¢, ¢ € G.
In fact, V ¢ € P, there exist a set of contact forces that can
generate any acceleration in G. In other words, we compute

Manuscript received February XX, 2017; revised Xxxxx XX, 20XX;
accepted Xxxxxx XX, 20XX. Date of publication Xxxxxxxx X, 20XX; date
of current version Xxxxxxxxx X, 20XX. This paper was recommended for
publication by Associate Editor X. Xxxxxxxx and Editor A. Billard upon
evaluation of the reviewers comments.

This work was partially supported by the EU H2020 COMANOID project
and and the JSPS Kakenhi B No. 16H02886.

H. Audren and A. Kheddar are with the CNRS-AIST Joint Robotics
Laboratory (JRL), UMI3218/RL, Japan and CNRS-University of Montpellier
LIRMM Interactive Digital Humans group, France.

This paper has supplementary video downloadable material available at
http://ieeexplore.ieee.org.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 00.0000/TRO.201X.0000000

the intersection of G with the set of all possible motions. We
show that this intersection results in a convex volume that we
project in the CoM space. Hence, by defining G, the CoM
acceleration and its position are decoupled.

Fig. 1. Illustration of the problem annotated with the variables. We propose
algorithms to compute the robust static stability P for the CoM ¢, knowing
the space G of admissible CoM’s accelerations ¢. The forces are all noted f,
the set to which they belong. Contact surfaces are represented by green disks
with the contact points and their normals, represented by the blue friction
cones. p is the static stability polygon as computed in [T1].

In previous work, some restrictions have been set to obtain
such a decoupling. One of the most stringent is to set the CoM
acceleration to zero (¢ = 0), resulting in the static stability
criterion [33]]. Static stability (i.e. equilibrium) is used most
notably in multi-contact posture generation [18], [9]], [13].

Static stability can be a function of the gravity orientation.
Indeed [32]], [33] present a way to find all the gravity orienta-
tions (equivalently, all orientations of the assembly base) that
satisfy static stability of assemblies: as it is a convex region
defined by inequalities. They apply early vertex enumeration
techniques —that we also use, to compute the acceptable
region. Yet, the objects were fixed and not actuated.

The best known approach considers a virtual point that
accounts for both the CoM position and its acceleration: the
zero moment point (ZMP). The original ZMP criterion [46]
is the extension of the convex hull criterion and has been
widely used in biped locomotion on flat ground assuming high

0000-0000/00$00.00 © 201X IEEE

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

friction, e.g. [29]. The ZMP is better defined in [23], and its
similarities to the Center of Pressure (CoP) highlighted in [44]].
The CoP is the local version of the ZMP criterion which
allows it to be used in multi-contact but entails controlling
independently the CoP at each contact area. Yet, the CoP is
not defined when the normal force applied on the contact is
nil, and is not easily extensible to bilateral contacts. Even
with these drawbacks, CoPs was successfully applied in multi-
contact control schemes such as in [43]], [27], [47], [37] when
combined with a CoM regulation policy for stabilization.

There is another multi-contact criteria: the resultant wrench
of the contact forces must remain in a polyhedral convex
cone. Pioneered by [43], it formed the basis of the work
in [26] ostensibly titled “Adios ZMP”. It is applicable to
multi-contact motion while remaining linear and global. This
criterion is more clearly and properly established and applied
to multi-contact motion in [[15], [16]]. In the latter works, a new
ZMP-like criterion (a pseudo-ZMP) that has to remain in the
two-dimensional projection of the convex polyhedral wrench
cone is proposed. It is applicable to multi-contact motion and
takes into account friction. Note that, similarly to the ZMP
and the CoP, the pseudo-ZMP support area depends on the
instantaneous CoM position. Instead, our approach imposes
constraints on the resultant acceleration and finds a linear,
global corresponding constraint on the CoM. It is an extension
of our previous work in [2]: instead of computing regular static
stability regions, we add explicit stability margins.

Computing wrench cones relies on the double description
method [21] to perform projections. We observed that when
the number of contacts increases slightly, the computation
time increases drastically. Alternatively, incremental projec-
tion [30], computes an arbitrary close polyhedral approxima-
tion of convex projections without the need of having the full-
dimensional polytope. As the static support area is a convex
shape, this technique is fast and can be used in stability
checks [11] and in multi-contact control [2]]. Moreover, this
technique does not require friction cones discretization. A very
recent approach [40] suggests a quasi-analytic formulation
of this region but it cannot handle arbitrary arrangements of
contacts, and requires friction cones discretization in practice.

Constraining the CoM to remain in p is a global, CoM
based, and linear criterion. Unfortunately, static stability (equi-
librium) criterion does not imply dynamic stability [22]], [2].
Indeed tracking a statically stable trajectory with changes
in acceleration may induce falling. Thus, static stability is
marginal, i.e. not robust to changes in the total acceleration.

We propose algorithms to compute a robust stability region
‘P for a given G. Our approach has commonalities with [6],
devised to check the robustness of a known trajectory and used
linearized friction cones. [15] noted that such a region exists,
but it was only sampled. In [39] a vertical cross-section of this
region was computed using a line-sweep algorithm, not unlike
that of [7] but of course not directly transposable to 3D.

Our approach is in a way the dual of the that shown
in [14]: instead of limiting the CoM positions to a known
convex polytope and finding the envelope of acceptable CoM
accelerations, we propose to limit the CoM acceleration and
find all acceptable CoM positions.

It is also more general than what is presented in [42]: the
authors only consider errors on the contact forces without
considering that the resulting acceleration could change.

Very recent works, developed in parallel to our approach
have pointed at ways to compute the proposed region: [38]]
showed that when the CoM acceleration is not null, the
CoM accessible region, nicknamed CFR, was a slanted prism,
while [[17] has shown how to use a polyhedral or ellipsoidal
region, but this time to limit the CoM position.

We thus show the following:

e P is a three dimensional convex shape (section III));

« It can be efficiently approximated by convex polyhedrons
(section V). Also, if G is limited to a convex polytope, it
is the intersection of non-right prisms;

o Our construction algorithm can be modified to efficiently

test the equilibrium of many points (section VII);

o Changes in acceleration can be well approximated by

morphing polyhedrons (section VIII);

o We exemplify our stability criteria with a robust posture
generation problem (section IX).
Now, we recall the recursive projection algorithm [[L1]] that
computes the static stability polygon p, represented in Fig.
this is because our work follows a similar methodology.

II. COMPUTATION OF THE STATIC STABILITY POLYGON
A. Recursive projection algorithm

The algorithm in [[11] consists in building an inner and outer
approximation of the true polygon, p, by solving a sequence
of second-order cone programs:

max d"c
s.t. Arf + A2(g9)e=T(g) (1)
IBfII < u()" f

where (see also Fig. [I| and appendix [A),

o f is the set of contact forces;

o c is the CoM position;

o d is the given search direction;

e A; is the contact matrix that sums all forces and mo-

ments;

o A represents the gravity wrench at position c;

e B is the friction cone matrix;

e u is the matrix representing the contact normals and the

friction coefficient u;
o T is the gravity wrench in function of the gravity g and
the robot mass m;

e ||| is the euclidian norm.

The solution c¢* is an extremal CoM position in the direction
d, and is thus added to the inner approximation. Conversely,
the half-plane defined by {c € R?|dTc > ch*} only contains
infeasible points, and its complementary is a facet of the
outer approximation. All points within the inner approximation
are thus stable, those outside of the outer approximation are
unstable, whereas the stability is undetermined for the points
in-between the inner and outer approximations.

The difficulty of this class of algorithms is the choice of the
search direction d. In statics, the undetermined region between

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

the inner and outer approximation is entirely composed of tri-
angles. The next search direction is chosen to be perpendicular
to the edge of the inner approximation that belongs to the
triangle of maximum area and pointing outwards.

B. Problems associated with bilateral contacts

If we have opposite normals, there is no boundary on the
forces applied along the pair of contacts line, and the problem
is infeasible. Thus we limit the search region [2]:

e A bounding sphere on the CoM position: we add a
cone constraint ||¢|| < ¢pax, Which can be set from the
kinematics limits of the robot;

« A limit on the forces: for each force, no single component
should be greater (in absolute value) than the weight of
the robot. As this is much of a heuristic, we rather set
a limit on the actuator torque generated by the forces at
each contact point.

For the sake of conciseness, we do not explicitly write those
extra convex constraints in what follows. However, they are
always present to act as safeguards in the implementations.

III. ROBUST STATIC STABILITY

The previously generated shape p gathers all the statically
stable CoM positions for a given set of contacts. Now, we
would like to know where the CoM can be when, in addition,
we allow a given set of CoM accelerationsﬂ that keeps the
forces within their friction cones. This is what we call the
robust stability region, illustrated by P in Fig.]

