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Wang tiles

Wang tiles

e Finite set of colors
@ Alphabet = colored squares

@ Adjacent borders have
matching colors

c = {red, yellow, blue}
2= XX LD
=~ (K}

L XX X3
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Aperiodic tilesets

Definition
A set of tiles is aperiodic when:
@ it can cover the plane;

@ it cannot cover the plane periodically.

Cover such that adjacent borders have matching colors
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The history of small aperiodic tilesets

1964
1966
1971
1974
1986

1996
1996

Self-similar
R. Berger
D. Knuth
R. Robinson
R. Penrose
R. Ammann, B. Griinbaum, G. Shephard

Not self-similar

J. Kari
K. Culik

> 20, 000 tiles
96 tiles
52 tiles
32 tiles
16 tiles

14 tiles
13 tiles
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Our result

Theorem
The Kari-Culik tileset has positive entropy.

Intuitively:
@ Description of a n x n-square takes Q(n?) bits

@ It contains dense “random” bits

Note: entropy zero was conjectured.
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© J. Kari & K. Culik’s tileset
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A function with aperiodic orbits

Consider this function:

1 1
[57 ]_>[§a ]
2x ifx<l1
X =
x/3 ifx>1

@ lts orbits, i.e. sequences uy = (f°"(x))nqen, are aperiodic

o Its orbits are also dense in [1;2]
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The general idea

Real number representation

f°_2(x) —

o3 (x) —»




Multiplications done by transducers

(0,0) (0,0)

(171) '
w (1,2) 00 (1,2)

@ (2,0) stands for “read 2, write 0"
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Multiplications done by transducers

@ (2,0) stands for “read 2, write 0"
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From transducers to tile sets

(7,0

¢ o

Output

Input

e States of M3, Ma: disjoints colors

@ One line = one run
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An aperiodic set of tiles
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An aperiodic set of tiles
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An aperiodic set of tiles
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© Aperiodicity
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Lines and averages

Definition
The average of a sequence (up) is:

n

. 1
avg(u) - n||—>r20 2n+1 kZ Uk
=—n

Tilings: average of a line = average of northern sides
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Aperiodicity

Theorem (J. Kari and K. Culik, 1996)
The Kari-Culik tileset is aperiodic.

Sketch of proof.

@ Suppose there is a periodic tiling. Then each line has an average.
The averages are periodic: contradiction.

@ To tile the plane, start from ...11111111... and run the transducers
forever.

O]

vy
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Encoding real numbers in bi-infinite sequences

Sx(n) = [(n+1)x] — |nx]

Si/2=...010101010101010101...
S5 =...21121112112111 2112111 . ..

Spsz=...2111111111111111111112111111111111111111112.. ...

e S, is on alphabet {|x], [x]}
@ The average of values of Sy is x
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@ Positive entropy
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Each line has an average

Lemma

In any tiling, each line has an average.

Sketch of proof.
Consider a line without an average.

“““““ £o1(x) Fo"(y)
™ W
X y

Density = dns.t. f°7(x) <1 < f°"(y)




Entropy

C(n) = the number of n x n-squares found in any tiling
Definition
We call the entropy the following quantity:

E fim 080

n—oo n

@ Classical definition in dynamical systems
o With 13 tiles, if C(n) ~ 13", then E= ¢
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Substitutive pairs

are pairs of distinct patterns with the same borders.
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Substitutive pairs generate entropy

Lemma

If a substitutive square is found in any n X n-square of any tiling,
then the entropy of the tiles is positive.

n{ 2nqf- 3n
2 possibilities L : :
24 possibilities R

29 possibilities

= substitutive square
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Substitutive pairs appear often (1/2)

Lemma

Whenever a pattern 0111“0 occurs on a line of tiles,
there is a substitutive square intersecting this pattern.

Sketch of proof.
Case analysis.

1|0 1 ............ 1 |01 ......
1:--231 2:--1 1:--271:2:--1
o:--"1:1:1:--0 o 1:1:1:--¢f
Middle case
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Substitutive pairs appear often (1/2)

Lemma

Whenever a pattern 0111¢0 occurs on a line of tiles,
there is a substitutive square intersecting this pattern.

Sketch of proof.
Case analysis.

L0 L0 L |,Q_§_Q.§,,1j,.1.,f0 """
11.222:-1 112221
o'1:1:1:1:-=¢ 011110

Leftmost case
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Substitutive pairs appear often (1/2)

Lemma

Whenever a pattern 0111¢0 occurs on a line of tiles,
there is a substitutive square intersecting this pattern.

Sketch of proof.
Case analysis.

: 0|‘1MQ.,; 1 1|100 : 1|‘Q “““ 10
1220211 1---2 22771 122091 1
o1 1110 o1 1110 o1 1110

Rightmost case
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Substitutive pairs appear often (2/2)

Lemma

In any line with an average E]%1 %[ a pattern of the form 0111%0
appears regularly.

Sketch of proof.

If there are no “0" regularly, then the average is 1.

“ ” . 3
If there are no “111" regularly, then the average is < 4.

@ All orbits regularly meet the interval ]%; 1%[

@ Hence substitutive squares appear often enough
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© Conclusion
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Many thanks for your attention!

Our result
@ The entropy of the Kari-Culik tileset is positive

@ The Kari-Culik-tilings are not all self-similar

Open problems

@ Characterize the language of words which can appear on K.C's lines?
@ Is there a tileset working the same way, but with 0 entropy?

@ Is there a sub-shift of finite type A, with positive entropy,
such that any subshift of finite type C A also has positive entropy?
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