A. Problem formulation

Definition 1 (Robust static equilibrium). A CoM position ¢
is in robust static equilibrium with respect to a given residual
radius 7 iff:

V g; such that ||g;|| < 7,3 f; such that
Arfi+ Az(g + gi)e =T(g + 3i) 2
IBfill < u” f; (3)

All notations are the same as Recall that A,

embeds the cross product with the gravity. In the non-robust
case, its last line is nil as g is aligned with the vertical
axis. Hence, the vertical component of ¢ does not contribute
anything, and eq. (I) defines a two-dimensional shape. In the
robust case, g+¢; is almost always not aligned with the vertical
axis and eq. defines a three dimensional shape. Moreover,
this three-dimensional volume is an infinite intersection of
convex shapes —one for each couple (f;,g;), therefore it is
a convex shape.

In [6], P is a given point, of a predefined CoM trajectory, at
which G is computed. The latter is a sphere, of unknown radius
r, centered on the acceleration that is obtained for a given
contact forces. The authors present an algorithm to compute
r based on gravito-inertial wrench projections and use it as a
robustness measure for the given trajectory.

IThe said CoM accelerations can result from a perturbation, i.e. applied
external forces, or from the control, i.e. from the actuators.

In [15] robust static stability was envisioned as the set
of CoM positions P, where a set of lateral accelerations
G, centered around g, could be generated by contact forces.
Here, P is only sampled, whereas our method systematically
computes P, which allows fast-testing of robust equilibrium
of any points (see [section VII).

Another approach in [42] proposes a set of algorithms,
including a faster version of [L1], to deal with postural
robustness to contact force errors. That is to say, for a given
uncertainty of the force, they seek if it can be balanced by the
others. Yet, a point of the utmost importance was missed: in the
robust case, the region describing all possible CoM positions
is no longer a 2-dimensional polygon, but a 3-dimensional
polyhedron as we described previously.

In Definition (I, we state the problem Vg;. In order to
compute P, it is necessary to reduce it to a tractable form.
We do so using two different approaches. The first approach
writes a more conservative constraint on eq. (2) and eq. ().
The second approach discretizes G.

The goal of both approaches is to obtain a finite set of
convex constraints that can be used in convex optimization
problems. Combining this problem with the recursive projec-
tion algorithm [30], [[L1] allows to compute the corresponding
convex shape. Furthermore, if those constraints are linear they
can also be used in a direct projection algorithm as in [15].

B. Formulating a stricter constraint

In this section, we derive a new inequality (depending on
r but not individual g;), that will induce eq. (E]) This new
constraint has the same form as eq. (I). Let us consider the
solution for the static problem:

Arf + Aa(g)e = T(g)
IBf| <u”f

“4)
®)

To do so, we introduce two bound vectors, [and s. Please
refer to appendix [B| for details and proofs of the following
statements.

Theorem 1. A suitable lower bound | is given by:
ufi =" f > 1= —prma(A])(1 + c])) (6)

With .T the Moore-Penrose pseudo inverse and &(A) the
largest singular value of A.
Theorem 2. A suitable upper bound s is given by:
IBfil = 1BfIl < s = rma(BAD(1+|ell) (D

Corollary 1. For a given CoM position c, if there exist contact
forces f that satisfy:

Arf + Aa(g)e = T(g)
IBf|| < u” f —rm(G(BA}) + ug(AD))(1 + ||cl|)

Then c is in robust static equilibrium.

®)

Proof. The proof is straightforwardly obtained by combining
Theorem 2| and [Theorem 1} O

Unfortunately, eq. is in general not tight, and the con-

verse of is not true. Indeed, let us examine under

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

which conditions we achieve tightness (refer to appendix [B]
for more details):

1) g; is collinear to the max singular vector of A;

2) g; is perpendicular to the max singular vector of A

3) g; is perpendicular to ¢
The two first items are incompatible. Moreover, ¢ will be
different at each iteration, but A; is a constant which means
that no single g; can even saturate two of the above conditions.

Even if this constraint is the tightest conic constraint (in
terms of Lo-norm) we found, it is sill conservative. However,
it allows to reduce the dimensionality of the problem substan-
tially as we only need to find a single set of forces associated
to a CoM position.

C. Discretizing the hypersphere

Instead of the conservative bound of described
previously, we approximate the sphere ||g;|| < r by a polytope
whose k vertices are selected among g;, that is:

9i=9+3i i€0- K] €))

The closer this polytope is to a sphere of radius r, the closer
the computed polyhedron will be to the real P.

The projection of the acceleration on the horizontal di-
rections is not null, thus angular momentum is generated
along every axis. Hence, we still cannot use the method
in [11]]. Instead, we need to find 3D CoM positions that realize
every k accelerations. That is, can we find k sets of forces
F = [fOTfkT]T that produce G = [gOT---ng,} at a given
CoM position ¢?

Proposition 1. If a CoM position c is in robust static equi-
librium (c € P), there exists F' that verifies:

OF + Ue=T
IAF| < TF 1o
With:

& = diag(A;--- Ay) (11
V= [Az(go)T"'Az(gk)T]T (12)
T = [T(g0)" T(gx)"]" (13)
A = diag(B--- B) (14)
T=[u - u]" (15)

Proof. We stack k problems given by one for

each g;. As a robust CoM position verifies the constraints

of for any g;, it does also for any k of them. [

With this approach, the robustness of the static equilibrium
‘P is obtained w.r.t. the polytope G defined by the k g;.

Remark. Contrarily to the bounds-based approach, this does
not rely on the fact that G is spherical. Indeed, robustness is
obtained w.r.t. any convex polytope G, given by its vertices g;.

As we seek for an explicit representation of P we need
to project the presented systems of equalities and inequalities
into the CoM space, R3. In the next section, we show how
the direct projection method is not suited to our particular
problem. Efficient algorithms will be introduced in section [V}

IV. DIRECT PROJECTION

‘P is a 3D shape, and as such the 2D recursive projection
algorithm presented in section does not apply. A simpler
method is direct projection, but it does not apply to our case.
However, the tools and terminology used for direct projection
are used in our algorithms presented in the following section.

To compute the projection of a certain set, the most straight-
forward idea is to compute the boundary of that set, then
projecting this boundary yields the boundary of the projection.
This is the fundamental principle of direct projection.

In our case, this means computing the boundary of the set
defined by either eq. (8) or eq. (I0). Such a problem is known
as a vertex enumeration problem.

In the linear case, the existence of a solution is given by the
Weyl-Minkowski theorem [48]], [34]. It states that any convex
region defined by a finite number of linear inequalities is a
convex polyhedron with a finite number of vertices. Hence,
any convex polyhedron can be equivalently represented in two
ways:

o hyperplanes representation (H-rep): a matrix H com-

posed of its normals and a vector b of associated offsets.
A point a is interior to this region iff Ha < b;

o vertices representation (V-rep): a set of vertices V. A
point a is interior to this region iff there exists a vector «
having the size of V' and with positive coefficients, such
that a = VT with Y, (i) = 1.

A number of algorithms and implementations are available
to perform the H-rep to V-rep mapping and vice-versa. They
are referred to as the double description algorithms, and
vary in their capabilities and performance. Yet, none of them
is inherently superior to the others. Notable examples are
Qhull [5] that computes convex hull and half-space repre-
sentations from vertices using the Beneath-Beyond algorithm;
the Cdd1lib [21] and the Parma Polyhedra Library (PPL) [4]
both of which build on the Fourier-Motzkin elimination algo-
rithm [20], [36], the dual of the Beneath-Beyond algorithm.

Using this tool, we lay out more precisely the procedure
to compute the direct projection of a set defined by convex
constraints. It is composed of four steps:

1) Reduce the problem to a finite set of linear inequalities

and equalities;

2) Enumerate the vertices bounding that set (i.e. find the

V-rep from the H-rep);

3) Project the V-rep in the given space, resulting in another

set of vertices.

4) Compute the convex hull of the previously obtained set

of vertices.

Alternatively, we can linearize eq. by using a poly-
hedral approximation of the friction cones. Unfortunately, a
linear G with k vertices, leads to searching for k£ sets of
forces. This is not an option since the double description has
a worst case complexity that is exponential is the number of
dimensions [25]. Plus, all iterative conversion algorithms are
super-polynomial in the combined size of input and output,
see [LO], [28].

On the other hand eq. is of low dimension, but has
non-linear terms on both sides; its linearization is far from

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

being trivial. We thus investigate two alternatives: the recursive
projection and the prism intersection.

V. COMPUTING THE ROBUST POLYHEDRON
A. Recursive projection

1) Principle: The recursive projection technique consists
in approximating the projection of a convex set by linear
boundaries [30]. We seek for the approximation of P as a
projection in the 3D space, of a higher dimensional space. The
core process of the recursive projection is to iteratively select
directions d. The furthest point found along d (the CoM c*)
will be part of the set (P). The others, i.e. {c € R*|dTc > c¢*}
will be outside of the set (P). The collection of ¢* will form an
inner (i.e. conservative) approximation of the set (P), while the
complementary of the collection of unacceptable points will
be a convex outer (i.e. over) approximation. The boundary of
the real set lies in-between those two approximations, and they
match exactly whenever all directions have been enumerated.
In practice, the number of iterations will be limited.

We also associate a stopping criterion that depends on a
measure of the error between the inner and outer approxima-
tion. Also, for fast convergence, we have to choose suitable
search directions.

We now present two ways to formulate an optimization
problem that yields the appropriate c*: (i) using bounds
in and (ii) linearization in

2) Using bounds: Unfortunately, the formulation (eq. (8))
obtained in is not suitable to an optimization
problem. To turn it into a second-order cone program (SOCP),
we need to transform eq. (8) into two single conic inequalities
by introducing an additional slack variable &:

el <€
IBFIl < u” f = rm(1+€)(a(BA}) + no(A})

(16)
A7)

Then, solving the following optimization problem gives us
an extremal point:

max dlec
¢, f.€
st Avf+ As(g)e=T(g) (18)
el <€

IBSI| < u”f —rm(1+&)(6(BA}) + no(A]))

3) Using linearization: It is much simpler as the constraints

presented in are already in a form that can

be combined with a linear cost function to form a SOCP:

max d’c
c,F
s.t. PF +Ve=T (19)
[AF|| <TF

4) The projection algorithm: Given that we are dealing
with convex 3-dimensional sets, a common measure of size
is the volume. Thus we use as a stopping criterion the volume
difference between the inner and outer approximations.

To maximize the error reduction at each step, we drew
inspiration from [11] and choose the search direction to

be perpendicular to one of the facets of the current inner
approximation. The facet we choose is that having the larger
volume of the associated convex polyhedron v, which is the
set of points that are outside that facet but inside the outer
approximation. This v can also be seen as a cut of the outer
approximation by this facet.

A given facet is defined by its normal n and its offset o
—the distance to the origin, as {c € R*|n"c < o}. Thus, the
v is easily computed if an H-rep of Poyters (Houter, Douter) 18
available:

v[facet]| = {c € R3¢ € Poyter, 0" € > 0}
= {C S R3|Houterc S bouter,nTc > O}
= CUT(Pouter, facet)

(20)

In [I1], the difference between the inner and outer approxi-
mation was a disjoint union of triangles. Therefore, computing
their areas and adding and removing points and hyperplanes
was easy: a simple list of ordered vertices is sufficient and all
operations can be performed without a dedicated algorithm.

In our case, we need to use the double description to
compute v for each facet of the inner approximation. Indeed,
one iteration starting from the simplest volume, a tetrahedron,
does not generate a union of disjoint tetrahedrons, but an union
of intersecting prismatoids, see [Figure 2|

Fig. 2.

Exploded view of one iteration of the algorithm for a simple
example. The outer approximation is a tetrahedron. The search direction d
is perpendicular to its base. The addition of the extremal point ¢* forms the
inner tetrahedron (transparent blue). The red pyramid is cut out of the outer
approximation. The new uncertainty volumes v associated to the new facets of
Pimer are three prismatoids with intersecting trapezoidal bases: thick orange
v3, thin green v2, and transparent grey v1.

For a given facet of the outer approximation, if we cut its v
with a parallel (to facet) hyperplane, there is no guarantee that
this hyperplane does not intersect another uncertainty volume.

Instead, we propose the following

o The input is the 6D contact positions and their friction
coefficients.

o We initialize Pipper, Pouter and the list v of uncertainty

volumes, by solving eq. (I9) or eq. (I8).

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

o We then select the direction d to be the normal to the
facet having the biggest uncertainty volume.

o We solve the SOCP eq. or eq. (T8).

o The resulting c¢* is added to the Pine, and the plane
normal to this direction passing by ¢* is added to Poyeer-

o For all facets, we compute their associated uncertainty
volumes in two cases: (i) the facet was added at the
last iteration and has no associated v[facet] yet or (ii)
its v[facet] was intersected by the plane added at the
previous iteration.

Algorithm 1 Robust polyhedron computation by recursive
projection

I: contacts < the set of contacts

2: € + the approximation difference precision

3: procedure ROBUST(contacts,e)

4 Pinners Pouters ¥ < INIT(contacts)

5 while V(Poyter) — V(Pinner) > € do
6: d < normal(argmax (volumes))
7
8
9

> (19) or (I8)

c* < OPTIM(d)
plane + PLANE(d, ¢¥)
: Pinner < Pinner U €*
10: Pouter < Pouter N plane

> (19) or (I8)

11: for all facet € Pyyer do

12: if facet is new then

13: v[facet] < CUT(Poyer, facet) > (20)
14: else

15: if v[facet]Nplane # () then

16: v[facet] + CUT(v[facet],plane)
17: end if

18: end if

19: volumes[facet]| « V(v[facet])

20: end for

21: end while

22: return Pinner, Pouter

23: end procedure

A note on the polyhedral volume computation: computing
the volume of a set of points is equivalently difficult to finding
their convex hull. Indeed, to compute the volume of a random
set of points, it is necessary to decompose it into a set of
elementary volumes, the simplest being tetrahedrons. This is
exactly what a convex hull of a set of points does. Similarly,
finding the volume of a convex set defined by inequalities is
equivalently difficult to enumerating its vertices. The convex
hull operation is very well implemented in Qhull [5] when
taking vertices as input. But, we found that its performance
when taking inequalities as input is poor, so we used CDD [21].
However, Qhull was found to be slightly more numerically
stable, and can be used in incremental mode, which makes it
an attractive fallback. Still, numerical issues are inherent to the
double description computations, and in pathological cases we
switch to the PPL [4] that uses exact integer arithmetic and is
much faster than CDD in this setting.

5) Proof of convergence: The following result holds.

Theorem 3. The sequences (Pouer)® ™ and (Pipper) ™

converge towards P.

Although it can seem obvious, we need to make sure that
both the inner and outer approximations converge, that they
have the same limit and that this limit is equal to P. We thus
introduce the following intermediate results.

Lemma 1. (P,)" is monotonous non-increasing.

Proof. ngl}zrl +=1 CUT(P e, Plane) thus, Ya € Pg;ltrl,a €
n
Pgl[er and P()uter g ’Pg:lter' D

Lemma 2. (Piy.,)"

Prtl = conv (PR

is monotonous non-decreasing.

c¢*) thus, Ya € P2...,a € P!

Pl’OOf inner inner’ inner>’ inner

and P C prtl O

mner — nner *

Lemma 3. Vn e NP7 CP C P,

Proof. ¥n € N, ¢* € P. We denote 7, = {c|dLc < ¢},} Thus,
Piver = CONV(ci|i € [0---n]) CP. Vn € N,n& C P¢. Thus
Povier = ﬂ T 2 P. O

0---n

We can now prove our main result:

Proof of Theorem 3] By the Lemmas [I] to [3] the sequences
are monotonous and bounded: they converge. Thus, we can
consider their limits, P2, and P2°_. At this limit, we have:

outer nner*
* 00
e C € inner

o mN P(())L?ter = P(())L?ter
Thus, in that direction d, V(v4) = 0. As we choose the max-
imum volume for the stepping direction, maxsscee V(v) = 0.
Then, Vfacet,V(v;) = 0. As the difference between Poyger

and Pipner 18 exactly V(U vk), V(PSSer \ Piooe,) = 0. As both

o0 oo oo — oo
Pier and Pos - are Cnon—empty convex sets Poe.. = Poer
o — c o0 1
Poiter = Uﬂ'n , thus P, is closed, and we have
i€N
S _ oo .o . .
oo er = Pouter- As the sequence of ¢* is included in P, it is
bounded, and thus compact. Then, as P25, = CONV(ci|n €
o0 1 o0 J— o0 J— oo
N)’ Pinner is also compact, and we get Pinner — "inner T Pouler’

which entails Pg5.. = Poser = P by O

B. An intersection of prisms

The 3-dimensional shape described in is the

intersection of k shapes. We show that each of these shapes is
a prism, whose base can be computed as in

Let us consider g; and the 3D vector, ¢ that describes the
2D CoM position in the plane ¢, = 0:

1 00
co=10 1 0]¢ 21
0 00
Let’s find which shape is described by the constraints:
Aif+As(g+3))e=T(g+ G
1f + Aax(g + i) (9+3:) 22)

1Bl <u”f

Note that As is a function of g; = g + §;, and it is the only
part of the equation that affects c. We know that:

Aze= [T(?ng)c} =-m L; . c]

(23)

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

Thus, for any ¢ = [c; ¢, cZ]T'
—_gfcy + gfcz_
gice — gic.
| —9ica + g7y]

795611 giycz
9; Ca +m | —gzc:
| —9{ce +g¥cy) 0
glc.
=T(mg)co +m | —gFc,
0

T(mg)c =m (24)

(25)

(26)

Thus we can show that the solution at any altitude is the
translated of the solution at ¢, = 0. Indeed by using eq. (26),
Y
Iic
g7 *

0

Thus, for any g;, the shape described by is an
infinite prism, whose base can be computed by finding the 2D

polyhedron described with a slightly different problem:

T(mg) | co— =T(mg)c 27)

max d¥ ey
c2, f
S.t. Alf + A2¢CQ = T(g =+ g,) (28)
IBf|| <u”f

where co is the 2-dimensional CoM position in the plane ¢, =
0 and ¢ is a projection matrix:

10 0]
¢= [0 1 0}

The axis of this prism is thus given by the p;, collinear to
the g;:

(29)

z y T 1
pi=% L] =—y (30)

9 9 T g

Then, the resulting intersection of prisms can be easily
computed as follows:

1) Compute an approximation of each base using eq. (28)
and the recursive projection in

2) Compute the convex hull of each prism using a fixed
height (possibly large) for the prism.

3) Compute the intersection of the prisms. It is the V-rep
of the stacked H-rep of each prism.

The resulting intersection is illustrated in fig. [3]

VI. COMPARATIVE RESULTS

We tested the computation on a simple 3-contact scenario,
using an acceleration polytope G with 4 vertices. It is a
“lozenge” whose vertices are generated from adding and
removing an acceleration g,, to each lateral component of
the gravity, that is g; = [£gm, £gm, g]. We use
with the linearization (subsection III-C): at each step, the
problem contains 39 variables; 36 linear constraints that limit
the maximum amplitude of each force component; 13 conic

Fig. 3. The robust static stability polyhedron as an intersection of oblique
prisms, for a residual radius r = 3.55 ms~2

constraints that enforce friction and limit the CoM to a sphere
of unit radius.

The resulting Ps are presented in The obtained Ps
are not right prisms as those of the non-robust case (displayed
for reference in [Figure 6)): they have a diamond-like shape.

When using the acceleration sphere developed in
the polyhedron shrinks faster, see Indeed,
the constraint eq. (8) is isotropic: only the norm of ¢ inter-
venes. Hence, as the residual radius increases, the polyhedron
shrinks in all directions at the same rate. Because eq. (8) uses
maximum singular values, this shrinking rate is high. This
shows that eq. (B) is far from being tight, and should only be
used when fast computation is paramount.

Indeed [ATgorithm I|converges in around 1 s to an acceptable
precision of 0.043 m? (1.02%), see The performance
we obtained is far from optimal: we used’| Python and the free
solver CVXOPT but it is known that switching to a compiled
language such as C++ and using commercial solvers could
greatly improve the runtime. The computation time can be
split in two: (i) solving the optimization problems per se, and
(ii) other operations.

The problem eq. (I8) has a constant number of variables,
whereas the problem eq. (I9)’s size depends on the number of
vertices of G. As the other parts of do not depend
on the method of discretization, we compare the computation
times of the optimization problems in It shows that
reducing the number of variables makes a great difference in
favor of eq. (I8). This also proves that it is very important to
limit the number of the double-description operations.

What is not apparent in [Figure 7| is that the computation
time increases with the number of iterations. Indeed, as the
algorithm progresses, more volumes have to be compared and
potentially recomputed to find the best direction.

To verify that our construction is correct, we compare those
polyhedrons to the naive sampling approach. On the one
hand, we compute the polyhedrons for 20 residual radiuses

Zhttps://github.com/haudren/stabilipy

https://github.com/haudren/stabilipy

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

Fig. 4. Comparison of different P for different acceleration polytopes G generated by g,. Only the inner approximations Piype, are rendered (in red), but
are almost superimposed with Poyeer. The black dots with yellow cones represent contact points with associated friction cones.

r = 0.0bms™?

r=0.125ms?

r=0.3ms™?

Fig. 5. Comparison of different P for different acceleration spheres of radius 7. Only the inner approximations Pinper are rendered (in red), but are almost
superimposed with Pourer. The black dots with yellow cones represent contact points with associated friction cones.

1
=0
=
1 -1
y(m) 11 x(m)

Fig. 6. Stability polygon in 2D (in red). The black dots with yellow cones
represent contact points with associated friction cones.

linearly spaced in the interval [0.55,3.55] and for different
linearizations of a spherical G, from 4 to 18 vertices. On the
other hand, we randomly select 100000 CoM positions ¢; in
the bounding box of each polyhedron, and test them for robust
stability by solving eq. (I9) at constant ¢ = ¢; for an 18-
vertices approximation of a spherical G.

To compare those two objects, we introduce the symmetric
difference metric:

V(P1) + V(P2) —2V(P1 NP2)
V(Py) +V(Ps)

This metric is the volume of the symmetric difference

(P1,P2) = 31

M Init

[Volume
O0dd

[socp

E invalidate

Fig. 7. Computation times for 3 contacts, polytope with 4 vertices and 3
point contacts. 50 iterations, total time 1.29s (clock time, without interpreter
set-up and teardown). Final error: 0.043 m3.

P1 &Py normalized by the sum of volumes. Thus, we compare
the convex hull of the stable ¢, with the computed polyhedrons
using the symmetric difference metric in It shows
that at high number of vertices, and at any residual radius, the
difference between the two objects is very small. This relative
difference increases as the residual radius increases: as the
polyhedron gets smaller, the bounding box shrinks, and thus
the sampling density increases. Thus the sampling becomes
more precise but not our approximation. Moreover, as we

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

TABLE 1
COMPUTATION TIME OF 50 SOCP PROBLEMS WHEN CONSIDERING A
SPHERICAL G COMPARED TO THE LINEARIZATION. IN THE LATTER CASE,
IT IS A FUNCTION OF THE NUMBER OF VERTICES OF G.

Number of vertices ‘ Time (s)

Spherical (1) | 0372
4 0.628
6 1.23
8 1.70
10 2.58
14 5.01
18 8.22

normalize by smaller quantities, this effect is amplified. Still,
some error remains: because we only compute P to a certain
accuracy, some points that fall in the undetermined region are
outside our approximation P but still stable. This is also the
reason why using 10 vertices seems slightly better than 18:
the 10-vertex polytope corresponds to a slightly bigger P that
compensates for the width of the undetermined region.

’+|g| :4+|g| :8+|g| :10+|g‘ =18 ‘

0.15 | N
o

N 0.1} |
=}
g
=)

5-1072 | N

O - |

\ \ \ \ \ \ \
0.5 1 1.5 2 2.5 3 3.5
Margin ms~2
Fig. 8. Comparison between the convex hull of sampled points and the

computed P at various residual radiuses for different number of vertices of
G. Sampled points were tested for stability with |G| = 18

To assess the convergence characteristics of our algorithm,
we devised a worst-case scenario: P would be a sphere (we
took 6 contacts, one per each axis plus a limitation on the CoM
or the contact forces). The results in show that the
convergence is almost linear in the number of iterations. This
does not compare to the nice quadratic result of [11], which
is expected because our problem is 3D and not 2D. Indeed, it
is proven in [24], [8] that the error § between a smooth N-
dimensional convex body P and its best n-vertices polyhedral
approximation asymptotically (n — oo) behaves as:

1
6N7(N7P) 2

nnN-1

(32)

with v a constant that only depends on the dimension N and
the shape of the approximated volume P.

As we are computing an approximation of the sphere, we
cannot expect to converge faster than the best approximation.
This point is further discussed in appendix [C]

TTTTT T T T T T T T TTTTT L
[—_— € B
= 14
100 = Y= 7+(0.72) 11 i
B
w 10_1; B
1072]
Cooval Lol Lol Lol |

109 10t 102 103

Fig. 9. Precision reached as a function of the number of iterations while
approximating a sphere.

It is faster to compute P using the prism intersection method
(subsection V-B). First, at each iteration we solve k SOCP,
each of which is approximately O(n3) in the number of
variables; whereas in we solve at each iteration a
single problem whose size grows with k£ and has a complexity
of about O((nk)?). Second, we need O(1) iterations to reach
the desired precision ¢ in |Algorithm 1, while only (’)(%)
is need using the prism intersection method. Last, with the
prism intersection method, we do not need to keep track of
the uncertainty volumes v. In practice, it takes about 0.83 s to
compute the same example as [Figure 7| with a similar precision
using the prism intersection method; in this case, most of the
time is spent solving optimization problems. The intersection
computation is not significant. Another advantage in using
prisms is its robustness to numerical errors. On the other hand,
it is not possible to target exactly a desired precision e. Indeed,
we do not know how large the intersection of prisms will be
before computing it.

VII. INCREMENTAL PROJECTION FOR TESTING
A. Why incremental projection?

Testing if a particular point ¢, is statically stable, can be
done by solving the SOCP derived from[Equation T]as follows:
max 1
f
s.t. A f =T(g) — Ascy (33)

IBfIl <u”f
Hence, we would need to solve as many SOCP as there are

CoM to be tested. To circumvent this, one can leverage the
fact that a CoM position is in robust static equilibrium iff it is

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

inside the robust static polyhedron. To do so, a TEST-SAMPLE
routine was introduced in [[L1]] for the strictly static case. Their
idea is to test if points are inside/outside of the static stability
polygon, or fall in-between the inner and outer approximation.
In that latter case, it is necessary to refine the approximations
until the position of ¢; is determined.

The difference between TEST-SAMPLE and the polygon
computation in is only in the choice of the
search direction: the point being tested is outside one (and
only one) of the facets of the inner approximation. Hence, the
search direction is chosen perpendicular to that facet.

By doing so, all the points are tested by two matrix
multiplications. The result of the latter operation can tell us if
points are in or out the stability polygon, otherwise they reside
in-between and need refinement. This leads to an interesting
observation: we can start with a very rough approximation of
the stability polygon and refine it with the tests as needed.

We present how to adapt this methodology to ¢; € P.

B. Polyhedral case
We need to update for testing. In 3D, testing

¢t € P can also be done by two matrix multiplications.
However, when we need to update the approximations, c;
may lie outside of multiple facets of the Piyer. Randomly
selecting a facet gives us a direction. Hence, we get rid of
the bookkeepings related to maintaining a map of the facets
to their corresponding uncertainty volumes v.

On the one hand, the direction can be selected to be
perpendicular to the facet of Piyer forming the greatest
uncertainty volume v containing c;. This however does not
present any significant reduction in the number of iterations
(i.e. the number of optimization problems being solved), but
adds overheads due to the volume computations.

We thus choose a random selection for its efficiency.

C. Prism case

To test a point while using the prisms intersection method
in [subsection V-B] we apply derived from
rithm 1] It takes as input a set of polygons, {p;} that contain
an inner and outer approximation. Each of these polygons uses
a different g; and is computed using

For every operation, we do not compute the intersection of
prisms; we only store the polygons that form their bases.

To test if a point is inside or outside one of the prisms, we
compute its oblic projection along the prism axis, p;, on the
plane c, = 0. We denote 1 the projection operator:

& G &
po 2= i) C, 34
T 2 v@e o

c2 = @(ce — pici) = der —

¢ is defined in

Then we check if ¢y is inside every polygon, or outside
any polygon. If it is neither inside nor outside, we refine
the appropriate polygons until ¢y is determined. If it cannot,
within a predefined iterations maxIter, we reject it. In fact
maxIter is reached only when a point is exactly on the
boundary. Alternatively, the area of the current triangle can be
used as a stopping criteria whenever it becomes very small.

Algorithm 2 Algorithm to test a sample with the prism case
while iteratively improving the underlying polygons
1: procedure TEST-PRISMS({p;},{Gi},ct,maxIter)
2 nriter <0
3 while nrIter <maxIter do
4 if c; €N {pii““er} then
5: return true, {p, }
6
7
8

else if c; ¢ N{p"'} then

K3
return false, {p,}

: else
o: for p;, g € ({p;}.{3:}) do
10: Co < w(gi)ct A
11 if co € p?" and ¢y ¢ p"™" then
12: p; < TEST-SAMPLE(p;, c2)
13: end if
14: end for
15: end if
16: nrlter + +
17: end while
18: return false, {p, }

19: end procedure

D. Results

We use the examples in for testing one million
uniformly sampled random points in a box of dimensions
Im x 1m x 3m. We used the incremental version of
presented in The results are illus-

trated in Note that as the number of query points
increases, the number of the iterations —to determine whether

they are robustly stable or not, increases but at a sub-linear
rate. The horizontal lines represent the number of iterations
necessary to reach a certain precision e using

For testing, it is faster to use the polyhedral version rather
than the prism intersection one. Indeed, when testing many
samples, the performance bottleneck is no longer the number
of iterations, but rather the time necessary to test a sample.
In the polyhedral case, two matrix multiplications at most are
necessary to test a point, while in the prism intersection, at
most 2k multiplications are necessary. Moreover, to test a point
in the prism intersection, it is necessary to refine all polygons
in which the projected point lands between the inner and outer
approximation until it is outside of at least one of them or all
of them contain it.

On a mono-core, Python implementation, it takes about
40s to test one million points, but this could of course be
greatly improved using parallelization. Parallel computing is
impractical to build P in because each iteration
will modify the approximations, but in the testing case, most
samples can be tested independently.

VIII. EXTENSIONS AND DISCUSSIONS
A. Choice of the method
So far we have two methods to compute a robust static poly-
hedron P: (i) recursive projection and (ii) prism intersection.

Whenever a low-precision approximation is sufficient, both
methods are nearly equivalent. For high-precision (at least

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

P T T TII T T T T T T T T T T T T T T H

€ = 2.5e

103

102

10!

Number of iterations
T T 17171 H‘

10°

106

T Y T Y B R A 1T M B WA
10° 10" 102 10% 10* 10°
Number of query points

Fig. 10. Number of iterations required to test random points compared to
naive sampling. The blue line represents the average number of iterations,
the shaded area corresponds to the mininimum-maximum envelope. The red
line represents the naive sampling: one iteration per query. The dashed lines
reprensent the number of iterations necessary to reach the indicated precision
using algorithm

30 iterations), we advocate prism intersection as it converges
faster and has better numerical behaviour.

For testing, we similarly think that for few points, both
methods are applicable. However, when testing a large number
of points (at least 30), we strongly suggest using recursive
projection for its speed advantage.

B. Morphing and change in robustness

We know how to compute P corresponding to a given G,
which allows us to known which CoM positions are robust
w.r.t G. However, we have no means of knowing if those CoM
positions are robust w.r.t. another polytope. We will explore
how polyhedron morphing can approximate changes in G.

More precisely, having (Go,Py) and (Gi,P1), can we
compute Py from Gy = A\gGo + (1 — A)G1, A € [0,1]?

Both Py, P; are the projection of a high-dimensional convex
shapes that lives in the manifold of the contact forces and the
CoM position. Thus, deforming G induces non-linear changes
that are projected in the 3-dimensional space.

We propose to use linear morphing between convex polyhe-
drons to approximate changes in the acceleration polytope G».
Hence, we consider scaling of the acceleration polyhedron, i.e.
changes in the residual radius r but not in the linearization. To
compute Py, we use the morphing algorithm presented in [31].
Although the latter presents strategies to morph non-convex
polyhedrons, at its core the algorithm is a 5-step process to
find a common topology of two convex polyhedrons:

1) Get two polyhedrons (vertices and associated topology)
and translate them to barycentric coordinates. Project
them on the unit sphere.

2) Using neighbouring information to limit the search
space, find every intersection of all spherical edges of
the projections.

3) Order the intersections according to topological infor-
mation and find in which facet of one polyhedron lie
the vertices of the other.

4) For each vertex on the unit sphere, use barycentric co-
ordinates to find its position on the original polyhedron.

5) Output the combined topology.

Then, we obtain intermediate polyhedrons by linearly interpo-
lating between matching topologies. The shows an
example of the results obtained by this algorithm.

We compare the volumes obtained in with those
resulting from the morphing. To compare the volumes, we
select an interval [r;, r,] and a number of percentages \. For
each point we compute the exact polyhedron P, corresponding
to the discretization of the robust sphere of radius r = (1 —
A)ry + Ar,, and the interpolated polyhedron at A, P,.

Figure 12|shows how (P, Py) evolves as a function of r,
given different interpolation keypoints. The key observation
is that morphing is a good fit (less than 12 %) error as
long as the distance r,, — r; between keypoints is less than
2m s~ 2. The problem becomes infeasible above r = 4.0m s~ 2
meaning that computing 3 keypoints is enough to cover the
whole acceptable range of residual radiuses. However, the
interpolated polyhedron is bigger than the actual one, which
may lead to false positives when testing for robust stability.

C. Robust 2D and robust 3D

We present a serious limitation of the 2-dimensional ro-
bust approaches [39], [42]: the robust static region is a 3-
dimensional polyhedron, but they consider a 2-dimensional
region, and then extend it to a right prism. We show that this
approximation is a poor fit of the real volume, that only gets
worse as the residual radius increases.

In order to compare our method to 2-dimensional ap-
proaches, we compare the volumetric computation to right
(vertical) prisms whose bases are polygons. The right prism
will have the same height as the diameter of the limiting sphere
we use to bound the CoM accessible region, ¢y ax.

We first ensure that the volume that we compute is always
included in the prism formed by the non-robust static stability
polygon. We then compute a “robust static stability polygon”
at height h, i.e. the recursive projection defined by:

(35)
(36)

OF + W (6e;+[0 0 n)")=T
IAF]| < TF

where ¢y is a 2D vector, ¢ is defined in

We use our previous examples, i.e. the same contacts and G
than in section V1] also for 20 residual radiuses linearly spaced
in the interval [0.55,3.55], and for five different heights we
compute both forms (right prism and P). We then compute
the error metric ¢ between the right prism and the 3D volume
at each residual radius. We ensure that both computations lead
to the same result by comparing the intersection of P and the
plane c, = h with the robust static stability polygon (2D). We
use the same error metric in eq. (3I)), replacing the volume
with the area. An example of the objects being compared is

in while results are shown in The area

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

A=0.2

1 1
Eo0 E0

N N
~1 ~1

—0.2 0 -05 o2
0.20
y(m) (m)

Fig. 11. Morphing between two different robust static stability polyhedrons.

—— Real
0.6 |- — One
— Two
—— Three
504
[}
g
=
=
0.2
O [
0.2}
B 0.15 |-
=
)
3
N 01p
<
E
)
£ 0.05|
!Q
O [
| | | | | | |
0.5 1 1.5 2 2.5 3 3.5
r (robust radius) ms—2
Fig. 12. Comparison of morphing with direct computation for different
keypoints.

error remains low (less than 3 %) at any margin while the
volume error shoots towards 100 %.

This confirms that using a 2D approach is equivalent to
approximating the 3D polyhedron by a prism formed by its
section at some constant height ¢, = h. This leads to a poor

—-0.5

x(m)

approximation of the real volume because it is not similar to
a prism, and this similarity only diminishes with the increase
in the stability margin. Note that at any margin the robust 3D
polyhedron is not included in the prism formed by the “robust
polygon” so the “robust prism” is neither a conservative nor
optimistic approximation.

B

-~ Prism |
VQ\\ Real
Static [

Fig. 13. Comparison between: the statically stable prism in light blue, the
robust static polyhedron with a G generated using g, = 2.6 ms~2 in red
and the prism formed by the robust polygon at the same margin and height
0.1m in dark blue. Note that the scale is non-uniform across axes.

IX. CASE STUDY IN MULTI-CONTACT POSTURE
GENERATION

We explore how the idea of robust static stability can be
applied to posture generation (PG) that aims at finding a
statically stable robot stance. We show how we can modify
such problems to find robust statically stable stances and how
this affects the resulting stances.

A. Posture generation

We use the PG framework in [12]], [13] and add an extra
constraint to maintain the CoM in the robust static stability
polyhedron. The core of the PG is to solve a non-linear

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

—o—h=-02-mh=-01——h=0.0
—+— h=01 —— h=0.2

0.8

0.6] ,,;!2’! .

o
= @./,,
g 04 o .
m ,
A
,l
0.2 - :
o
0 @eooeteSyeso0eso000000 |
| | | | | | |
0.5 1 1.5 2 2.5 3 3.5
Margin ms~2

Fig. 14. Compare 2D robust and 3D robust at different heights (in meters).
Dashed lines represent volumes error, while solid lines represent areas error.

optimization problem in the generalized robot coordinates g,
and the contact forces f. We add our constraint as follows:

He(qg) <b (37

Where H and b represent the H-rep of the robust static
polyhedron. Other constraints encode:

o Contacts fixed to pre-defined locations;

o Forces in friction cones;

« Both torque and position limits for every joint;
o Self-collision constraints.

The objective function is the distance to a given posture.

It is also possible to extend the state of the posture generator
to (¢, F') and directly encode the robust stability by specifying
that for every f; € F"

A1(q) fi + A2(gi)e(q) = T(g:)

In this formulation, the contact positions are not fixed: they
are a function of ¢. Thus, they will be determined by the opti-
mization process. However, dimensionality remains a problem
in non-linear programming, and extending the state increases
drastically the computation times. Therefore, we consider only
the effects of adding the constraint eq. (37).

(38)

B. Results

We generated three random contact positions: one for each
foot and one for the right arm. Then we computed three pairs
of postures using:

o Both feet;

o Both feet and the arm;

o The left foot and the arm.

In each pair, the first posture is generated using the static
stability constraint while the second one is generated using

the same problem plus the constraint eq. (37). The results are
shown in They qualitatively highlight a problem
with the regular static stability: the solver has a tendency
to stop on the edge of the constraint which is an unstable
equilibrium position. The postures generated with the robust
static stability look more resilient to external perturbations.
Indeed, the main difference is that the CoM is shifted:

1) Laterally: away from the edges of the stability region.
2) Vertically: the CoM is lower in the robust case.

Simple shrinking of the static stability polygon p would give
a similar effect to the first point. Yet, simple isotropic shrinking
would fail to account for the specific geometric and frictional
properties of each contact. Moreover, this method would not
result in CoM altitude changes. Finally, our method allows
for explicit acceleration margins whereas shrinking the static
stability polyhedron is only an approximation.

This 3D shift in the CoM position also results in a more
uniform distribution of contact forces, even though no explicit
force objective was formulated.

X. CONCLUSION

We have thoroughly explored the notion of robust static
stability polyhedron: its nature and properties, how to compute
it and how to use it for testing robust static equilibrium. We
have also shown how to approximate variations in the residual
radius with polyhedral morphing.

An interesting property is that it is not a right prism: ap-
proximating this shape by simply shrinking the static stability
polygon is not correct as the height of the CoM plays a role.

As future work, we aim to integrate this computation in our
planning and control frameworks. Adding robustness margins
will greatly increase the quality of planning and will make
our control more resilient to external perturbations. We started
by applying this technique to fixed-contacts single posture
generation. Yet, the location of the contacts will vary by small
increments: it would be paramount to find a way to recompute,
in a few milliseconds, a new polyhedron based on the contact
shifts. In general, we need to improve the computation time.
It would be interesting to exploit the particular characteristics
of the problem that may lead to faster computations. Indeed,
the high-dimensional polyhedron projection we compute is a
cartesian product of cones cut by a 6-dimensional hyperplane,
but we only leverage the fact that it is a convex shape.
Similarly, it could prove highly beneficial to parallelize some
parts of our algorithm, most notably during sampling.

For control, two applications that work at fixed contacts can
be considered: control by polyhedron morphing and trajectory
planning in polyhedral regions. We already presented control
by polygon morphing in [2] and trajectory planning in [1]].

Finally, we have shown how to perform iterative sampling,
but this opens a new venue of research: we can choose the
search direction according to the problem rather than always
choosing the optimal direction. This would allow us to only
refine (or even only compute) the parts of the robust stability
polyhedron that are relevant to the problem being solved.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

TS

a®

Fig. 15. Results obtained using posture generation. From left to right, both feet, feet and right forearm, left foot and right forearm, each pair is first non-robust,
labelled S, then robust, labelled R. The same robust polyhedron is displayed in both images of each pair.

APPENDIX A
MATRIX NOTATIONS

We recall the notations in [11]] that are introduced to obtain
a more compact representation of the Euler-Newton equations.
We thus start from them, in the static equilibrium setting:

> fi=-myg (39)
> fix(e=r)=0 (40)
vi | f < nf? (a1)

where f} represent the tangential and f;* the normal forces.
The r; are the contact positions in the world frame.
We can then slightly reorganize them to isolate the parts

that depend on c:
Z fi=—mg

Zrixfi—mgxc:o 42)
Vi |fill < nf?
We then define the following quantities:
T(g) = [‘5”9} (43)
3
I3 I3 I3 - I3 }
A = 44
S S e B
A2(g) = [’ } (45)
2T =gl
B, =13 — nm;‘F U = [Ty (46)

where n; is the normal at the i" contact, [.], represents the
screw symmetric matrix such that Vu,v € R3,a x b = [a] b.
They are such that the system (@2) is equivalent to:

Arf + Aa(g)e = T(g)

) 47)
Vi ||Bifill < fi
And thus we can define:
By Uo
Bl U
B = u=1 . (48)
B, Up

Which means that (@2) is equivalent to:
Arf + As(g)e =T(g)

(49)
IBfIl < u” f
APPENDIX B
BOUNDS PROOFS
Proposition 2. If 3 (I, s) € R? such that ¥ f;:
uf; > u" f 41 (50)
IBfill < [IBfIl + s Q)]
we have the following implication:
IBf| <u”f+1—s=|Bfill <u'fi (52)

Proof. |Bf|| < uT f+1—s writes | Bf||+s < uT f+1 then
IBfill < IBfll +s < uTf+1 < uTf; from eq. @) and
eq. (5I). O

In what follows, we show that bounds [and s exist and
subsequently eq. (52) holds.

We need intermediary results that will be used in expressing
both [and s.

Lemma 4. The only possible f; are given by:
fi=f+AL(T(@G) = AslGi)e) + (I = Al Ap)w

with .1 the Moore-Penrose pseudo inverse, and w a vector
having the size of contact forces.

(53)

Proof. We first exploit the linearity of A, (screw operator)
and T (stacking acceleration with zero angular momentum):

eq.- @ and eq. @ < A - (fi — f) + A2(gi)e = T(g:) (54)
Since A; is full row-rankﬂ the only possible f; is given by:
fi=f+AL(T(G) - As(@)e) + (I - AlADw (55)

O

Proof of theorem[I] We develop uT f; using con-

sidering the minimal norm solution: w = 0.
ul' fi = uT'f +uT AL (T(G:) — Aa(Gi)e)
= uT f +uT AIT(g;) — uT Al As(Gi)e

(56)
(57)

3Except the degenerate unlikely case where all the contact points are
aligned.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

Now, we use the following properties:

o For any vectors a and b, |a”b| < ||l ||b]| (Cauchy-
Schwarz inequality);
e |lu|| = p (by definition);

e ||Az|| < 5(A)||z| with 5(A) the largest singular value.

Firstly,
WP AIT(30) 2 ~ |lull [A]7 () (58)
> —pa(AD)ymr (59)
Secondly,
u"AfAa(G)e < full Al 42| (60)
< po(AD)mr | (61)
—u" A{As(Gi)e > —pa(ADymr ||c] (62)
Thus, from eq. (39) and eq. (62)), we have
u” fi > u” f — prma(A])(1+) (63)
]

Proof of theorem [2] We develop || B f|| using con-

sidering the minimal norm solution: w = 0.

|BSill = ||Bf + BAITG) + BAIAs(3)c| (64)
We first apply the triangular inequality:
IBAil < 1B +||BAIT@G) | + [BAl4230)e]| ©9)
Firstly:
|BAIT)| < rma(BA]) (66)
Secondly:
|BAL A @G)e| < rma(BAT) |l (©7)
We thus have:
IBfill = 1Bf]| < rma(BA})(1 + [el) (68)
O

We thus see that tightness can only be achieved if the

following conditions are achieved at the same time:

e ||Aal| < 7a| is tight whenever a is aligned with the
singular vector associated with the maximum singular
value, say v. This gives us:

— §; = rv thus g; is parallel to v.
- Ay(gi)e = kv ie. g; X ¢ = ar||c|| v that is to say a
vector perpendicular to g; is parallel to .
e |[A2(gi)c|| < mr||c|| is equal iff ¢ L g;

Which are equivalent to those presented in section [[II-B

APPENDIX C
CONVERGENCE PROPERTIES

In we state that has a linear or

quasi-linear rate of convergence. Indeed, from intuition alone,
approximating a circle by a square only requires 4 vertices,
but approximating a sphere by a cube requires 8 vertices. As
both and [L1] generate vertices one by one, we
expected that the augmentation of the dimension would slow
down the rate of convergence.

This is reinforced by the stochastic geometry literature: it
is proven in [24], [8]] that the rate of convergence depends
on the dimension as follows. Consider P the shape to be
approximated, Pg... and P . the best circumscribing and
inscribed polyhedral approximations of P respectively. Pon e
has n facets tangent to P while P, . has n vertices located
on the surface 9P of P. If P is convex (gaussian curvature
positive or null everywhere) and C2-smooth, then for the

symmetric difference metric § the best approximations verify:

1 N+1
5(P(:ilter7 P) ~ §delN71A(aP) Nirl —5— (69)
nN-1
1 N+1 1
6(7)’ ,Pirriner) ~ idlvN—lA(a’P) Ntl 5 (70)
nN-1

with del and div being constants that only depend on the
dimension N. Note that A in this context denotes the affine
surface area rather the regular surface area. The result can be
extended to the best approximating sequences of P.

Other similar results hold for different metrics, the most
interesting being the Schneider metric. The Schneider metric
§SCH(Py,Py) only applies if P, C Py. It is the maximum
volume of caps of P; cut by the supporting hyperplanes of Ps.
In §5CH is implicitly used: we choose the search
direction perpendicular to the facet that forms the biggest
uncertainty volume i.e. maximizes §S°H (P2,

Our measure of convergence is defined by:

6(,P(:f1ter? Piﬁner) = 5(/Pguer’ P) + 6(7)’ 7Di?mer)

Thus, the previous results entail:

o Our algorithm, if it is indeed linear, is optimal in terms
of rate of convergence.

« Approximating the sphere in section [VI|is the worst-case
scenario as it maximizes A(OP) for a given volume.
However, we cannot directly use this result to prove our rate

of convergence:

o It only applies to C? bodies, while the volume we
are approximating is C? almost-everywhere only: it has
straight edges.

o« We are computing two sequences of approximations of
P, that minimize 65 at each step but they probably do
not minimize §.

o This result is only asymptotic: as we stop the algorithm
after a finite (potentially small) number of iterations, we
need to prove a result that holds even for small n.

ner)
mner/*

(71)

REFERENCES

[1] H. Audren and A. Kheddar. Model-predictive control in multi-contact
based on stability polyhedrons. In IEEE-RAS International Conference
on Humanoid Robots, pages 631-636, Birmingham, UK, November 15-
17 2017.

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

(2]

(3]

(4]

(31

(6]

(7]

(8]
(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]
[22]

[23]

[24]

[25]

[26]

H. Audren, A. Kheddar, and P. Gergondet. Stability polygons reshaping
and morphing for smooth multi-contact transitions and force control of
humanoid robots. In IEEE-RAS International Conference on Humanoid
Robots, pages 1037-1044, Cancun, Mexico, Nov. 2016.

H. Audren, J. Vaillant, A. Kheddar, A. Escande, K. Kaneko, and
E. Yoshida. Model preview control in multi-contact motion— applica-
tion to a humanoid robot. In [EEE/RSJ International Conference on
Intelligent Robots and Systems, pages 4030-4035, 2014.

R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library:
Toward a complete set of numerical abstractions for the analysis and
verification of hardware and software systems. Science of Computer
Programming, 72(1-2):3-21, 2008.

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algo-
rithm for convex hulls. ACM Transactions on Mathematical Software,
22(4):469-483, 1996.

S. Barthélemy and P. Bidaud. Stability measure of postural dynamic
equilibrium based on residual radius. Advances in Robot Kinematics:
Analysis and Design, pages 399-407, 2008.

M. W. Bern, D. Eppstein, L. J. Guibas, J. Hershberger, S. Suri, and
J. Wolter. The centroid of points with approximate weights. In Proc.
ESA, volume 979, pages 460472, 1995.

K. J. Boroczky. Approximation of General Smooth Convex Bodies.
Advances in Mathematics, 153(2):325-341, 2000.

K. Bouyarmane and A. Kheddar. Humanoid Robot Locomotion and
Manipulation Step Planning. Advanced Robotics, 26(10):1099-1126,
2012.

D. Bremner, K. Fukuda, and A. Marzetta.
Algorithms Are Not Output Sensitive.
Geometry, 21(1):57-68, 1999.

T. Bretl and S. Lall. Testing static equilibrium for legged robots. IEEE
Transactions on Robotics, 24(4):794-807, 2008.

S. Brossette, A. Escande, G. Duchemin, B. Chretien, and A. Kheddar.
Humanoid posture generation on non-euclidean manifolds. In IEEE-RAS
15th International Conference on Humanoid Robots, pages 352-358,
Nov 2015.

S. Brossette, A. Escande, and A. Kheddar. Multi-Contact Postures
Computation on Manifolds. IEEE Transactions on Robotics, Submitted,
under review.

S. Caron and A. Kheddar. Multi-contact walking pattern generation
based on model preview control of 3D COM accelerations. In IEEE-
RAS International Conference on Humanoid Robots, pages 550-557,
Cancun, Mexico, November 2016.

S. Caron, Q.-C. Pham, and Y. Nakamura. Leveraging Cone Double
Description for Multi-contact Stability of Humanoids with Applications
to Statics and Dynamics. In Robotics: Science and Systems, 2015.

S. Caron, Q.-C. Pham, and Y. Nakamura. ZMP support areas for multi-
contact mobility under frictional constraints. [EEE Transactions on
Robotics, 33(1):67-80, February 2017.

H. Dai and R. Tedrake. Planning robust walking motion on uneven
terrain via convex optimization. In IEEE-RAS International Conference
on Humanoid Robots, pages 579-586, Cancun, Mexico, 2016.

A. Escande, A. Kheddar, and S. Miossec. Planning contact points for
humanoid robots. Robotics and Autonomous Systems, 61(5):428-442,
2013.

R. Featherstone. Rigid Body Dynamics Algorithms. Springer US, Boston,
MA, 2008.

J. Fourier. Solution d’une question particuliere du calcul des inégalités.
Nouveau Bulletin des Sciences par la Société philomathique de Paris,
pages 317-319, 1826.

K. Fukuda and A. Prodon. Double description method revisited, 1996.
E. Garcia, J. Estremera, and P. G. de Santos. A comparative study
of stability margins for walking machines. Robotica, 20(06):595-606,
2002.

A. Goswami. Postural stability of biped robots and the foot-rotation
indicator (fri) point. The International Journal of Robotics Research,
18(6):523-533, 1999.

P. M. Gruber. Asymptotic estimates for best and stepwise approximation
of convex bodies II. Forum Mathematicum, 9(5):521-538, 1997.

M. Henk, J. Richter-Gebert, and G. M. Ziegler. Basic properties
of convex polytopes. In Handbook of Discrete and Computational
Geometry, pages 243-270. CRC Press, Boca, 1997.

H. Hirukawa, S. Hattori, K. Harada, S. Kajita, K. Kaneko, F. Kanehiro,
K. Fujiwara, and M. Morisawa. A universal stability criterion of the foot
contact of legged robots— Adios ZMP. [EEE International Conference
on Robotics and Automation, pages 1976—1983, June 2006.

Incremental Convex Hull
Discrete & Computational

(271

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

S.-H. Hyon and G. Cheng. Disturbance rejection for biped humanoids.
In IEEE International Conference on Robotics and Automation, pages
2668-2675, April 2007.

M. Joswig and N. Takayama, editors. Algebra, Geometry and Software
Systems, chapter Beneath-and-Beyond Revisited, pages 1-21. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2003.

S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi,
and H. Hirukawa. Biped walking pattern generation by using preview
control of zero-moment point. In IEEE International Conference on
Robotics and Automation, volume 2, pages 1620-1626, 2003.

J. E. J. Kelley. The Cutting-Plane Method For Solving Convex programs.
Journal of the Society for Industrial and Applied Mathematics, 8(4):703—
712, 1960.

J. R. Kent, W. E. Carlson, and R. E. Parent. Shape transformation
for polyhedral objects. In ACM Transactions on Computer Graphics
(SIGGRAPH), pages 47-54, New York, NY, USA, 1992. ACM.

R. Mattikalli, D. Baraff, and P. Khosla. Finding All Stable Orientations
of Assemblies with Friction. [EEE Transactions on Robotics and
Automation, 12(2):290-301, 1996.

R. McGhee and A. Frank. On the stability properties of quadruped
creeping gaits. Mathematical Biosciences, 3:331-351, 1968.

H. Minkowski. Allgemeine lehrsétze iiber die convexen polyeder.
Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen,
Mathematisch-Physikalische Klasse, pages 198-219, 1897.

H. Mosemann, F. Rohrdanz, and F. M. Wahl. Stability analysis of
assemblies considering friction. [EEE Transactions on Robotics and
Automation, 13(6):805-813, 1997.

T. Motzkin. Beitrage zur theorie der Linearen Ungleichungen. PhD
thesis, Universitit Basel, 1936.

F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and D. Pucci.
iCub whole-body control through force regulation on rigid non-coplanar
contacts. Frontiers in Robotics and Al, 2(March):1-18, 2015.

S. Nozawa, M. Kanazawa, Y. Kakiuchi, K. Okada, T. Yoshiike, and
M. Inaba. Three-dimensional Humanoid Motion Planning Using COM
Feasible Region and its Application to Ladder Climbing Tasks. In
IEEE-RAS International Conference on Humanoid Robots, pages 49—
56, Cancun, Mexico, 2016.

Y. Or and E. Rimon. Computation and Graphical Characterization of Ro-
bust Multiple-Contact Postures in Two-Dimensional Gravitational Envi-
ronments. The International Journal of Robotics Research, 25(11):1071—
1086, 2006.

Y. Or and E. Rimon. Characterization of frictional multi-legged
equilibrium postures on uneven terrains. The International Journal of
Robotics Research, 36(1):105-128, 2017.

D. E. Orin, A. Goswami, and S. H. Lee. Centroidal dynamics of a
humanoid robot. Autonomous Robots, 35(2-3):161-176, 2013.

A. D. Prete, S. Tonneau, and N. Mansard. Fast Algorithms to Test
Robust Static Equilibrium for Legged Robots. In IEEE International
Conference on Robotics and Automation, 2016.

T. Saida, Y. Yokokohji, and T. Yoshikawa. FSW (feasible solution of
wrench) for multi-legged robots. IEEE International Conference on
Robotics and Automation, pages 3815-3820, 2003.

P. Sardain and G. Bessonnet. Forces acting on a biped robot. center of
pressure-zero moment point. /[EEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans, 34(5):630-637, Sept 2004.
L. Sentis, J. Park, and O. Khatib. Compliant control of multicontact
and center-of-mass behaviors in humanoid robots. IEEE Transactions
on Robotics, 26(3):483-501, jun 2010.

M. Vukobratovi¢ and B. Borovac. Zero-Moment Point— Thirty Five
Years of Its Life. International Journal of Humanoid Robotics,
01(01):157-173, 2004.

P. M. Wensing, G. Bin Hammam, B. Dariush, and D. E. Orin. Optimiz-
ing Foot Centers of Pressure Through Force Distribution in a Humanoid
Robot. International Journal of Humanoid Robotics, 10(03):1350027,
2013.

H. Weyl. Elementare theorie der konvexen polyeder.
Mathematici Helvetici, 7:290-306, 1934.

Commentarii

IEEE TRANSACTIONS ON ROBOTICS, VOL. X, NO. XX, XXXXXXX 2018

Hervé Audren received the MS degree in science
and executive engineering from Ecole des Mines
de Paris, France, in 2013 and the PhD Degree
in Robotics from the University of Montpellier in
November 2017. He achieved his PhD research at
the CNRS-UM Laboratory of Informatics, Robotics,
and Microelectronics, Montpellier, France (LIRMM)
and the CNRS-AIST Joint Robotics Laboratory,
Tsukuba, Japan (JRL). His research interests encom-
pass whole-body motion and planning, numerical
optimization and human-robot interaction.

Abderrahmane Kheddar (M’04-SM’12) received
the BSCS degree from the Institut National
d’Informatique (ESI), Algiers, the MSc and PhD
degrees in robotics, both from the University of
Pierre and Marie Curie. He is presently Directeur
de Recherche at the CNRS. He is the Codirector
of the CNRS-AIST Joint Robotic Laboratory (JRL),
UMI3218/RL, Tsukuba, Japan; and leader of the
Interactive Digital Humans (IDH) team at CNRS-
UM LIRMM at Montpellier, France. His research
interests include humanoid robotics, haptics, and
robots control using brain machine interfaces. He is a founding member of the
IEEE/RAS chapter on haptics (now acting as a senior advisor), the co-chair
and co-founding member of the IEEE/RAS Technical committee on model-
based optimization, and a member of the steering committee of the IEEE Brain
Initiative. He is presently Editor of the IEEE Transactions on Robotics, the
Journal of Intelligent and Robotic Systems, and associate editor of the Journal
of Social Robotics; he is a founding member of the IEEE Transactions on
Haptics and served in its editorial board during three years (2007-2010). He
is a member of the National Academy of Technologies of France, knight in
the National Order of Merit, and a Senior Member of the IEEE Society.

	Introduction
	Computation of the static stability polygon
	Recursive projection algorithm
	Problems associated with bilateral contacts

	Robust static stability
	Problem formulation
	Formulating a stricter constraint
	Discretizing the hypersphere

	Direct projection
	Computing the robust polyhedron
	Recursive projection
	Principle
	Using bounds
	Using linearization
	The projection algorithm
	Proof of convergence

	An intersection of prisms

	Comparative results
	Incremental projection for testing
	Why incremental projection?
	Polyhedral case
	Prism case
	Results

	Extensions and discussions
	Choice of the method
	Morphing and change in robustness
	Robust 2D and robust 3D

	Case study in multi-contact posture generation
	Posture generation
	Results

	Conclusion
	Appendix A: Matrix notations
	Appendix B: Bounds proofs
	Appendix C: Convergence properties
	References
	Biographies
	Hervé Audren
	Abderrahmane Kheddar

